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Answer: Ittells us nothing about the future.

But it permits market efficiency.
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Game-theoretic understanding
of probability, testing, and prediction

Reality is a player in the game.

When forecaster has feedback, good probabilistic prediction
is possible, regardless of what Reality does.

So successful non-stationary prediction with feedback says
nothing about the future.

The game is not a generative model. We are not modelling
Reality.

O Don’t say true probability law.

O Don’t say robust.

As Rama said this morning, “get rid of probability altogether”.



Probability Game

* Forecaster sets prices.

» Skeptic selects bet.

* Reality decides outcome.
...repeat

Perfect information game (prediction with feedback = online prediction)
Players move in order; each sees the others’” moves; many rounds.

Probability = betting rate
P(A)=p means Skeptic must risk p to get 1 if A happens.

Statistical test = strategy for Skeptic
Skeptic tests Forecaster by trying to multiply money risked by large factor.



Probability Game

. In financial applications, the market
* Forecaster sets prices. is both Forecaster and Reality.
» Skeptic selects bet.
e Reality decides outcome. Game-theoretic definition of market
..repeat efficiency: Skeptic will not multiply
capital risked by large factor.

Surprising result:
Forecaster can pass Skeptic’s tests regardless of how Reality moves.

Consequences:
1. Adaptive prediction tells us about the past, not the future.
2. Speculation can make markets efficient.



Some details...

1. Game theory as mathematical foundation for probability

2. Game-theoretic upper probabilities

3. Game-theoretic significance testing

4. Predictions that pass statistical tests (defensive forecasting)

5. Implications for nonstationary prediction (e.g., macroeconomics)

6. Implications for market efficiency
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1. Game theory as mathematical foundation for probability

Example: Betting at even odds

Skeptic announces Ko € R. e A strategy for Skeptic risks bankruptey if it

DR = 250 8 allows Forecaster and Reality to make K,, < 0
Forecaster announces p,, € (0, 1]. )

Skeptic announces L,, € R.
Reality announces y,, € {0, 1}. e A strategy for Skeptic is safe if it does not risk

K, =K,_1+ L,(yn — pn)- bankruptcy.

for some n.

Strong law of large numbers Skeptic has a safe strategy that
guarantees that
_?_l(yi o P:]
n

— 0 or else K,, — oo.

Weak law of large numbers Civen K > 1, ¢ > 0. there exists N
such that for n > N, Skeptic has a safe strategy that guarantees

IZ.-I(.!J-' — Pi) se = K. > K.
n

This and other standard probability theorems proven in 2001 book. 8



o Skeptic announces Ky € R.
2. Upper and lower probabilities FOIIQ) n—19 -
Forecaster announces p,, € [0, 1].
Skeptic announces L, € R.
Reality announces y,, € {0, 1}.
Kn:=Kn_1+ Ln(yn — pn).

Definition

P(E) := inf{K;| Skeptic can guarantee lim K, > 1p}.

n—r 00

Strong law of large numbers

F( " (v — i) 740) _ 0.

n

Weak law of large numbers Given € > 0 and n € N,

F(Z?:l(fh’ — Pi) > 6) < 1 .

n 4e2n




2. Game-theoretic upper probabilities (and expected values)

A functional E : R* — R is an upper ezpectation if:

Axiom E1. If f,, f- € RY then E(f; + f2) < E(f;) + E(f2).
Axiom E2. If f € RY and ¢ € (0,00), then E(cf) = cE(f).

Axiom E3. If f, f- € RY and f, < fo, then E(f;) < E(f2).

Axiom E4. For each c € R, E(¢) = c.

Skeptic announces Ky € R.

IR =1,2,..:
Forecaster announces an upper expectation E,, on X’
Skeptic announces f,, € R such that E,,(f,,) < Kn_1.
Reality announces x,, € X.

K = fn.(fn)v

Global upper probability is a special case of global upper expected value:

E(X) := inf{Ky| Skeptic can guarantee lim K, > X}

n— 00
P(E) := inf{K;| Skeptic can guarantee lim K, > 15}
n—00
Thus defined global upper expectation also satisfies Axioms E1-E4.
Law of large numbers and other theorems hold in this general context. 10




3. Game-theoretic significance testing

Skeptic announces Ko € R. Skeptic announces K € R.

PR R =20 FORn =1.2....
Forecaster announces py, € [0, 1]. Forecaster announces an upper expectation E,, on X'
Skeppc announces L, € R. Skeptic announces f, € RY such that E,,(f,) < Kn_1.
Reality announces y,, € {0, 1}. Reality announces z,, € X.
Kn:=Kn_1+ Ly(yn — Pn)- Ky := fa(za).

Skeptic tests Forecaster by trying to multiply his capital without
risking bankruptcey.

e The factor by which he multiplies his capital is the game-
theoretic test score.

e A test score of 1,000, for example, is interpreted like a conven-
tional significance level of 0.001.

e Assume Ky = 1. So the test score at time n is k..

e If Forecaster chooses a probability distribution PP for Reality's
moves y;,¥a,... and uses it as his strategy, then Skeptic is
testing P. .



4. Predictions that pass statistical tests (defensive forecasting)

Skeptic announces Ky € R. .
FORn=1,2....
Forecaster announces p,, € [0, 1].
Skeptic announces L,, € R.
Reality announces y,, € {0, 1}.
]Cn h= ,Cn—l i o L-n(yn - pn)'

Forecaster predicts with feedback.

» Skeptic tests Forecaster with safe
strategy (trying to multiply capital
risked by large factor).

Fix Skeptic’s strategy, taking him out of the game.

;iven a safe strategy S for Skeptic and moves py, yq, . .., Pn—1-Yn—1
by Skeptic’s opponents, define S,, : [0, 1] — R by

Sn(p) = S(pl- Yt - ooy Pn—1. yn,—l-p)'

FOR =12 ..."
Forecaster announces p,, € [0, 1].
Reality announces y,, € {0,1}.
Ko = A1 5, (pn.)(yn - pn)'

12




FOR =12 ..

Takemura’s lemma says
Forecaster announces p,, € [0, 1].

) Forecaster can block any
Reality announces vy, € {0, 1}. : :
- N | particular continuous
Kn=Kn_1+ Sn(l)n-)(yn - ])n)- ]
strategy for Skeptic.

Takemura’s lemma: If S, 1s always continuous, then Forecaster
has a strategy that ensures Ko > K1 > Ko > -+ -.

Proof By the intermediate-value theorem, the continuous function §,, is always
positive, always negative, or else satisfies S,,(p) = 0 for some p € [0,1]. So
Forecaster can use the following strategy:

e if S, is always positive, take p, = 1;

e if §,, is always negative, take p, := 0;

e otherwise, choose p,, so that S,,(p,) = 0.

This guarantees that Sy, (pn)(yn — pn) < 0, so that k), < K. i

13



FORn=1.2....: Takemura’s lemma says
Forecaster announces p, € [0, 1]. Forecaster can block any
Reality announces vy, € {0,1}. particular continuous
Kn :=Kn1+4 Sn(pn)(yn = Pn). strategy for Skeptic.

Takemura’s lemma: If S, 1s always continuous, then Forecaster
has a strategy that ensures Ko > K1 > Ko > - - -.

Question 1. Why assume continuity in Forecaster’s last move?

* Skeptic can test all the classical probability properties with continuous strategies.

If you don’t like continuity, just let Forecaster hide p,’s zillionith decimal place by
randomizing a tad.

Question 2. Why is it enough for Forecaster to defeat a single particular strategy for
Skeptic?

* For the probabilities to look good, it is enough to pass a few dozen tests (e.g., y=1
about 40% of the times when p=0.4). Forecaster can average these few dozen
strategies and make sure that the average does not make money.

14



More general formulation

1. Auxiliary 3. Skeptic chooses any payoff
information with expected value O or less.

DEFENSIVE FORECASTING PROTOCOL

Reality announces x,, € X.

Skeptic announces a lower semicontinuous F,, : Y x P(Y) =R
such that [, Fy,(y, P)P(dy) <0 for all P € P(Y).

Forecaster announces P, € P(Y).

Reality announces y,, € Y.

Kn = Kn1+ Fn(yn, Pn). 2. Forecaster announces

END FOR. probability distribution on
outcome space Y.

Lemma (Takemura) Let Y be a metric compact. In the defensive fore-
casting protocol, Forecaster can play in such a way that Skeptic’s capital never
increases, no matter how he and Reality play.

From Working Paper 17, www.probabilityandfinance.com.
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Why we thought successful probability forecasting
IS not always possible.

FORn=1,2,...
Forecaster announces p,, € [0, 1].
Skeptic announces s,, € R.
Reality announces y, € {0, 1}.
Skeptic's profit := s, (v, — pn).

Reality can make Forecaster uncalibrated by setting

‘ 1 ifp, <05
yﬂ- . — .
O ifp,>05

Skeptic can then make steady money with

1 ifp<o05
T 121 ifp > 0.5

But here Skeptic’s strategy is not continuous. 16



5. Implications for nonstationary prediction

Defensive forecasting shows that successful on-line prediction tells us
about the past, not the future.

So what should we think about the recurrent efforts to make it work?

Randomly selected work on nonstationary prediction

* Vitaly Kuznetsov and Mehryar Mohri. Learning theory and algorithms for
forecasting non-stationary time series. Advances in Neural Information Processing
Systems (NIPS 2015). Montreal, Canada, December 2015. Machine learning.

* Piotr Fryzlewicz, Sébastien Van Bellegem, and Rainer von Sachs. Forecasting non-
stationary time series by wavelet process modelling, Annals of the Institute of
Statistical Mathematics 55(4):737-764, 2003. Wavelets.

e Simon Haykin and Liang Li. Nonlinear adaptive prediction of nonstationary
signals, IEEE Transactions on Signal Processing, 43(2):526-535, 1995. Neural
networks. 17




Example: non-stationary macroeconomic forecasts

Recurrent failure to predict the business cycle:

1. 1929: Business cycle institutes folded across the globe.

2. 1950s: Cowles commission quietly gave up.

3. 1970s: Large simultaneous equation models failed.
(Simple Box-Jenkins time-series models predict as well or better.)

4. 2008: Modern Bayesian DSGE (dynamic stochastic general
equilibrium) models failed spectacularly.

18



History of econometrics

Mary Morgan, The History of Econometric Ideas, Cambridge. 1990

Early history, culminating in formation of the Econometric Society and
Econometrica in the 1930s and Haavelmo’s 1944 article on the probability
approach.

Roy Epstein, A History of Econometrics, North-Holland. 1987
Failed efforts to predict the business cycle from Cowles Commission in the
1940s through the 1970s.

Duo Qin, A History Econometrics: The Reformation from the 1970s, Oxford.
2013

Three threads of thought coming out of the failures of 1970s:

* VAR (vector autoregression); rational expectations; Christopher Sims.

e Bayes. First championed for model selection, then applied to DSGE.

e LSE school. David Hendry. Closer to Cowles tradition.

19



Macro-econometrics in the 2000s

The chief economist for the world bank declares modern macroeconomic
theory (DSGE) to be Bayesian nonsense: so many parameters that the prior
dominates.

The trouble with macroeconomics, Paul Romer, 2016.

DSGE models could not predict the 2008 crisis or its aftermath.
Challenges for Central Banks’ Macro Models, Jesper Lindé, Frank Smets, and
Rafael Wouters, 2016.

Hendry claims that nonstationary modelling is the solution.
All Change! The Implications of Non-stationarity for Empirical Modelling,
Forecasting and Policy, David F. Hendry and Felix Pretis, 2016.

20



Does the failure of stationary prediction imply a
nonstationary stochastic “generative” mechanism?

My answers:

* There is no justification for “generative” talk.

* Better to say that there is no “generative”
mechanism at all.

 We are observing the results of a complex game.
e Qutcomes may or may not have certain emergent
regularities.



6. Implications for market efficiency

Recent work in game-theoretic probability (see especially the
summary in Working Paper 47), shows that we can reconstruct the
Black Scholes model (modulo a change in time) starting merely from
the assumption that the market index (e.g., the S&P 500) is efficient in
the game-theoretic sense (see slides in Appendix).

This can provide a foundation for Platen and Heath’s real world pricing
or Follmer‘s pathwise pricing.

The success of defensive forecasting suggests how the game-theoretic
efficiency of a market index might arise. Can this be substantiated,
theoretically or experimentally?

This is a call for research.
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Appendix: Game-Theoretic Explanation of Equity Premium

The equity premium puzzle

Returns from stocks are about 6 percentage points better
than returns from bonds.

Risk aversion can account for only about 1 percentage
point.

Game-theoretic explanation

Speculation causes volatility.

Speculation makes market efficient.

Speculation forces an efficient market to appreciate in
proportion to the square of its volatility.

24



Three roles of speculation

e Speculation causes volatility.
Traders know this, though some academic
literature wants to attribute volatility to
information.

* Speculation makes market efficient.
Conventional wisdom, even in academia.

e Speculation forces an efficient market to
appreciate in proportion to (volatility)?.
This is our theoretical contribution.

25



Three roles of speculation

* Speculation causes volatility. Traders and experts in
option pricing agree.

e Speculation makes the market efficient by exhausting
opportunities for low-risk profit. An investor can rarely
do better than hold all tradables in proportion to their
capitalization.

e Assuming that you can trade an index that holds all
tradables in proportion to their capitalization,
speculation forces this index to appreciate in
proportion to the square of its volatility.

26



John Hull, author of leading textbook on option pricing:

What Causes Volatility?

It is natural to assume that the volatility of a stock is caused by
new information reaching the market. This new information
causes people to revise their opinions about the value of the
stock. The price of the stock changes and volatility results. This
view of what causes volatility is not supported by research.

The only reasonable conclusion is that volatility is to a large

extent caused by trading itself. (Traders usually have no
difficulty accepting this conclusion.)

27



What is an efficient market?

 Fama 1965: Prices incorporate all information.
» Shafer/Vovk 2001: No strategy selected in advance multiplies
capital risked by large factor.

Why should a market be efficient?

 Fama: Speculators use each bit of new information.
» Shafer/Vovk: Speculators are using every trick to multiply
their capital, not merely exogenous information.

How do we test whether a market is efficient?

 Fama: Postulate a model and test it statistically.
e Shafer/Vovk: Try to multiply your capital in the market.

28



How do we test whether a market is efficient?

Try to multiply your capital in the market.
* Define a trading strategy and implement it.

* If you multiply your money by 1000, reject the hypothesis
of efficiency.

* Confidence of rejection same as when you reject a
hypothesis at significance 0.001.

29



THE EFFICIENT INDEX HYPOTHESIS (EIH)

You will not multiply the capital you risk by a
large factor relative to an index defined by the
total value of all the readily tradable assets.

To fix ideas, suppose the index is the S&P500.

ETF Symbol ETF Name Fees, per year
VvV iShares Core S&P 500 4 bps
SPY SPDR S&P 500 11 bps

VOO Vanguard S&P 500 5 bps



Our mathematical story

We have argued that speculation causes volatility, and
that speculation makes the market efficient, in the sense
that the market index will not be beat.

This is the efficient index hypothesis.

Using the efficient market hypothesis, we now prove
mathematically that the market index must grow in
proportion to the variance of the index.




Assume zero Interest rate.

For traders, “cash” is a money-market account
that pays the short-term risk-free interest rate.

Use the accumulated value of S1 in such an
account as the numéraire for measuring the
value of other financial instruments.

Mathematically, this is equivalent to assuming
that the interest rate is zero.



Efficient Index Hypothesis (EIH)

You will not multiply the capital you risk by a large
factor relative to an index 1.

Volatility and Variance

Suppose the value of the index over N times periods is

Io. Iy. .. .. In. The returns mq,mo. .. .. my are defined by
i [n § [n. - [n.-l
1 « =t I .
[n—l [n—l
for n =1.....,N. The relative quadratic variation 1s

N

2

Y = E m,,.
n=1

The cumulative volatility 1s /X N.

33



Measure time by accumulated variance.

To fix 1deas, consider daily returns, so /N 1s the number of days.
The relative quadratic variation Xy 1s usually approximately pro-
portional to the amount of time elapsed.

e Explanation by probability theory: The m, are random and
independent. Each 1s random with mean 0 and standard devi-
) N . . N
ation . So Xy :=Y_"_, m2 is an estimate of No?.

e Same conclusion from EIH without probability assumptions.

But volatility does vary (o changes). It 1s greater when traders get
excited, for whatever reason.

To keep the mathematics simple. we use Xy as our clock!!
In other words, we measure time by the amount of trading.

34



Pass to continuous time

Makes picture mathematically elegant.

e Mathematical finance now uses measure-theoretic
continuous-time probability.

* |Instead, we use game-theoretic continuous-time
probability.

35



Assuming continuous time...
e Measure time by cumulative variance ¥ = Y m?2.
e Write / for the value of index at time s, where s = X..

e Assume [y = 1.

Then the EIH mimplies that I will look like
I, = exp (; + U-'S) ,

where Wy 1s Brownian motion.

36



The EIH mmplies that I, will look like

Is = exp (; + U-"s) ,

where Wy 1s Brownian motion.

Geometric Brownian motion with drift 1 & volatility 1.

| @

E(lnl,) =

‘

N

[

s.d.(Inl;) = +/s

For large s,
Inl, =

o @

37



When time 1s measured by cumulative variance X,

S
In/; = R o where s = ..

or .

In/ —

)

In terms of calendar time ¢.

Dt

Inly =~ —

nNiy ~ 2

where X; 18 the cumulated variance at tune t.
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Average return overestimates growth in value by half the variance.

Suppose m,, 1s the return for period n,

M = Z My, = Z m%.

n

and I 1s the accumulated value when you start with one unit. Then
lnlzln” 14+m,) = E In(1+ my,)
n

By the Taylor expansion In(1 + z) = z — 527,

L,
Inl~ Z (mn — §mn) =M — —

n

39



By our theory (still to be explained).

¥

2t
Inl; =~ 5

d—

By the properties of the logarithm.

it

j\ft ~ In If . T

SO
ﬂ-‘[f ~ 21‘

This is the equity premium.
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h‘lt ~ Et-

The annualized volatility of the S&P 500 is approximately 20% ([10], page
8). Squaring this, we obtain an equity premium of 4%. This is closer to the
empirical estimates than the 1% obtained from standard theory, and GTP38
shows that it is within (3)’s anticipated error of approximation (Section 4).

41



-\It ~ St :

How does the EIH implies this equity
premium?

Answer: There are strategies that can beat the index
(multiply your capital by a large factor relative to the
index) if the approximation does not hold.

42



The trading strategy

Suppose I grows faster than our theory predicts:

I\"It = Zf—.
To make money, yvou invest all you have in I and borrow money to
invest even more.

Say you always invest (1 + €) x (current capital) in /. Then on
round n, when [ is multiplied by 1 + m,,, your capital is multiplied
by 1+ (1 + €)m,,. Relative to I, your capital is multiplied by

1+ (1+€)m,
14+m,

Use Taylor’s series for the logarithm again:

1+ (1+e€e)mn,
In g = In(1+ (1 4+ €)my,) — In(1 + my,)

2
2 € 9
2 €My — €M, — gmﬂ.
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multiplied by 1 + (1 + €)m;. So your capital will increase (or decrease) relative
to I by the factor

1+ (1 + e)mk
1+ my .
Using Taylor’s series for the logarithm, we obtain the approximation
1+ (14 €)my €2
In . R emy — emy — ?mi.

So over K rounds, your capital will grow relative to I by a factor whose logarithm
is approximately

K K 2 K .2
eka - ez mj — —Zm;‘: =Ml =~ =
2 2
k=1 k=1 k=1

2
= (M — ¢) — %Et, (5)
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So over the entire time period, your capital will grow relative to [
by a factor whose logarithm is approximately

eZmn—EZmﬁ— %Zmﬁ :eMt—GEt—gzt

62
= E(I\It = Zt) e 3213

This factor will be large if you continue until X; is so large that €X; is
large even though € is small, and if M; then exceeds X; substantially.

Example: € = 0.01, €X; = 3, M; = 1.5%;. Then
2

e(M, — %,) — %Zt ~ 1.5,

so that you have multiplied your capital relative to I by e!® ~ 4.5.
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To similarly make money if I grows too slowly—i.e., if M; is substantially
less than X;, you can take € in the preceding argument to be a small negative
number. In other words, you keep a small fixed fraction of your capital in the
risk-free bond on each round, investing the rest in I.

You can implement the two strategies simultaneously: put half your initial
capital on one of them and half on the other. So you have a strategy that
will mulitply its initial capital substantially relative to I unless M; = ¥;. (We
promised a strategy that multiplies the capital it risks, so you need to implement
the strategy just sketched in a way that risks no more than its initial capital.
You can do this by stopping the strategy if its capital gets close to zero. In
GTP44 we rely on the assumption that the price path is continuous to make
sure we can stop in time. Weaker assumptions can also be accommodated.)
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What are the macroeconomic implications?

The market represents one portion of society’s productive capital—the por-
tion that is so liquid that we can speak of its volatility. How do changes in the
valuation of this portion of society’s capital relative to cash” affect its valuation
relative to the portion of society’s productive capital that is not so liquid?
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Consider an extended period in which the publicly traded portion of the
economy is exceptionally productive, so that the value of I is growing because
of economic fundamentals at a rate exceeding its volatility. A naive expectation
is that this exceptional growth will draw investors into the market, creating a
demand for cash. The speculative strategy described in Section 4.3, if widely
played, would reinforce this demand for cash. Half of its initial capital is invested
according to the strategy (4), and since its current capital will grow, the amount
€ x (current capital) that it borrows will grow. The other half of its initial capital
will be invested according to

(1 — €) x (current capital),

but this current capital will grow more slowly, and so the amount € x
(current capital) that it keeps in cash will be growing more slowly. The
demand for cash will presumably drive up the interest rate. Since the higher
interest rate will not be justifed by the productivity of capital outside the
market, this might spur inflation. Restoration of stability might require slowing
the productivity of the publicly-traded portion of the economy relative to the
privately held portion, perhaps by taking some corporations private.
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In an extended period of slow productivity for the publicly traded portion
of the economy, which falls short of justifying an increase in capitalization com-
mensurate with volatility, we would see pressures in the opposite direction. As
the growth in I lags its volatility, the strategy described in Section 4.3, per-
haps together with more aggressive strategies that sell all or parts of the market
short, could produce an excess supply of cash, driving down the interest rate
and creating deflationary pressure. As this process continues, wealth would
be increasingly concentrated in the hands of those who own the assets in the
market. Barring an increase in productivity, these pressures might eventually
be released by a financial crisis that violates the EIH, suspending consequences
such as M =~ ¥ and perhaps durably destroyving market capitalization that is
not producing a commensurate flow of goods and services.
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