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Chapter 6

What Is Probability?

1. INTRODUCTION

What is probability? What does it mean to say that
the probability of an event is 75%? Is this the frequency
with which the event happens? Is it the degree to which
we should believe it will happen or has happened? Is
it the degree to which some particular person believes
it will happen? These questions have been debated for
several hundred years. Anyone who teaches statistics
should have some sense of how this debate has gone and
some respect for the different viewpoints that have been
expressed. Each seems to have its germ of truth.

This chapter introduces the debate to those who are not
familiar with it. It also sketches a way of reconciling
the different viewpoints and draws some lessons for the
teacher of probability and statistics.

It is conventional to say that mathematical probability
theory has a number of different interpretations. The
same mathematical rules (Kolmogorov’s axioms and def-
initions) are obeyed by degrees of belief, by frequencies,
and by degrees of evidential support. We can study
these rules for their own sake (this is pure mathemat-
ics), or we can adopt one of the interpretations and put
the rules to use (this is statistics or applied probabil-
ity). Section 2 explores this conventional formulation.
It reviews Kolmogorov’s axiomatization and the three
standard interpretations of this axiomatization: the be-
lief interpretation, the frequency interpretation, and the
support interpretation. Fach interpretation, as we shall
see, has its appeal and its difficulties.

Section 3 very briefly reviews how the three standard
interpretations handle statistical inference. This reveals
that they are not as distinct as they first appear. The
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belief and support interpretations both use Bayesian in-
ference. Moreover, they use Bayesian inference to find
beliefs (or degrees of support) about frequentist proba-
bilities. Proponents of the frequency interpretation re-
ject Bayesian inference in most cases, but they too end
up interpreting certain probabilities as beliefs about fre-
quentist probabilities.

It is conventional to say that mathematical
probability theory has a number of differ-
ent interpretations. The same mathematical
rules (Kolmogorov's axioms and definitions)
are obeyed by degrees of belief, by frequen-
cies, and by degrees of evidential support.
We can study these rules for their own sake
(this is pure mathematics), or we can adopt
one of the interpretations and put the rules
to use (this is statistics or applied probabil-

| ity).

Perhaps frequency, degree of belief, and degree of sup-
port are not merely three distinct interpretations of the
same set of axioms, unrelated except for the coincidence
that they follow the same mathematical rules. Perhaps
they are more entangled than this—so entangled that
it is more accurate to say that they are aspects of a
single complex idea. This is the thesis of Section 4,
which argues that probability is a complex idea, one that
draws together ideas about fair price, rational belief, and
knowledge of the long run.

Section 5, in conclusion, draws some lessons for teaching.
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The most important lesson is humility, Whenever we tell
students, “This is what probability really means,” we are
wrong. Probability means many things.

2. THREE INTERPRETATIONS
OF KOLMOGOROV'S AXIOMS

For the pure mathematician of probability, the axioms
and definitions that A.N. Kolmogorov published in 1933
are inseparable from his demonstration that they could
be used as a rigorous basis for the study of infinite se-
quences of random variables. Here, however, we are not
interested in infinity. We are interested instead in the im-
plications of Kolmogorov’s axiomatization for the mean-
ing of probability, and for this purpose we can work with
a finite sample space.

Suppose {) is a finite sample space. Call the subsets of
events. Suppose a probability P(A) is assigned to each
event A. Under these assumptions, Kolmogorov’s ax-
ioms are equivalent to the following slightly long-winded
list of axioms: '

Axiom 1. For each 4,0 < P(4) < 1.
Axiom 2. If A is impossible, then P(4) = 0.
Axiom 3. If A is certain, then P(4) =1.

" Axiom 4. If A and B are incompatible, then
P(AUB) = P(A) + P(B).

Here “A is impossible” means that A = @, “A is certain”
means that A = £, and “A and B are incompatible”
means that AN B = 0.

We could make this list of axioms more concise. We
could omit Axiom 3, for example, because it follows from
Axioms 2 and 4. But we are interested here in the mean-
ing and justification of the axioms and definitions, not
in the most concise way of stating them.

Kolmogorov’s axiomatization of probability consists of
his axioms together with several definitions. If P(4) > 0,

then we call

P(AN B) (1)
P(A)
the conditional probability of B given A, We say that A
and B are independent if P(B|A) = P(B). We call a
real-valued function X on Q a random wariable. We set

E(X)=) X(0) P({i}), (2)

1e§d

P(B|A) =
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and we call E(X) the expected value of X.

We will review in turn three standard interpretations of
Kolmogorov’s axiomatization. The first interpretation
takes P(A) to be a person’s degree of belief that A will
happen. The second takes P(A) to be the frequency
with which A happens. The third takes P(A) to be the
degree to which the evidence supports A’s happening,
or the degree to which it is rational to believe that A
will happen. Savage (1972) called these the personal-
istic, objectivistic, and necessary interpretations. They
have also been discussed by Nagel (1939), Kyburg and
Smokler (1980), Barnett (1982), and many others.

2.1 Belief

The belief interpretation is really a betting interpreta-
tion. When a person says her probability for 4 is 75%,
we assume that she will back this up by betting on 4 and
giving 3 to 1 odds. We algo assume that she is equally
willing to take the other side of such a bet.

Let us review what giving 3 to 1 odds means. It means
putting 75 cents on A if the other person puts 25 cents
against A. You will lose the 75 cents to the other person
if A does not happen, but you will win the other person’s
25 cents if A does happen. In effect, you are paying 75
cents for a ticket that returns $1 if A happens. Taking
the other side of the bet means paying 25 cents for a
ticket that returns $1 if A does not happen.

In a nutshell, then, your probability for A is the price
you will pay for a $1 ticket on A. You will pay half as
much for a 50-cent ticket on A, and twice as much for a
$2 ticket on A.

Why should such prices satisfy Kolmogorov’s axioms?
And what is the point, if this is what we mean by proba-
bility, of defining conditional probability, independence,
and expected value in the way Kolmogorov does?

We can argue persuasively for the four axioms. Consider
Axiom 4, for example. Suppose A and B are incompati-
ble, your probability for A is 40%, and your probability
for B is 20%. Then you would pay 40 cents for a ticket
that pays $1 if 4 happens, and you would pay 20 cents
for a ticket that pays $1 if B happens. If you buy both
tickets, then in effect you are paying 60 cents for a ticket
that pays $1 if AU B happens, So your probability for
AU B must be 60%. Thus P(AU B) = P(A) + P(B).

This argument can be elaborated in various ways. One
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way is to imagine that you post odds for every event and
allow another person to choose what bets to make with
you at those odds and which side of the bet to take in
each case. In this case, you must satisfy Axioms 1 to 4
in order to keep the person from choosing bets in such
a way that she will make money for certain, no matter
how the events come out. - This is sometimes called the
Dutch-book argument.

Conditional probability, in the belief or betting interpre-
tation, is the same as probability—it is probability under
new circumstances. Suppose you know that A will hap-
pen or fail before B. Then the conditional probability
P(B|A) is the degree to which you will believe in B right
after A happens—if it happens. In betting terms, it is
the amount you will be willing to pay right after A hap-
pens for a $1 ticket on B.

This makes it easy to explain the definition of indepen-
dence. Saying that A and B are independent means that
the happening or failing of A will not change your prob-
ability for B.

Why should conditional probabilities obey formula (1)?
Suppose your probability for A is 60%, and your con-
ditional probability for B is 50%. Then you are willing
to pay 30 cents for a 50-cent ticket on A, and if it does
happen, then you are willing to pay the 50 cents you
have just won for a $1 ticket on B. If you plan to spend
the 50 cents in this way if you win it, then when you
pay your 30 cents, you are in effect buying a ticket that
pays $1 if A and B both happen. Thus your proba-
bility for A N B is 30%. These probabilities thus obey
P(AN B) = P(A) - P(B|A). This is called the rule of
compound probability, and it is essentially equivalent to

(1).

We are interpreting the probability P(A) as the amount
you are willing to pay for a $1 ticket on A. This ticket
pays $1 if A happens and $0 if A does not happen. We
can interpret E(X), as given by (2), as the price you
are willing to pay for a more complicated ticket X. This
ticket pays $X(i), where ¢ is the outcome. If P({i})
is your probability for 4, then you are willing to pay
$[X (1) - P({1})] for a ticket that pays $X (i) if 4 happens
and $0 otherwise. If you buy a ticket like this for each 3,
then in effect you have bought the ticket X. The amount
you have spent is the sum on the right-hand side of (2).

There are some obvious objections to these arguments.
First, we may be assuming too much when we assume
that a person is willing to set odds on each event and bet
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on either side of these odds. You can imagine a person
being more cautious. She might require you to offer her
more than even odds, for example, before she would bet
either for or againgt a particular event. If we allow her
to behave in this way, and we still think of the greatest
odds she is willing to give on an event as measuring her
degree of belief or probability for the event, then we get
probabilities that may not add as required by Axiom
4, Such non-additive probabilities have been studied by
many authors, including Walley (1991).

Are Kolmogorov’'s axioms supposed to tell
us how a person’s degrees of belief should fit
together? Or are they supposed to describe
how people actually behave when given op-
portunities to bet or when facing other deci-
sions under uncertainty?

The argument for the rule of compound probability also
involves some strong assumptions. We assume that the
events A and B happen or fail in sequence and that we
will know as soon as A happens or fails. We also assume
that our probability for B right afterward is well-defined;
it does not vary with other circumstances involved in
A’s happening or failing. Many authors, especially de
Finetti (1974, 1975), have tried to relax these assump-
tions, but then the argument becomes less persuasive
(Shafer 1985).

Another point of controversy is whether the belief inter-
pretation is normative or descriptive. Are Kolmogorov’s
axioms supposed to tell us how a person’s degrees of be-
lief should fit together? Or are they supposed to describe
how people actually behave when given opportunities to
bet or when facing other decisions under uncertainty?
Most statisticians who subscribe to the belief interpre-
tation say that Kolmogorov's axioms are primarily nor-
mative. Whether people conform to these axioms in ev-
eryday life is not important to the work of a statistician.
Qutside statistics, however, the value of the belief in-
terpretation as a descriptive theory is widely debated.
Psychologists have given many examples of ways that
people do not conform to the axioms in their judgments
of probability and in their decisions (Tversky and Kah-
neman 1986), yet a good deal of modern economic the-
ory assumes that the axioms have some descriptive (or
at least predictive) validity (Diamond and Rothschild
1978).
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2.2 Frequency

According to the frequency interpretation, the proba-
bility of an event is the long-run frequency with which
the event occurs in & certain experimental setup or in a
certain population. This frequency is a fact about the
experimental setup or the population, a fact independent
of any person’s beliefs.

Suppose we perform a certain experiment n times, un-
der identical conditions, and suppose a certain event A
happens k times. Then the relative frequency of A is

k
o
Perhaps there is a particular number p toward which this

ratio always converges as n increases. If so, then p is the
probability of A in the frequency interpretation.

Many people object -to the acknowledged
narrow scope of application of the frequency
interpretation. Many events for which we
would like to have probabilities clearly do not
have probabilities in the frequency sense.

The frequency interpretation is less widely applicable
than the belief interpretation. A person can have be-
liefs about any event, but the frequency interpretation
applies only when a well-defined experiment can be re-
peated and the ratio (3) always converges to the same
number.

The frequency interpretation makes Kolmogorov's ax-
ioms easy to justify. The axioms obviously hold for the
relative frequencies given by (3). The relative frequency
of A is always between zero and one. It is zero if A is
impossible and never happens, and it is one if A is cer-
tain and always happens. If 4 and B are incompatible
events, A happens k4 times and B happens kp times,
then AU B happens k4+kp times, and hence the relative
frequencies add. The probabilities of the events are the
limits of these relative frequencies as n, the number of
trials, increases. Because the axioms hold for the relative
frequencies, they hold for their limits as well.

The conditional probability of B given A, in the fre-
quency interpretation, is the limit of the relative fre-
quency of B in those trials in which A also happens.
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Formula (1) follows directly from this definition. Inde-
pendence means that B happens overall with the same
relative frequency as it happens in the trials in which A
happens. The expected value of a random variable X is
simply the long-run average value of X in many trials.

Many people object to the acknowledged narrow scope of
application of the frequency interpretation. Many events
for which we would like to have probabilities clearly do
not have probabilities in the frequency sense.

We can also question whether the frequency interpreta-
tion gives an adequate motivation for the definitions of
conditional probability and independence. Why, for ex-
ample, should we care about the relative frequency of
B in the trials where A happens? If we find out that
A has happened, then this relative frequency does seem
more relevant than the overall relative frequency of B as
a guide to whether B will happen. But saying this seems
to take us out of the domain of objective frequencies into
the domain of belief. '

It is also odd, if we begin with frequency as the definition
of probability, that we should then expend great effort
to prove the law of large numbers—the theorem that the
probability of an event will almost certainly be approx-
imated by the event’s relative frequency. This was seen
as a real problem by the frequentists of the nineteenth
century (Porter 1986). But most frequentists nowadays
take a more relaxed attitude. Frequency is the definition
of probability in practice, they say, but it is convenient
in the purely mathematical theory to take probability as
a primitive idea and to prove the law of large numbers
as a theorem.

Here is a related puzzle. In order to prove the law of
large numbers for an event A in our experiment, we must
consider a compound experiment, consisting of n trials,
say, of the original experiment. We assign probabilities
to the possible outcomes of this sequence of experiments,
using the probabilities for the original experiment and
assuming independence of the trials. Then we choose
some number e, we consider the event B that the relative
frequency of the event A in the n trials will be within €
of P(A), and we prove that the probability of B is high.
This gives us a frequency interpretation of P(4). But
what about the probability of B, and the probabilities of
all the other events that can be defined in terms of the
n trials? Do they have frequency interpretations? No
problem, say many frequentists. We simply consider a
yet larger experiment, involving sequences of sequences
of trials (Cramér 1946).
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The preceding objections have not troubled twentieth-
century frequentists, but they have taken a more con-
crete problem very seriously. This is the problem that
probability theory seems to require more than mere con-
vergence of relative frequencies to limits. The conver-
gence must take place at a certain tempo. Yet the fre-
quency interpretation does not impose this.. Thus mere
frequency does not seem adequate, as a model in the
formal sense, for probability theory.

Richard von Mises, in the 1920s and 1930s, proposed
that we model probability theory not merely with fre-
quencies but with whole sequences of outcomes. He
coined the name “Kollektiv” for a sequence of outcomes
whose relative frequencies converge in the manner ex-
pected of a random sequence in probability theory. Von
Mises’s ideas were developed in the 1930s by Jean Ville
and Abraham Wald, who showed that it is possible to
find sequences of outcomes that satisfy any countable
number of the properties that we would expect from a
random sequence (Martin-Lof 1969).

During the last three decades, von Mises’s ideas have
been developed further in terms of the complexity of a se-
quence, which can be defined as the length of a computer
program needed to generate the sequence. A number
of mathematicians, including Kolmogorov, have shown
that sequences that come close to being maximally com-
plex tend to have the properties we expect from a ran-
dom sequence (Cover et al. 1989).

2.3 Support

According to the support interpretation, probability is
rational degree of belief. The probability P(A) of an
event A is the degree to which we should believe A will
happen—the degree to which our evidence supports A’s
happening.

What reason do we have for thinking that there is a pre-
cise numerical degree to which our evidence supports 4’s
happening? Twentieth-century proponents of the sup-
port interpretation concede that it is difficult to measure
degrees of support, but they are convinced that evidence
does give support for beliefs. This support may be qual-
itative rather than quantitative, but it follows certain
rules nevertheless, and we can make it quantitative by
adopting certain conventions. Kolmogorov’s axioms and
definitions follow from these qualitative rules and con-
ventions.

One of the most basic qualitative rules advanced by pro-
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ponents of the support interpretation is the rule that if
A and B are incompatible, then the degree of support
for AU B is completely determined by the -degrees of
support for A and B. To this we may add that it is an
increasing function of these two degrees of support; the
more support there is for A or for B, the more there is
for AU B, Once we accept these qualitative rules, the
numerical rule given by Axiom 4 appears to be a harm-
less convention (Jeffreys 1961). In fact, it can be derived
using a few regularity conditions (Cox 1961, Schrodinger
1947).

Conditional probability and the rule of compound prob-
ability can be dealt with similarly, We define conditional
probability by saying that P(B|A) is the degree of sup-
port for B provided by our present evidence together
with the further knowledge that A has happened. We
formulate the qualitative rule that the degree of support
for AN B is completely determined by the degree of sup-
port for A based on the current evidence, together with
the degree of support for B based on that evidence and
knowledge of A. We add that it is an increasing func-
tion of both, and we then present the rule of compound
probability as a convention or derive it using additional
regularity conditions. ‘

What reason do we have for thinking that
there is a precise numerical degree to
which our evidence supports A's happening?
Twentieth-century proponents of the sup-
port interpretation concede that it is difficult
to measure degrees of support, but they are
convinced that evidence does give support
for beliefs.

It is easy to raise objections to this approach. To be-
gin with, we can question the qualitative rules. Why
should the degree of support P(A U B) depend only on
the degrees of support P(A) and P(B), and not on other
aspects of these two events or other aspects of the ev-
idence? There does not seem to be any argument for
this qualitative principle, aside from the fact that the
familiar numerical rule satisfies it. In some alternative
theories (e.g., Shafer 1976) the principle is not satisfied.

Even if we accept the existence of well-defined degrees of
support based on our current evidence, we can question
whether conditional degrees of support exist. Because
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we might learn that A is true in many different ways,
it may not be appropriate to talk without qualification
about the support for B based on our current evidence
together with knowledge of A (Shafer 1985).

3. THE THREE INTERPRETATIONS IN
PRACTICE

We have been discussing the three interpretations of
probability as if they were completely unrelated—as if
Kolmogorov’s axioms and definitions were all they had
in common. In fact, the three interpretations are thor-
oughly entangled. They are entangled historically, con-
“ceptually, and practically. In this section, we look at the
entanglement in statistical practice.

In statistical practice, proponents of all three interpre-
tations are interested in both frequencies and degrees of
belief. All three groups make inferences about frequen-
cies, and they all use probabilities, in one way or an-
other, to express these inferences. They disagree about
how to make inferences; proponents of the belief inter-
pretation and the support interpretation use Bayesian
methods, whereas proponents of the frequency interpre-
tation use sampling-theory methods. But in both cases,
the inferences are about frequentist probabilities. There
is also disagreement about how to express the inferences;
sampling-theory methods use probabilities with subtle
frequency interpretations, while Bayesian methods use
probabilities that are labeled outright as degrees of belief
or degrees of support. But in practice even the proba-
bilities produced by sampling-theory methods are inter-
preted as degrees of belief.

Bayesian and sampling-theory inference are discussed in

more detail in Chapters 1 and 7 of this volume. Dis-

cussions that emphasize the differences between the two
approaches include Efron (1978) and Barnett (1982).
3.1 Bayesian Inference

Suppose we flip a coin 10 times, and we get the se-
quence HHTTHTHHHH—7 heads and 3 tails alto-
gether, What should we think about the true probability
of heads?

‘If we write p for the true probability of heads, then the
probability of the sequence HHTTHTHHHH is

p(1—p). (3)

This is graphed as a function of p in Figure 1. It seems
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reasonable to take this function as a measure of how
much we should believe different values of p. Thomas
Bayes and Pierre-Simon Laplace, two eighteenth-century
students of probability, suggested that we use it to find
probabilities for p. We multiply (4) by a constant so
that it will integrate to one, and we use the result as a
probability density:

F(p) =1320p7(1 - p)°. (4)

Using this probability density, we can give probabilities
for any interval of values for p. The probability of p
being between 0.54 and 0.86, for example, is 77%.

The probability density given by (5) is called the poste-
rior density for p. The function given by (4) is called the
likelihood function. We have simply multiplied (4) by a
constant to get (5), but we can incorporate into the pro-
cess a probability density g(p) based on other evidence.
We call g(p) the prior density, and we take the posterior
density to be proportional to the product of g(p) and the
likelihood function. Thus formula (5) gives the posterior
density for our problem only in the case where the prior
g(p) is uniform (i.e., where g(p) = 1 for all p,0 < p < 1).

This approach to statistical inference was made popu-
lar by Laplace, and in the nineteenth century it was
called the method of inverse probability. Today we call it
Bayesian inference, and we base it on what we anachro-
nistically call Bayes's theorem. Bayes's theorem says
that if Ay, As,..., A, are incompatible hypotheses, one
of which must be true, then

P(Ay|B) = KP(4i) P(B|4;),

where the constant K does not depend on A. Here
P(4;|B) is the posterior, P(4;) is the prior, and
P(B|A;) is the likelihood. This theorem is easy to prove
if we accept Kolmogorov’s axioms as a starting point,
but it is conceptually troublesome, because it involves
conditional probabilities in two directions (the probabil-
ity of A; given B and the probability of B given 4;),
whereas the justification of conditional probability that
we reviewed in Section 2.1 relies on a single sequence of
events, with the assumption that both the events them-
selves and our knowledge of them unfold together in that
sequence,

Both the support and the belief interpretations use
Bayesian inference, but they differ in their interpreta-
tion of the prior probabilities. Proponents of the belief
interpretation regard prior probabilities as personal be-
liefs. Proponents of the support interpretation try to
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Figure 1: The likelihood function for p resulting from 7 heads and 3 tails

find objective grounds for choosing a prior distribution.
In the case of the coin, for example, they regard the uni-
form prior density as an expression of ignorance, The
support interpretation is rejected by most statisticians,
because the case for objective priors is a confused one.
But the belief interpretation has its own problem here.
This lies in the apparently objective and frequentist na-
ture of the true probability p. Are we giving probabil-
ity a belief interpretation if we interpret the prior and
posterior probabilities as beliefs but interpret the “true
unknown probability p” itself as an objective property
of the coin?

De Finetti (1974, 1975) has argued that the apparently
frequentist p is merely a way of talking; behind it lie
purely subjective ideas about the symmetry of our be-
liefs about a long sequence of successive flips of the coin.
Nonetheless, the workaday world of Bayesian statistics
seems to accept a dual interpretation of probability. In
practice, Bayesians accept models that hypothesize fre-
quentist probabilities. They differ from the frequentists
only in that they use probabilities interpreted as beliefs
in order to make inferences about the probabilities in-
terpreted as frequencies.

3.2 Sampling-Theory Inference

Consider again the problem of making judgments about
the true probability p after observing 10 tosses. The
frequentist approach considers the frequency properties
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of different ways of making such judgments.

Suppose we write X for the number of heads in 10 tosses,
and we say that we are going to estimate p by X/10. The
expected value of this estimator is p, and its standard de-
viation is 4/p(1 — p)/10, which is equal to at most 0.16.
By the central limit theorem, we expect that the esti-
mator will be within one standard deviation of p about
68% of the time. So if we say that p will be in an interval
that extends 0.16 on either side of X/10, we will be right
at least 68% of the time. When X falls equal to 7, this
interval is from 0.54 to 0.86. So we call the interval from
0.54 to 0.86 a 68% confidence interval for p,

Textbook expositions of this method keep “confidence”
quite distinct from “probability.” They emphasize,
moreover, that the confidence coefficient of 68% is ul-
timately a frequentist probability: it is approximately
the frequency with which a certain method produces an
interval that covers p. Yet the language encourages us to
interpret this frequentist probability as an opinion about
p. It is the degree to which we can be confident that p is
between 0.54 and 0.86, Most users of statistics see little
difference between this and a Bayesian degree of belief.

Confidence intervals are only one method in the reper-
toire of the frequentist statistician. Another impor-
tant method is statistical testing, especially the use of
goodness-of-fit tests for statistical models. We need not
describe such tests here; they are discussed in most
statistics textbooks. But they too produce frequentist
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probabilities (significance levels or P-values) that are
given a belief interpretation at the level of practice (Box
1980).

4. THREE ASPECTS OF PROBABILITY

Probability is a complex idea. Belief, frequency, and
support are three of its aspects, and it has other as-
pects as well. One way to bring together the many as-
pects of probability is to emphasize the special situation
that occurs when we repeatedly perform an experiment
for which we know only the long-run frequencies of out-
comes. In this special situation, we know the frequencies,
and we know nothing else that can help us predict the
outcomes. The frequencies therefore determine odds, or
prices for tickets on events. These are more than per-
sonal prices; they are fair prices, in the sense that they
break even in the long run. Because the frequencies are
our only evidence, they also determine well-defined nu-
merical degrees of support for events, or degrees to which
it is warranted or rational to believe that the events will
happen.

The triangle in Figure 2 symbolizes how the ideas of fair
price, warranted belief, and knowledge of the long run
hold together, both conceptually and historically. Con-
ceptually, we can start at any point in the triangle and
reason in the direction of the arrows. Historically, proba-
bility began as a theory of fair odds in games of chance,
and ideas of probability (which then meant warranted
belief) and frequency were only gradually incorporated
into the theory.

In the first part of this section, we use the triangle of
Figure 2 to gain a clearer understanding of why the dif-
ferent aspects of probability are aspects of a single con-
cept. Then we use the triangle to review the history of
the conceptual development of probability. We conclude
with some suggestions for recasting the standard inter-
pretations so as to regain the umnity represented by the
triangle.

Shafer (1991a) develops these themes further. Shafer
(1990) describes the conceptual triangle in more detail.
Daston (1988) and Shafer (1991b) discuss aspects of the
historical development.

4.1 The Conceptual Triangle

Let us consider how we can move around the triangle
conceptually, starting with our knowledge of the long
run.
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The knowledge of the long run that we have in the spe-
cial situation described by probability theory is quite
extensive. We know long-run frequencies for the out-
comes of our experiment. We also know about the rate
at which these frequencies are likely to converge, and we
know betting schemes are futile. We know we cannot
accomplish anything by strategies for compounding bets
on successive events at the odds given by the long-run
frequencies. No such strategy can assure us of a net gain
or give us any reasonable expectation of substantially
multiplying our initial stake.

This knowledge of the long run already refers to odds
for events in individual experiments. These odds are
fair because we break even in the long run by betting at
them. By compounding bets, we can derive fair odds for
events that involve more than one experiment, and we
can study how these odds change as the experiments are
performed. This is the arrow upward and to the left in
Figure 2, the arrow from knowledge of the long run to
fair odds on all events.

Any of the three circles in Figure 2 can be
taken as a starting point for the mathemat-
ical theory of probability.

Once we have fair odds, or fair prices for tickets on
events, we can use these odds or prices as degrees of
belief. Because the odds are fair odds, not just personal
odds, the degrees of belief are warranted degrees of belief,
not just personal degrees of belief. From the properties
of the fair odds, we can derive rules for these warranted
degrees of belief, which we may call probabilities. This
is the arrow to the right in Figure 2. The rules we derive
for probabilities are similar to Kolmogorov’s axioms and
definitions, except that they involve probabilities chang-
ing as the experiments are performed, not probabilities
conditional on arbitrary events.

From the rules for probabilities, we can deduce the
knowledge of the long run with which we began. This is
the arrow downward and to the left in Figure 2.

Any of the three circles in Figure 2 can be taken as a
starting point for the mathematical theory of probabil-
ity. The theory of algorithmic complexity theory starts
with knowledge of the long run. Kolmogorov’s axioms
start with warranted belief. Similar axioms have been
formulated for fair price.
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Figure 2: The triangle of probability ideas

The fact that knowledge of the long run, fair price, and
' warranted belief can each be used as a starting point for
the mathematical theory does not mean that any one
of these ideas is sufficient for grounding probability in a
conceptual sense. The axioms or assumptions we need in
order to begin with any one of these starting points can
be understood and justified only by reference to the other
aspects of the picture. The three aspects of probability
are inextricably intertwined.

4.2 The Historical Triangle

The historical development of mathematical probabil-
ity followed Figure 2, but with fair price as the start-
ing point. The theory began with problems of equity
in games of chance, and it only gradually expanded to
encompass the ideas of probability and knowledge of the
long run.,

What we now call mathematical probability began in the
1650s with the work of Blaise Pascal and Pierre Fermat.
They were primarily interested in equity—in finding fair
odds in games of chance. They did not discuss probabil-
ity, or the weighing of arguments, which was an impor-
tant topic at the time. Both probability and frequency
were brought into the theory later, by James Bernoulli,
In his Ars conjectandi, published in 1713, Bernoulli ex-
plained that probability is degree of certainty, and he
related certainty to equity by saying that an argument

has a certain share of certainty as its fair price. He also *

brought frequency into the theory by proving the law of
large numbers.

Bernoulli’s moves from equity to degree of certainty and
then to frequency are represented by two of the arrows
in Figure 2, The third arrow, from frequency back to
equity, came much later. Today we are accustomed to
saying that the odds given by probability theory are fair
because they are odds at which we will break even in the
long run. More generally, the expected value E(X) of a
random variable X is the fair price of X because it is the
price at which we will break even in the long run. This
idea appears very late in the probability literature, how-
ever. It was first formulated, apparently, by Condorcet
in the 1780s (Todhunter 1865), and it did not become
popular until the nineteenth century.

The weight of opinion on the foundations of probabil-
ity theory moved around the triangle even more slowly.
Ideas of fairness remained at the foundation of the the-
ory well past 1750. It was only as the probabilistic the-
ory of errors became important in the second half of
the eighteenth century that probability, in the sense of
rational belief, became fully independent of ideas of eq-
uity., An important signpost in this development was
Laplace’s influential Théorie analytique des probabilités,
first published in 1812, Laplace interpreted probability
ag rational degree of belief, and he took the rules for
probability to be self-evident. He did not derive them,
as his predecessors had, from rules of equity.
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In retrospect, Laplace’s views look much like: the sup-
port interpretation, but he did not make the kind of dis-
tinction between support, belief, and frequency that we
make today. Though he began with the idea of support
or rational degree of belief, he did not hesitate to follow
Bernoulli in deducing that the long-run frequencies of
outcomes will approximate their probabilities.

The frequency interpretation arose in the nineteenth cen-
tury because of the influence of empiricist philosophy.
The empiricists saw fairness, degree of certainty, and ra-
tional belief as metaphysical ideas, ideas not grounded
in reality. They saw frequency as the only empirical
grounding for the theory. So probability should start
with frequency., The mathematicians should not pre-
tend, as Bernoulli and Laplace had, to derive facts about
frequency from metaphysical ideas about subjective cer-
tainty or rational belief.

We also need to acknowledge the subjec-
tive aspects of the frequency story. A full
account must go beyond the existence of fre-
quencies to the fact that we know these fre-
quencies and nothing more that can help us
predict. The randomness of a sequence is
not an objective fact about the sequence in
itself. It is a fact about the relation between
the sequence and the knowledge of a person,

The frequency interpretation became dominant only in
the late nineteenth and early twentieth centuries. As
its own shortcomings became evident, twentieth-century
scholars sought new foundations for the older non-
frequentist idea of probability, This produced the belief
and support interpretations. The belief interpretation,
first advanced by F.P. Ramsey and Bruno de Finetti in
the 1920s, went back to the ideas of the pioneers, except
that it replaced fair odds and rational degree of belief
with personal odds and personal degree of belief. The
odds were odds at which a particular person would bet,
not odds at which it was fair to bet. This made the in-
terpretation empirically respectable. A person’s betting
behavior is an empirical fact, not a metaphysical idea
like fairness. The support interpretation was less of a
departure and more of a continuing defense of Laplace’s
ideas against the empiricism of the frequentists. John
Maynard Keynes and Harold Jeffreys were very influen-
tial in this defense.

Perspectives on Contemporary Statistics

4.3 Unifying the Standard Interpretations

The historical and practical entanglement of the stan-
dard interpretations, together with their unity in the
special situation of a sequence of experiments for which
we know long-run frequencies, suggests that they should
be recast in a way that emphasizes their commonalities.

For the belief interpretation, this would involve return-
ing to probability’s original emphasis on fair odds rather
than personalodds. Ramsey and de Finetti’s attempt to
drop fairness was a mistake. There is no reason for a
person to have personal odds at which she would bet on
either side. But a person can draw an analogy between
her evidence and the special situation where fair odds
are known. She can say that her evidence is analogous,
in its strength and import, to knowing certain fair odds,
which are based on long-run frequencies. This recast-
ing of the belief interpretation pulls it toward both the
frequency and support interpretations.

We also need to acknowledge the subjective aspects of
the frequency story. A full account must go beyond the
existence of frequencies to the fact that we know these
frequencies and nothing more that can help us predict.
The randomness of a sequence is not an objective fact
about the sequence in itself. It is a fact about the relation
between the sequence and the knowledge of a person.
This point emerges in various ways in the frequentist
foundations pioneered by von Mises and Kolmogoroy. In
Kolmogorov’s complexity theory, for example, the com-
plexity of a sequence is defined in terms of the length of
the computer program needed to generate it, and this
depends on what programming language is used. This
means that what is random for a person using one pro-
gramming language may not be so random for another
person. Frequentists tend to minimize this nonobjective
aspect of the complexity idea by talking about longer
and longer sequences—or even by taking refuge in the
idealization of infinite sequences (Uspenskii et al. 1990).
But if we refuse to minimize it, we create another point
of contact between frequentist and belief foundations.

We can build on this point of contact by emphasizing
the ordering of events when we explain the belief inter-
pretation of conditional probability. If we begin with
an ordering of events, we have a sequence of events and
hence frequencies have a place within the belief interpre-
tation.

With this approach, the three interpretations begin to
resemble each other. All three are really about the spe-
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Figure 3: A unified interpretation of probability

cial situation where we have a sequence of experiments
with known chances. Most applications of probability,
including statistical inference, lie outside this special sit-
uation, of course. But we. can think of these applications
as various ways of relating real problems to the special
situation. Much standard statistical modelling amounts
to using the special situation as a standard of compari-
son. Statistical arguments based on sampling or random-
ization depend on artificially generated random numbers
which simulate the special situation. Bayesian analyses
are arguments by analogy to the special situation.

Figure 3 summarizes this approach to the meaning of
probability. Here probability becomes a story about a
special situation involving known long-run frequencies.
Various aspects of this story can be made into pure
mathematics, and we can base this pure mathematics
on Kolmogorov’s axioms. The different applications of
probability do not, however, depend on different inter- .

pretations of the axioms. Instead, they are different ways
of using the probability story.

5. LESSONS FOR TEACHING

The main message of this chapter is that probability is
a complex idea. It is not simply a set of axioms, nor is
it a single interpretation of these axioms. It is a tangle
of ideas that took hundreds of years to evolve.

This complexity is evident in textbooks on probabil-
ity and statistics. A few textbooks manage to take
an uncompromising ideological line, either frequentist or
Bayesian, but this is hard to sustain. We need to appeal
to all the aspects of probability in order to teach the
mathematics of probability effectively. We must appeal
to frequency in order to explain why probabilities add
and in order to explain the significance of the expected
value of a random variable. We must appeal to belief
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when explaining the idea of conditional probability. We
must appeal to support when explaining why scientists
want to use probabilistic ideas in data analysis.

An understanding of the complexity of probability
should encourage humility when teaching the subject.
We should be wary of pointing to any particular as-
pect of probability and saying, “This is what it really
means.” In particular, we should be wary of telling stu-
dents that probability is simply a branch of pure math-
ematics, Probability is not measure theory. It did not
begin with Kolmogorov.

The complexity of probability should also make us wary
of any strict ideology in teaching statistics. Most el-
ementary textbooks take a sampling-theory viewpoint,
but they do not adhere to it strictly, and there are good
reasons for this laxness. Some textbooks take a Bayesian
approach; here too the teacher needs to be aware that
there are good reasons why the proclaimed subjective
interpretation is carried only so far.

The main message of this chapter is that
probability is a complex idea. It is not simply
a set of axioms, nor is it a single interpreta-
tion of these axioms. It is a tangle of ideas
that took hundreds of years to evolve.

The ways in which probability are used, in statistical
inference and elsewhere, are varied, and they are always
open to criticism. We should guard, however, against the
idea that a correct understanding of probability can tell
us which of these applications are correct and which are
misguided. It is easy to become a strict frequentist or a
strict Bayesian and to denounce the stumbling practical
efforts of statisticians of a different persuasion. But our
students deserve a fair look at all the applications of
probability.

Acknowledgments

Research for this article received partial support from the
National Science Foundation through grant TR18902444
to the University of Kansas.

Glenn Shafer is Ronald G. Harper Distinguished Pro-
fessor of Business at the University of Kansas. He re-
ceived an A.B. in mathematics in 1964 and a Ph.D. in

Perspectives on Contemporary Statistics

statistics in 1973, both from Princeton University. He
has taught in the Statistics Department at Princeton
and in the Mathematics Department and the Business
School at the University of Kansas. He is interested in
the history and philosophy of probability and statistics
and in the use and limits of probability in artificial intel-
ligence. He is a fellow of the Institute of Mathematical
Statistics and a former associate editor of the Journal
of the American Statistical Association. He has been a
Guggenheim fellow as well as a fellow of the Center for
Advanced Study in the Behavioral Sciences.

REFERENCES

Barnett, V. (1982), Comparative Statistical Inference,
second edition, New York: John Wiley.

Box, G. E. P. (1980), “Sampling and Bayes’ Inference
in Scientific Modelling and Robustness” (with dis-
cussion), Journal of the Royal Statistical Society,
Series A, 143, 383-430.

Cover, T. M., Gacs, P., and Gray, R. M. (1989), “Kol-
mogorov’s Contributions to Information Theory and
Algorithmic Complexity,” The Annals of Probabil-
ity, 17, 840-865.

Cox, R. T. (1961), The Algebra of Probable Inference,
Baltimore: The Johns Hopkins Press.

Cramér, H. (1946), Mathematical Methods of Statistics,
Princeton, NJ: Princeton University Press.

Daston, L. (1988), Classical Probability in the Enlight-
enment, Princeton, NJ: Princeton University Press.

Diamond, P., and Rothschild, M. (1978), Uncertainty
in Economics, New York: Academic Press.

Efron, B. (1978), “Controversies in the Foundations
of Statistics,” American Mathematical Monthly, 85,
231-246.

Finetti, B. de (1974, 1975), Theory of Probability, 2
vols., New York: Wiley.

Jeffreys, H. (1961), Theory of Probability, third edition,
Oxford: Oxford University Press.



Shafer: What Is Probability?

Kyburg, H. E., Jr., and Smokler, H. E., eds. (1980),
Studies in Subjective Probability, second edition,
New York: Robert E. Krieger.

Martin-Lof, P. (1969), “The Literature on von Mises’
Kollektivs Revisited,” Theoria, 35, 12-37.

Nagel, E. (1939), Principles of the Theory of Probabil-
ity (Volume 1, Number 6 of the International Ency-
clopedia of Unified Science), Chicago: University of
Chicago Press.

Porter, T. M. (1986), The Rise of Statistical Think-
ing, 1820-1900, Princeton, NJ: Princeton University
Press.

Savage, L. J. (1972), The Foundations of Statistics, sec-
ond edition, New York: Dover,

Schrédinger, E.  (1947), “The  Foundation
of Probability—I,” Proceedings of the Royal Irish
Academy, Series A, 51, 51-66.

Shafer, G. (1976), A Mathematical Theory of Evidence,
Princeton, NJ: Princeton University Press.

—— (1985), “Conditional Probability” (with discus-
sion), International Statistical Review, 53, 261-277.

—— (1990), “The Unity of Probability,” in Acting un-
der Uncertainty: Multidisciplinary Conceptions, ed.
G. von Furstenberg, New York: Kluwer, pp. 95—
126.

—— (1991a), “Can the Various Meanings of Probabil-
ity be Reconciled?” To appear in Methodological
and Quantitative Issues in the Analysis of Psycho-
logical Data, second edition, ed. G. Keren and C.
Lewis, Hillsdale, NJ: Lawrence Erlbaum.

—— (1991b), “The Early Development of Mathemati-
cal Probability.” To appear in Encyclopedia of the
History and Philosophy of the Mathematical Sci-
ences, ed. I. Grattan-Guinness, London: Routledge.

Todhunter, I. (1865), A History of the Mathematical
Theory of Probability, London: Macmillan,

Tversky, A., and Kahneman, D. (1986), “Rational
Choice and the Framing of Decisions,” Journal of
Business, 59, S251-5278.

Uspenskii, V. A., Semenov, A. L., and Shen, A. Kh.
(1990), “Can an Individual Sequence of Zeros and
Ones Be Random?” Russian Mathematical Surveys, ,
45, 121-189.

105

Walley, P. (1991), Statistical Reasoning with Imprecise
Probabilities, London: Chapman and Hall.





