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ON THE BACK COVER

Ever since Kolmogorov's Grundbegriffe, the standard mathematical
treatment of probability theory has been measure-theoretic. In this
ground-breaking work, Shafer and Vovk give a game-theoretic
foundation instead. While being just as rigorous, the game-theoretic
approach allows for vast and useful generalizations of classical
measure-theoretic results, while also giving rise to new, radical ideas
for prediction, statistics and mathematical finance without stochastic
assumptions. The authors set out their theory in great detail,
resulting in what is definitely one of the most important books on the
foundations of probability to have appeared in the last few decades.

— Peter Grunwald, CWI and the University of Leiden



Two foundations for probability:
 Measure theory
e Game theory

The game-theoretic foundation goes deeper:
* Probabilities are derived from a perfect-information game.
* To prove a theorem, you construct a strategy in the game.



Twentieth century statistics was based on measure-theoretic
probability.

The statistician has only partial knowledge of the probabilities.

R. A. Fisher in 1922: The statistician only knows that the true
probability measure is one of an indexed class (P ) y.e-

Game-theoretic statistics goes deeper. The statistician may have only
partial knowledge of the perfect-information game. She may be
looking at the game from outside, seeing only part of what happens.



The statistician may be outside the
perfect-information game, seeing only
part of what happens.

* The goal of this talk is to explain this
understanding of game-theoretic statistics.

* First | review game-theoretic probability.



Our book begins with the notion of a testing protocol.



Example of a testing protocol

Consider a game with three players: Forecaster, Skeptic, and Reality. On each round
of the game,

= Forecaster decides and announces the price m for a payoff .
= Skeptic decides and announces how many units, say M. of y he will buy,
= Reality decides and announces the value of y, and

= Skeptic receives the net gain M (y — m), which may be positive, negative, or
zZero.

Perfect information:
* Players move in turn.
* Each sees the other’s moves.

Each player can also receive other information, possibly private.



Consider a game with three players: Forecaster, Skeptic, and Reality. On each round
of the game,

» Forecaster decides and announces the price m for a payoff ,
= Skeptic decides and announces how many units, say M, of y he will buy,
= Reality decides and announces the value of y. and

= Skeptic receives the net gain M (y — m), which may be positive, negative, or
zZero.

Protocol 1.1.
Skeptic announces K € R.
BOR R —1.2. ...
Forecaster announces m,, € [—1,1].
Skeptic announces M,, € R.
Reality announces y,, € [—1,1].

K, =K._1+M,(y, — my,).




We can specialize to probability forecasting:

Protocol 1.1. Protocol 1.8.
Skeptic announces Ky € R. Skeptic announces Ky € R.
PIRn—=1,2 .. FNe = L. it
Forecaster announces m,, € [—1,1]. Forecaster announces p,, € [0, 1].
Skeptic announces M,, € R. Skeptic announces M,, € R.
Reality announces y,, € [—1,1]. Reality announces y,, € {0,1}.
an = }Cn—l i B J?‘[n(yn _ 7”'71)- }Cn = an—l + A[n(yn _ pn)'

We call any restriction on Skeptic’s opponents a specialization.

Protocol 1.8 is a specialization of Protocol 1.1.

If Skeptic can accomplish something in one protocol, this remains true in any
specialization.
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Protocol 1.1.
Skeptic announces Ky € R.
FORN=1,2....:
Forecaster announces m,, € [—1,1].
Skeptic announces M,, € R.
Reality announces y,, € [—1,1].
Kn:=K._1+ M,(y, — m,).

Three specializations:

Protocol 1.8.

Protocol 1_‘3‘ Skeptic announces Ky € R.
Skeptic announces K € R. HOR . —i.9..
FORn =1,2,...: L

Skeptic announces M), € R. Skeptic announces M,, € R.

Reality announces y,, € [—1, 1]. Reality announces y,, € {0,1}.
’Cﬂ, = }Cn—l + ]\-[nz . Kn = K-:n—l + A’-[n(yn _pn)

Forecaster announces p,, € [0, 1].

Skeptic announces K € R.
PORn=123 ..
Skeptic announces My, € R.
Reality announces y, € {0, 1}.
Kn:=Kn_1+ Mn(yn — :1J)
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Protocol 1.1. A testing protocol allows Skeptic to

Skeptic announces Ky € R. test Forecaster’s reliability.
PR —1,2, ..

Forecaster announces mn € [=1,1]. | 11f Skeptic multiplies the capital he risks
Skeptic announces M,, € R.
Reality announces y,, € [—1, 1]. by a large factor, then Forecaster does

’Cn — an—l -+ ﬂ'In(yn - Tn‘n,)- not IOOk gOOd.

“Skeptic multiplies the capital he risks by 1000 in the
first N trials” means

L &5 >0

2. K,_1++M,(1-m,) >0and X,,_+M,(—-1—m,) >0
forn=1,...,N and

3. Ky /Ko > 1000.

The inequalities in Point 2 are equivalent to

Kfn—l S A[ < K-'n—l

n PO -
1—m, 1+ m, 12




Protocol 1.8.

Skeptic announces Ky € R.
FORn=1,2,...:

Forecaster announces p,, € [0, 1].

Skeptic tests Forecaster Skeptic announces M,, € R.

Reality announces y,, € {0,1}.
]Cn = ]Cn—l T A'!n(yn — pn)-

N
anl Pn
N

N
Z n=1 Yn
N

Set g‘,\r = and ]_)N =

Skeptic has strategies that multiply the capital he risks
by a large factor unless |7y — Py is small.

One such strategy is M, := Yn1 ;p"‘l K, 1.
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Protocol 1.8.
Skeptic announces Ky € R.

Skeptic tests Forecaster FORn=1,2,...:

_ _ Forecaster announces p,, € [0, 1].
Skeptic has strategies that multiply the capital he risks Skeptic announces M,, € R.
by a large factor unless [y — Py| is small. Reality announces y,, € {0,1}.

an = an_.__l + ﬂ[n(yn. - pn)'

This 1s the law of large numbers. We can make it precise asymptotically or finitely.

« Asymptotic: The difference tends to zero unless Skeptic becomes infinitely rich (aka
except on a set of probability zero) .

* Finite: For large enough N, the difference is less than a certain small amount unless
Skeptic multiplies his capital by a certain large factor (aka except on a set of small

probability).

These laws of large numbers are proven constructively, by constructing
strategies for Skeptic.
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Cournot’s principle
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Cournot’s principle:

Forecaster 1s reliable

Skeptic 1s unable to multiply the capital he risks substantially.

A forecasting strategy is valid

it withstands Skeptic’s strategies.



If Forecaster is reliable if Skeptic cannot multiply the capital he
risks substantially.

This is an aspect of Cournot’s principle.

Skeptic announces Ky € R.
Skeptic has strategies that multiply FORn =1,2,...

the capital he risks by a large factor Forecaster announces pn € [0, 1]
T — . il Skeptic announces M,, € R.
unless [7x — py| is small.

Reality announces y,, € {0,1}.
}Cn = an-——l T ﬂjn(yn - p-n)'

By Cournot’s principle, reliablity of
Forecaster means that @N — ]_')i:\rl
will be small.
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If Forecaster uses a valid probability measure as a strategy, then
Skeptic will not multiply the capital he risks substantially.

This is another aspect of Cournot’s principle.

Skeptic announces Ky € R.
Skeptic has strategies that multiply FORn =1,2,...:

the capital he risks by a large factor e e 0
unless [y pn| is small ﬁ Skeptic announces M,, € R.
mless [y — pPN| 1s small. Reality announces y,, € {0,1}.

’Cn = an-——l T ﬂjn (yn - pn)'
By Cournot’s principle, validity of
probability measure as strategy for
Forecaster means that [gy — Dy
will be small.
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Cournot’s principle:
* Forecaster is reliable when Skeptic fails to multiply the
capital he risks substantially.

» A forecasting strategy is valid if it withstands Skeptic’s
strategies.

This game-theoretic version of Cournot’s principle generalizes the
traditional version:
* Betting offers can be tested by a series of bets whether or not
the bets boil down to a bet on a single event.
* The test need not follow a pre-specified strategy.



Upper expectations
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In general, testing protocols use upper expectations (aka upper previsions).

Given a nonempty set ), we call a functional E : RY — R an upper expectation on
Y if it satisfies these five axioms:

Axiom EI.
Axiom E2.
Axiom E3.
Axiom E4.
Axiom ES.

If f1, f2 € RY. then E(f1 + f2) < E(f1) + E(f2).
If f € RY and ¢ € (0, ), then E(cf) = cE(f).
If f1, fo € RY and f; < fo.then E(f1) < E(f2).
Foreachc € R, E(c) =c.

If fi < fo <---€[0,00]”, then E (limg_;00 fr) = limp— 00 E(fx).

We call Axiom ES5 the continuity axiom. We call E(f) f’s upper expected value.

Axiom ES is optional. Almost never really needed.
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Axiom EI.
Axiom E2.
Axiom E3.
Axiom E4.
Axiom ES.

If f1, fo € RY, then E(f1 + f2) < E(f1) + E(f2).
If f € RY and ¢ € (0, 00), then E(cf) = cE(f).
If f1, f2 € RY and f1 < fa, then E(f1) < E(f2).
Foreachc € R, E(c) =c.

If fi < fo <--- €[0,00]Y. then E (limg 00 fr) = limg_s00 E(fi).

Protocol 6.12.
PARAMETER: Nonempty set Y
Skeptic announces Ko € R.
FORn=1,2,...
Forecaster announces an upper expectation E,, on ).
Skeptic announces f,, € RY such that E,,(f,)= K,,_1.
Reality announces y,, € V.

Ka = fn-(yn)-
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Protocol 6.12.

PARAMETER: Nonempty set Y
Skeptic announces Ky € R.
FORn=1,2,...:

Forecaster announces an upper expectation E,, on ).
Skeptic announces f,, € RY such that E,,(f,,)= K,._;.
Reality announces y,, € V.

K:n - fn(yn)-

It is often convenient to allow Skeptic to give up so
call this a slackening. It does not affect what Skeptic c

PARAMETER: Nonempty set )
Skeptic announces Ko € R.
FORn=1,2,...:
Forecaster announces an upper expectation E,, on )
Skeptic announces f,, € RY such that E, (f,,) < K,,_1.
Reality announces y,, € ).

Koy 7= fn-('yn)-

of his capital. We
accomplish.

slackening
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Protocol 6.12.
PARAMETER: Nonempty set Y
Skeptic announces Ky € R.
FORn=1,2,...:
Forecaster announces an upper expectation E,, on ).
Skeptic announces f,, € RY such that E,,(f,,) < K,,_1.
Reality announces y,, € V.

K:n ‘= fn(yn)-

Protocol 1.1.
Skeptic announces Kg € R.
MR n=1.2..:
Forecaster announces m,, € [—1,1].
Skeptic announces M,, € R.

Reality announces y,, € [—1,1].
Kn — K:n—l + A"{n(yn - mn)'

The slackening of Protocol 1.1 is a specialization of Protocol 6.12.

E"(f) :=inf{la e R|IM e RVy € [-1,1] : f(y) < M(y —m) + a}
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Axiom El. If f1, fo € RY, then E(f; + f2) < E(f1) + E(f2). Protocol 6.12.
PARAMETER: Nonempty set

Axiom E2. If f € RY and ¢ € (0, 00). then E(cf) = cE(f). Skeptic announces Ko € R.
= = = FORn =1,2,...
. Y . 3 &y .
Axiom E3. If 1, /3 € R and f; < fa, then E(f1) < E(f2). Forecaster announces an upper expectation E,, on ).
Axiom E4. Foreachc € R, E(c) = c. Skeptic announces f,, € RY such that E,,(f,,) < K,,_;.
_ _ Reality announces y,, € ).
Axiom E5. If fi < fo < -+- € [0,00]”, then E (limg_y00 fx) = limg_yo0 E(f&). Kn = faltn)-

Forecaster is de Finetti’s You.

Upper and lower expectations are called upper and lower previsions in the theory of
imprecise probabilities. Because the theory takes You'’s viewpoint, it emphasizes lower
rather than upper previsions. As noted on p. 102, buying X for « is the same as selling
—X for —c. But because most people buy more often than they sell, ordinary language
is more developed for buying than for selling, and we tend to develop theories in terms
of buying prices. As we have learned, Skeptic’s buying prices are given by the upper

functional. You being Skeptic’s counterparty, his buying prices are given by the lower
functional.
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Protocol 6.12.
PARAMETER: Nonempty set Y

Chapter 8: A testing protocol Skeptic announces Ko € R.
determines a global upper FORn =1,2,...: B
expectation. Forecaster announces an upper expectation E,, on ).

Skeptic announces f,, € RY such that E,,(f,) < K,._;.
Reality announces y,, € ).

Kn := fa(yn).

The global upper expectation is an upper expectation on the
space of all sequences of moves by Skeptic’s opponents.

How it is defined: The upper expected value of a func-
tion X (Ei,vy;,Es,v9,...) is the least initial capital K
needed for a strategy for which lim K, is always at least
X(E1,y1,Eo,0,...).

26



A testing protocol determines a global upper expectation.

. ; Skeptic announces Ky € R.
Skeptic announces K € R. FORn =1.2. ...

FORn=12,...:
Skeptic announces My € R.
Reality announces y, € {0, 1}.
Kn:=Kp_1+ Mn(yn — {f)

Forecaster announces p,, € [0, 1].
Skeptic announces M,, € R.
Reality announces y,, € {0,1}.
Kyni=Kn1+ il1\"[71(?3’71 - pn)'

The global upper expectation on The global upper expectation on
{0, 1}°° is essentially Lebesgue mea- ([0,1] x {0,1})*° is not a proba-
sure on [0, 1]. (See Borel 1909.) bility measure.

New argument for the generalization from probabilities to “imprecise probabilities”:
The generalization arises naturally even in the description of probability forecasting.
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Chapter 10 of Game-Theoretic Foundations for Probability and Finance

Using Testing Protocols in Science and Technology 175
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10.2  Cournot’s Principle 179
10.3  Daltonism 180
10.4  Least Squares 185
10.5 Parametric Statistics with Signals 188

10.6  Quantum Mechanics 191
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Signals in testing protocols
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Protocol 1.8.
Skeptic announces Ky € R.
FOR R —=1,2,...:
Forecaster announces p,, € [0, 1].
Skeptic announces M,, € R.
Reality announces y,, € {0,1}.
Kn=Kp_1+ A’fn(yn - pn)-

Protocol 10.1. Signal

PARAMETER: Nonempty set A’
Ka:=1.
POR#— 1.2, .=

Reality announces z,, € X.
Forecaster announces p,, € [0, 1].
Skeptic announces M,, € R.
Reality announces y,, € {0,1}.
K 5 =Ko-1 1 A'f[n(yn _pn)-

Skeptic’s strategy
A.[n e

Yn—1 — Pn—1
y.
multiplies the capital it risks by a
large factor unless [y —p | is small.

K:n—l

The presence of the signals z,, does
not invalidate this theorem.

But when the p,, are fixed as func-
tions of the x,, the theorem be-
comes a statement relating the zp
and the yy,.
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Least squares

(assuming only bounded errors,
in the spirit of Lai and Wei, 1982)

Tze Leung Lai and Ching Zong Wei. Least squares estimates in stochastic regression
models with applications to identification and control of dynamic systems. Annals of
Statistics, 10(1):154-166, 1982.
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Protocol 10.7.
PARAMETER: w € RE

FORn=1,2,...: dot product
Reality announces z,, € R". \
Skeptic announces M, € R.

Reality announces ¢,, € [—1, 1] and sets y,, := (w, x,,) + €,.
]Cn == ,C'n,—l § s A[nen-

The statistician stands outside the

protocol, not seeing the parameter The goal 1s to find w.
w or the €,. She sees only the z,

and the v,,.
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Protocol 10.7.
PARAMETER: w € RE
FORn =1,2,...:

Reality announces x,, € RE.
Skeptic announces M,, € R.

Reality announces €,, € [—1,1] and sets y,, := (w, x,,) + €,.

Kn i= Kn_1 + Myéy,.

e Treat w and x,, as column vectors.
e Let X, be the n x K matrix whose ith row is z].

e Let Y, be the n-dimensional column vector whose
ith element is ;.

e The least squares estimate of w is
. v \—1 vy
w, == (X, X,)" X, Yx,
if X! X, is invertible.

e Write Amax and Ami» for X! X,.’s largest and smallest
eigenvalues, respectively.

Theorem. Skeptic has a strategy that multiplies his
capital infinitely unless

(= o R T =iy )

n

— |lum —w|| =0 (\/ln ,\;:m/,\;:ﬁn) = o(1).

where ||-|| is the Euclidean norm.

The statistician, believing that Skeptic cannot multiply the
capital he risks infinitely, concludes that the least squares
estimate is consistent.
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Parametric Statistics

34



Convenient general protocol for testing a probability forecaster

PARAMETERS: Nonempty set A" and measurable space Y

’CO =1

FORn =1,2,...:
Reality announces z,, € X
Forecaster announces P,, € P()).
Skeptic announces f,, € [0, 00]¥ such that P,(f,) = 1.
Reality announces y,, € V.
Kn — ’Cn—lfn(yn)-

P(Y) is the set of probability measures on Y.

Here Skeptic is not allowed to risk bankruptcy or waste money.
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PARAMETERS: Nonempty set A" and measurable space )

Ko := 1.

FORn=1.2....:
Reality announces z,, € X.
Forecaster announces P,, € P()).
Skeptic announces f,, € [0, oo]y such that P, (f,) = 1.
Reality announces y,, € V.
an — ,Cn—lfn(yn)-

The statistician might...
1. ...be Forecaster, making probability predictions.
2. ...be Skeptic, testing a theory that plays the role of Forecaster.
3. ...stand outside the protocol, prescribing strategies to Forecaster and Skeptic.
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PARAMETERS: Nonempty set X and measurable space )
K:O = 1.
PO = 1.2...
Reality announces x,, € X
Forecaster announces P,, € P()).
Skeptic announces f,, € [0,00]Y such that P,,(f,) = 1.
Reality announces y,, € V.

R = ’Cn—lfn (yn)

1. Suppose P, always has a density p,.

2' S(_‘t QR = fnpn-

3. Then [ f.dP, =1 implies that g, is also a density.

Skeptic’s capital
is a likelihood
ratio!

4. 50 fu(gn) = 2¥) ang k, = L 30,
0 fn(yn) o (42) — [T, pilw:)
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Protocol 10.11.
PARAMETERS: Nonempty sets © and X', measurable space )/
Reality announces ¢ € ©.
]CO W
FORn=1.2....:
Reality announces =,, € X.
Forecaster announces P,, € P()).
Skeptic announces f,, € [0, o0]” such that P,(f,,) = 1.
Reality announces v,, € V.

’Cn — }Cn—lfn.(y-n )

The statistician does not quite stand inside the protocol; she observes the x,, and v,
as they are announced, but she does not observe Reality’s announcement of 6.
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Suppose Forecaster follows a strategy, known to the
statistician, that specifies each of his moves as a function
of Reality’s previous moves. To fix ideas. assume that
the strategy specifies a density p, (€, 1,1, ..., x,) for B,
with respect to a fixed underlying probability measure.

If Skeptic also follows a strategy that is a function
of Reality’s previous moves, say f,(6,x1,y1,...,2,), and
Gn ‘= fnPn, then

[[ie1 %00, 1,11, - - -, 3) ()

Kn= n .
[Lici pi(0. 21, 01, - - i) (wi)

David Cox called this a “partial likelihood”.
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ABSTRACT

Fermat and Pascal’s two different methods for solving the problem of division lead to two different
mathematical foundations for probability theory: a measure-theoretic foundation that generalizes the
method of counting cases used by Fermat, and a game-theoretic foundation that generalizes the method of
backward recursion used by Pascal. The game-theoretic foundation has flourished in recent decades, as
documented by my forthcoming book with Vovk, Game-Theoretic Probability and Finance. In this book’s
formulation, probability typically involves three players, a player who offers betting rates (Forecaster), a
player who tests the reliability of the forecaster by trying to multiply the capital he risks betting at these
rates (Skeptic), and a player who decides the outcomes (Reality).

Game-theoretic statistics is less developed but appears to offer powerful and flexible resources for
applications. One way of using the game between Forecaster, Skeptic, and Reality in applications is to
suppose there are multiple Forecasters, each making forecasts according to a given probability model. This
makes the picture look like standard statistical modeling in the tradition of Karl Pearson and R. A. Fisher, but
it is only one possibility. In this talk, based on Chapter 10 of Game-Theoretic Probability and Finance, | will
explore some other possibilities, drawing on examples from least squares, survival analysis, and quantum
computing.



BACK COVER

Game-theoretic probability and finance come of age.

Glenn Shafer and Vladimir Vovk’s Probability and Finance, published in 2001,
showed that perfect-information games can be used to define mathematical
probability. Based on fifteen years of further research, Game-Theoretic
Foundations for Probability and Finance presents a mature view of the
foundational role game theory can play. Its account of probability theory opens
the way to new methods of prediction and testing and makes many statistical
methods more transparent and widely usable. Its contributions to finance theory
include purely game-theoretic accounts of 1to’s stochastic calculus, the capital
asset pricing model, the equity premium, and portfolio theory.

Game-Theoretic Foundations for Probability and Finance is a book of research. Itis
also a teaching resource. Each chapter is supplemented with carefully designed
exercises and notes relating the new theory to its historical context.



BACK COVER

Praise from early readers

Ever since Kolmogorov's Grundbegriffe, the standard mathematical treatment of probability theory has
been measure-theoretic. In this ground-breaking work, Shafer and Vovk give a game-theoretic
foundation instead. While being just as rigorous, the game-theoretic approach allows for vast and useful
generalizations of classical measure-theoretic results, while also giving rise to new, radical ideas for
prediction, statistics and mathematical finance without stochastic assumptions. The authors set out
their theory in great detail, resulting in what is definitely one of the most important books on the
foundations of probability to have appeared in the last few decades.

— Peter Griinwald, University of Leiden

Shafer and Vovk have thoroughly re-written their 2001 book on the game-theoretic foundations for
probability and for finance. They have included an account of the tremendous growth that has occurred
since, in the game-theoretic and pathwise approaches to stochastic analysis and in their applications to
continuous-time finance. This new book will undoubtedly spur a better understanding of the
foundations of these very important fields, and we should all be grateful to its authors.

— loannis Karatzas, Columbia University



R. A. Fisher made the notion of a parametric statistical

model central to mathematical statistics. Here the statis-
tician knows only that the true probability distribution

for a certain phenomenon is in a known class

(Pﬂ)aee .

Fisher coined the name parameter for 6.

From the game-theoretic perspective, Fisher’s picture is
oversimplified. A statistician’s knowledge and role with
respect to a testing protocol can take several forms.

“On the mathematical foundations of theoretical statistics”, by R. A. Fisher,
Phil. Trans. R. Soc. Lond. A 222:309-368, 1922.
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