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SUMMARY

THIS paper compares two tormal-

isms for managing uncertainty. Both are
based on mathematical probability. Both in-
terpret probability statements as subjective
judgments. The first, the Bayesian tormal-
ism, mikes direct probability statements
about questions that interest us. The sec-
ond, the beliet-function formalism, usually
brings probability statements to bear on
questions of interest in an indirect way. Both
formalisms are useful. Their uselulness in a
particular problem depends on the nature of
the problem and the skill of the user. A per-
son may find one formalism better for one
problem and the other formalism better for
another problem.

We assume that the reader is acquainted
with the basics of the Bayesian formalism.
Our main purpose is to provide a general
understanding of the less familiar belief-
function formalism. Most students of au-
diting who have used probability have con-
centrated on the Bayesian tormalism, and
their work sometimes gives the impression
that this formalism provides the only way
to make subjective probubility judgments.
This impression is reintorced by arguments
that it is normative to make decisions in ac-
cordance with the Bayesian formalism. We
review these arguments in the paper and ex-

plain why we do not find them convincing.

The beliel-function formalism is a gen-
eralization of the Bayesian formalism. Thus,
any Bayesian treatment of a problem is also
a belief-function treatment. We explain just
how the Bayesian formalism fits into the
belief-function formalism as a special case,
and we illustrate the greater flexibility of the
beliel-tunction formalism using a number
of auditing examples.

INTRODUCTION

This article compares two tormalisms for
managing uncertainly. Both are based on
mathematical probability. Both interpret
probability statements as subjective judg-
ments. The first, the Bayesian formalism,
makes direct probability statements about
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questions that interest us. The second, the
belief-function  formalism, usually brings
probability statements 10 bear on questions
of interest in an indirect way. We believe
both formalisms are usetul. Their usetul-
ness in a particular problem depends on the
nature of the problem and the skill of the
user. A person may find one formalism bet-
ter for one problem and another formalism
better for another problem.

We will assume that the reader is ac-
quainted with the basics of the Bayesian
formalism. Our main purpose is 10 provide
a general understanding of the less familiar
belief-function tormalism. Most students of
auditing who have used probability have
concentrated on the Bayesian formalism, and
their work sometimes gives the impression
that this formalism provides the only way
to make suhbjective probability judgments.
This impression 1s reinforced by arguments
that it is normative to make decisions in ac-
cordance with the Bayesiun formalism. We
will review these arguments and explain why
we do not tind them convincing.

In our view, the claim that the Bayesian
formalism is normative should be replaced
by the constructive interpretation of proba-
bility advanced by Shafer and Tversky
| 1985]. According to the constructive inter-
pretation, use of a probability formalism in-
volves assessing the strength and structure
of evidence by comparing it to a scale of
canonical examples. Different formalisms
are equally legitimate; they simply use dif-
ferent scales of canonical examples.

The beliet-function formalism is a gen-
eralization of the Bayesian formalism. ‘Thus,
any Bayesian treatment of a problem is also
a belief-function treatment. We will explain
just how the Bayesian formalism fits into
the belief-function formalism as a special
case, and we will illustrate the greater tlex-
ibility of the beliet-function formalism us-
ing u number ol auditing examples.

This paper is divided into threc sections.
In the first section, we review the Bayesian
formalism and its claim 1o an exclusively
normative status. In the second section, we
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intraduce belict-functions. We begin with
simple informal examples and then present
the formalism. In the third section, we com-
pare the two tormalisims. We explain how
the Bayesian formalism can be thought of
as a special case ot the beliet-Tunction tor
malism, and we discuss some ways in which
the gencralization from Bayes to belief
functions gives us greater flexibility in the
representation of evidence. ’]

This is the first of a progected series ol
three papers. In the second p;:pcr, we will
look at the audu risk pmhll"m using the
Bayesian and beliet-lunction formalisms. In
the third paper, we will discuss-how net-
works ol variables can be used to make
properly controlled Bayesian and  behet-
function calculations feasible in expert sys-
tems for auditing.

THE BAYESIAN FORMALISM

The Bayesian formalism is well known,
and 1t has been applied to auditing by a
number of authors. These authors do not all
agree, however, on the interpretation of the
Baycesian formalism. Some authors interpret
the formalism objectively. These authors
think ot the subjective probabilitics in a
Bayesian model as estimates ol objective
risks. Other authors interpret the formalism
purely subjectively. They think of subjec-
tive probabilities as personal betting rates,
and they argue that we should have such rates
regardless of what evidence we have and re-
gardless ol the existence ol any correspond-
ing objective quantitics.

Following Shafer [ 1981] and Shater and
Tversky [1985], we prefer a third interpre-
tation, the construcrive mterpretation. Ac-
cording to this interpretation, the subjective
probabilities in a Bayesian madel represent
Judgments about the strength and structure
of evidence. These judgiments are not nec:
essarily judgments in favor of an objective
probability model. tnstead, they are judg-
ments that given evidence is comparable in
strength and structure to knowledge of such
a model.
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It is important to recognize that there is a
real valuce for all five of these paramneters,
and that the auditor’s assessed or desired
value of cach paramcter may differ from
its real value. For example, the auditor’s
assessed vatues of IR, 1C, or AR may dif-
fer from the corresponding real values of
these parameters due to the auditor’s fail-
ure to understand fully and accurately as-
sess the business cavironment, the inter-
nal control system, the inherent
effectivencess of the selected analytical re-
view procedures, or a number of other
factors. Similarly, the real value of TD may
differ from the value used by the auditor
because the auditor used an ineffective
procedure, applied the procedure incor
rectly, or misevaluated the results. Fi-
nally, it there are differences between the
reatl and assessed values ol one or more of
the other four parameters, then the real
value of UR will ditfer from the auditor’s
desired vatue of UK.

The viewpoint expressed in this passage is
not unusual. But what evidence is there tor
the assertion that there exist numbers in the
real world corresponding to the symbols in
the model? Cushing and Loebbecke do not
cite any evidence for this assertion, and it
is difficult to think of any evidence they could
cite.

Probability ideas have become so famil-
tar and natural that people often take for
granted the existence of real, objective val-
ues for probabilities in models that they n-
vent. In our opinion, however, this exis-
tence cannot be taken for granted in the
auditing setting, The fuct that we can say
the words “real risk™ is not enough to give
them meaning.

There are situations where we can cite
evidence for the existence of objective
probabilities. The evidence sometimes con-
sists of stable frequencies in repeated trials
under lixed conditions. Such stable  fre-
quencies have been observed in many sit-
uations, from quantum physics to basketball
games |Gilovich, Vallone and Tversky,
1985). There are yet other situations where
repeated trials under fixed conditions have
not been observed, but where they could be
observed. In these situations, too, proba-
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bility models have factual content. But in
the situations faced by auditors, where rep-
etitions under fixed conditions are impos-
sible, and where we even lack the means o
specify fully the fixed conditions under which
we would like to have repetitions, talking
about such repetitions is an exercise in
imagination, not a tie to reality.

It may help us in thinking about this
problem to shift our attention 1o a borderline
situation, where the case for objective prob-
ability is strong but not unchallengeable. [t
us consider the probability that Elizabeth's
unborn child is a girl.

In most human populations, 48 to 49 per-
cent of all infants are girls | Visaria, 1967],
and we are usually comfortable with think-
ing of this frequency as an objective prob-
ability for the individual case. But suppose
Elizabeth tells us that her child probably was
conceived carly in her menstrual cycle, and
suppose that we also know other facts about
her and her husband: their blood groups,
whether they have been exposed to hepatitis
B, and so on. Early conceptions are more
likely to produce girls [Harlap, 1979, and
the other factors also affect the sex rano,
though we do not know exactly how or how
much [Drew er al., 1978]. What are we now
going to say about the objective probability
that Elizabeth’s child is a girl? :

Perhaps there is such an objective prob-
ability, defined by the genetic and medical
buckground of the parents and the circum-
stances of the conception. We are uncertain
about the value of this objective probability,
both because we do not know all the tacts
about the background of the parents and the
circumstances of the conception and be-
cause we do not know exactly how these
facts atfect the sex ratio. But perhaps an ex-
pert could give us bounds on it.

The idea of objective probability seems
reasonable here because which spermato-
zoon reaches the egg is determined mainly
by microscopic accidents. The genetics of
the parents and circumstances which can be
observed on a macroscopic level may affect
the relative viability of spermatozoa bearing
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Y chromosomes, but we suspect that this
can only bias, not determimne, the result. True,
we cannot {ix the parents’ genetics and the
macroscopic circumstances and repeat the
experiment many times to find whether there
are stable trequencies. Nor can we find our
repeated trials simply by looking at other
canceptions that match this one on all the
relevant points. Elizabeth and per husband
are genetically unique, and it would be im-
possible to match other couplgs on all the
possibly relevant macroscopic circum-
stances that Elizabeth has noted in her case.
Yet the line between the permanent and
macroscopic, on the one hand, and the trun-
sient and microscopic, on the other, is clear
enough that it seems meaninglul to imagine
repeated trials with the permanent and mac-
roscopic circumstances fixed. We feel tha
this imaginary fixing ol the permanent and
macroscopic circumstances does define an
objective probability, not just an imuginary
probability.

A devil’s advocate could question whether
the permanent and macroscopic is really so
separate tfrom the transient and micro-
scopic. Perhaps there are transient but mac-
roscopic tactors (temperature, for example,
or the time since the mother has eaten) that
play a role. Are these to be regarded as lixed?
The point is that the word “macroscopic”
may not be enough to draw a line between
what is to be fixed and what is 0 be allowed
o vary at random in our imaginary repeti-
tions ol the conception. And we really have
no other means of drawing the line. Our
knowledge 1s too limited to draw it concep-
tually, and our control is too limited to draw
it physically. Thus, even in this example,
the idea of an objective probability applying
to the particular case may have only limited
meaninglulness,

When we turn from the example of Eliz-
abeth’s child back to the model Tor audit risk,
we find 4 much worse situation. When we
talk about the real inherent risk of material
error 1 the hinancial statements, are we
holding fixed the presence ol that shifiy
character Joe Snuth (with whom the auditor
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has no acquaintance) in the data processing
department”? Are we holding fixed the com-
pany’s recruiting and personnel policies
(about which the auditor knows only a lit-
tle)? Are we holding fixed the apparent per-
spicacity of the company’s recruiting staff
(the importance of which is unclear o the
auditor)?

In the case of audit risk, there is no wide
gap between macroscopic and microscopic
factors. We cannot claim that nature has
drawn for us the line between what should
be fixed and what should be allowed to vary
in imaginary repetitions of the experiment.
It is up to us to draw this line. We must
specify what is to be fixed, and then we must
make the case that this specification is
enough to define a probability model. We
must make a case that what we have not
fixed would vary in a stable, chance-like way
if we really could somehow fix in nature
what we have fixed in our imagination.

Perhaps even in auditing there are situ-
ations where we can specify completely what
is to be fixed, and where we can make a
convincing case that what we have not fixed
will vary in a stable, chance-like way. In
these situations, we will be entitled to say
that the probabilities in our model are partly
objective. But since these probabilities will
be determined not just by nature but also by
our specification of what is to be held fixed,
and since this specification will depend on
what we know and what we think is im-
portant, even these probabilities will have a
subjective clement.

The difficulties with the idea of objective
probability are well known ut a general phil-
osophical level. They have been debated tor
over two centuries. A number of resolutions
have been proposed. Here are some of them:

—Some authors have insisted on restrict-

ing the idea of objective probability to
settings such as quantum physics and
games of chance, where nature does
provide an adequately sharp dividing
line between the stable and macro-
scopic and the transient and miceo-
scopic.
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—Others, such as Venn | 1888], have ar-
gued that probability should be under-
stood 10 mean frequency within a
specified population of similar situa-
tions, and nothing more. This allows
us to speak of the objective probability
that a given infant will be a girl, a given
house will burn, or a given compiny
will tail, but only after we have spec-
ified the population in which we want
to place the infant, house, or com-
pany. This notion of objective proba-
bility, which 1s really concerned with
the population rather than with the in-
dividual, meets the needs ot the the-
orctical geneticist and the actuary, but
it does not meet the needs of the au-
ditor, who must address the specific
case.
~Others, such as de Finetti [1937], have
rejected the notion of objective prob-
ability altogether and have insisted on
a purely subjective interpretation of
probability.

We will consider the purely subjective
interpretation of probability in the next sub-
section. Then we will present our construc-
tive interpretation of probability, which secks
to combine an appreciation of the objectiv-
ity of the evidence on which probability
judgments must be based with an appreci-
ation of the limits of objectivity and the im-
portance ol judgment.

The Purely Subjective Interpretation

A conviction that the objective interpre-
tation of probability is untenable, or a least
very restricted in its applicability, has led
many twenticth-century scholars, beginning
with Ramisey | 1931) and de Finett [1937],
to explore radically subjective interpreta-
tions of probability. The central idea of these
interpretations is that a prabability is merely
the rate at which a person is willing to bet
for or against a proposition. The person may
be influenced by objective evidence, but ul-
timately he/she sets his/her own betting rate,
and the objective meaning of this rate is to
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be found in the way it governs his/her be-
havior, not in the process by which he/she
arrived at it

De Finetti argued that the Bayesian for-

malism is universally appropriate because
rationality requires a person to have betting
rates that follow Bayesian rules. These ar-
guments were further developed by Savage
11954]. In this section, we will review and
criticize de Finetti's and Savage's argu-
ments. We will concentrate on their argu-
ments for the additivity ot subjective prob-
abilities and on their arguments for changing
subjective probubilities by Bayes’s rule of
conditioning.
Additivity. One of the most tundamental of
the usual rules for numerical probability is
the rule of additivity: the probability that one
or the other of two contradictory proposi-
tons is true is the sum of their probabilities.
The probability of a particular account re-
ceivable being collected within 60 days at-
ter a sale, for example, is equal 10 the prob-
ability of it being collected within 30 days
plus the probabihity of it being collected be-
tween 30 and 60 days.

De Finetti argued that prudence demands
that a person’s betting rates tollow the rule
of additivity, because if they violate this rule,
then an opponent can arrange (0 make money
from the person. Here we will review and
criticize this argument,

We begin with some notation. Let A and
B denote two contradictory propositions, let
C denote their disjunction, the proposition
“A or B,” and let a, b, and ¢ denote Peter’s
probabilities for A, B, and C, respectively.
The rule of additivity says that ¢ = a + b.

The betting-rate interpretation says that
Peter is willing to take either side of a bet
on A at odds a:(1 - a), cither side of a bet
on B at odds b:(1 - b), and cither side of
a bet on C at odds ¢:(1 - ¢). De Finetti’s
argument for ¢ = a + bis that if ¢ £ a1t
b, then Paul can take advantage of Peter's
offers in such a way that he will win money
from Peter no matier how things turn out.
It ¢ > a + b, then Paul does this by betting
$aon A and $bon B, and $ (1 - ¢) ugainst
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C. In response, Peter must put up $ (1 —
a) and $ (1 = b), and $c. There are three
ways things can turn out, and in cach case
Paul nets $¢ — $ a + by

—A is true. In this case, B is false and
Cis true. Peter loses his $ (1 - ) and
wins Paul’s $band $ (1 — ¢), for a net
loss ol $¢ - $ta + b).

—B is true. In this case, A is false and
Chs true. Peter loses his $)(1 - by and
wins Paul's $aand $ (1 "), lor a net
toss of $¢ = $(a + by

—A and B are both false. In this case,
C is also false. Peter loses his $¢ and
wins Paul’s $a and $b, for 4 net loss
ol 3¢ = $ (a v by,

If ¢ < a t b, then Paul can similarly net
$a v by $c from Peter by reversing all
the bets, betting $ (1 = a) apainst A, $ (1
= b) against B, and $¢ for C.

‘This justilication of the rule of addirivity
relies on strong assumptions about Peter's
willingness to bet. People do sometimes of-
fer odds on events or propositions, but they
seldom post odds on 4 whole set of prop-
ositions and ofter to bet for or against any
number ol the propositions at those odds.
Why should they do so” If Peter knows hit-
tle about a particular account receivable, why
should he ofter Paul a generous choice of
bets about when it will be collected?

We can make the betting-interpretation
more reasonable by allowing Peter to limit
his oftfers o people that he knows have no
more knowledge or evidenee than he. Yet
even then it is extravagant to demand that
Peter should set two-sided betting rautes, rates
at winch he would het on cither side. A more
maxlest demand would be for one-sided rates,
rates at which he would bet tor cach prop-
osition. The argument for additivity that we
have just rehearsed does not apply o such
one-sided rates: there s no teason (o insist
that they should be addinve. As we shall
see 10 the second main section below, the
degrees of beliet used in the beliel-tunction
formalism, which do not necessarily obey
the rule of additvity, can be interpreted as
one-sided betting rates.
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Though the demand that a person should
have two-sided betting rates seems unrea-
sonable prima fucia, it has gained wide-
spread acceptance. Much of this acceptance
is due 10 the influence of L. J. Savage. In
The Foundations of Statisticy, published in
1954, Savage presented a set of axioms that
might govern a person’s preterences be-
tween acts, and he argued that a rational
person’s preferences would obey these ax-
ioms. It follows from the axioms that the
person ranks acts in preference according to
their subjective expected utility. More pre-
cisely, it follows that there exist numerical
utilities for the consequences that the person
is considering and numerical probabilities
for the possible states of the world that the
person is considering such that the person’s
ranking of the acts is the same as the rank-
ing defined by calculating expected utilities
using these probabilities and atilities. Sav-
age expressed the idea that rational people
should obey his axioms by calling the ax-
toms normative. They are normative in the
same sense, he said, as logic is normative.

Savage’s argument has appealed to sev-
eral audiences. A substantial group of math-
ematical statisticians, frustrated by the
shortcomings of frequentist methods and
impressed by the need for subjective judg-
ment in practical work, have seen Savage's
argument as a justification tor the rehabili-
tation of Bayes's theorem us 4 tool of sta-
tistical inference. Other scholars, especially
in professional schools, have seen his ax-
ioms as a justification for the introduction
of probability ideas into domains where tra-
ditional statistical methods have had limited
SUCCESS.

The revival of subjective probability deas
sparked by Savage's work has been bene-
ficial. We do not, however, accepl Sav-
age's argument that it is normative to have
additive subjective probabilities. Here we
will review two problems with his argu-
ment, the problenm of small worlds and the
problem of non-existent preferences. These
problems are discussed in more detail by
Shater | 1986b).
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The Problem of Small Worlds. The most
general way of expressing this problem is
to say that the purely subjective interpreta-
tion of the Bayesian formalism gives no
guidance and puts no limits on how the for-
malism is actually to be used. The argument
for normativencss seems o apply 1o any
question that one can imagine, but a given
probability model (or, as Savage put it, a
given “small world™) deals only with a lim-
ited set of questions. No matter what model
one actually uses, therefore, there is a more
complete model that one should have used.
Do we have any reason to hope that our
conclusions would be the same in this more
complete model? Within the purely subjec-
tive interpretation, how can we discuss
whether a given model is complete enough?

We find an example of this ditficulty in
the discussion of audit risk models by Kin-
ney [ 1984, p. 129]. Kinney suggests that ~a
complete Bayesian formulation™ would
consider whether the auditor has miseval-
uated the various risks in these models and
would assign probabilities 1o the different
possible degrees of misevaluation. We can
interpret this 10 mean cither that the risks
have objective values that may have been
misevaluated or else simply that the person
may have lailed to report his or her subjec-
tive values for the risks accurately. In cither
cuse, the idea of a complete Bayesian for-
muidation is elusive. Once we have extended
the Bayesian formulation to consider prob-
abilities of misevaluations of the basic risks,
why not extend it again to consider proba-
bilities of misevaluations of these probabil-
ites?

I the betiing-rale story were true of real
people at every level of detail, or il people
really did obey Savage’s asioms at every
level of decail, then there would be no prob-
lem of small worlds. The betting rates ehic
ited from a person at one level of detail would
sutomatically agree with those elicited at
finer levels of detail. The psychological evi-
dence strongly refutes such descriptive va-
lidity [Kahneman, Slovic, and ‘T'versky,
1982], however, and nowadays proponents
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of the purely subjective interpretation sel-
dom make claims to descriptive validity.

Another way o deal with the problem of

small worlds is to hope that as a probability
model is made more and more detailed, our
assessments of the probabilities will con-
verge (o stable values [Lindley, Tversky, and
Brown, 1979]. It is hard to see uny grounds
for this hope, however. As a model is made
more and more detatled, we move farther
und farther away from concrete evidence on
which probability assessiments can be based.
Instead of seuling down, our results may
become increasingly unstable. In the case of
audit risk models, tor example, we may
simply be introducing more noise into our
analysis if we try to assess probabilitics of
misevaluation of probabilitics of basic risks.
The Problem of Non-Existent Prefer-
ences. We have just argued that it s unreu-
sonable to demand that a person should have
odds for every proposition and should offer
to take either side of a bet at these odds.
Savage's axioms are more abstract and harder
to understand than de Finetti's idea that a
person should have such two-sided betting
rates, but we see no more grounds tor his
normative claims tor these axioms. Sav-
age's most basic axiom is the assumption
that a person should have a well-defined
preference between any two acts, with no
imtervals of indecision. Why should it be
normative for a person 1o have so many well-
defined preterences? Is it normative, lor ex-
ample, for a person to rank all members of
the opposite sex in order ol preference as
possible mates [Wollowitz, 1962]7 Surely
not. In some cases, a person might profit
from pondering which of two possible, but
undesired mates, he or she would choose il
i were necessary o choose, but usually
person can better spend his or her tme
thinking about less hypothetical questions.,
We can make the same point an an au-
diting context, Is 1t always normative for an
individual audior or an accounting firm o
rank in order of preference all the possible
types ol report that could be issued for a
particulur engagement”? Surely not. It hardly
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makes sense tor an auditor o ponder a hy-
puthetical choice between a qualificd “ex-
cept tor™ opinion and a disclaimer of opin-
ion once he or she has decided 10 give an
unqualitied opinon.

Conditioning. In addition 10 claiming that
it is normative 1o have additive subjective
probabilities, Bayesians also claim that it is
normative (o change these probabilities in
light of new cvidence hy Buxcs's rule of
condiioning. This rule says that after Peter
acquires new evidence E, he s'muld change
his probability for A 10 Pr |A & E|/Pr K],
where Pr|A & E] and Pr [E| are his initial
probabilities for A & E and for E, respec-
tively. (This new probability for A, which
may be denoted by the symbol Pr [A | 1],
cun sometimes be calculated most effi

ciently by Bayes's theorem, but from an ab-
stract point of view, Buyes's theorem s less
tundamental than Bayes’s rule of condition-
ing. Here we will concentrate on the rule of
conditioning.)

Let us review the betting-rate argument
for Bayes's rule of conditionmg. This ar-
gument antedates the work of de Finet; it
can be traced back 10 De Moivre and Bayes
himsell’ [Shater, 1982a; 1985b). There are
many versions ot the argament. The simple
version that we give here uses the following
assuMpLions:

—- Peter and the people o whom he of-
fers odds know betorchand that Perer
will find out at ime t whether E s true
Or talse.

-Peter has included | among the ques-
tions on which he offers to bet.

—=Peter announces now not only what his
present probabilities are but also what
his new probabilities will be at time 1
it he finds out then that s rue.

Notice that the assumption that Peter will
find out about B ac time © makes the prop-
osttion that E is true equivalent (o the prop-
osition that he will find out that it is true ar
e t

For brevity, let us use the letters p. .
and 1 10 represent Peter’s probabihines Pr
A & EJ Pr L) and Pro|A )R] respece
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tively. The betting-rate interpretation says
that Peter is offering to take cither side of
abeton A & L at odds p:(1 — p) and either
side of a bet on E at odds g:(1 — q). He
also is committing himself in advance to take
either side of a bet on A at odds r:(1 — r)
at time t it E turns out to be true. We must
show that it is prudent for Peter to have r
= p / q, or, equivalently, p = rq. More
precisely, we must show that if p # ry, then
Paul can take advantage of Peter’s offers in
such a way that he will win money from
Peter no matter how things turn out.

Suppose, indeed, that p # rq. Then either
p=lrqorp > rq. If p <y, then Paul can
take advantage of Peter’s offers by making
two bets now and one further bet at time t
if E turns out to be true. Paul bets $p on A
& E and $r (1 — ¢) against E now, and he
bets $ (1 — r) against A at ume tif L2 turns
out to be true. In response, Peter must put
up $ (1 — p) and $rq now and $r at time ¢
it E tuns out 1o be true. There are three
ways things can turn out, and in cach case,
Paul nets $rq — $p:

—Both E and A are true. In this case,
Peter loses his $ (I — p) and wins
Paul’s $r (1 — @) and $ (1 ~ 1), fora
net loss of $rq — $p.

—FE is true, but A is talse. In this case,
Peter loses his $r and wins Paul’s $p
and $r (1 — q), for a net loss of $ry
- $p.

—LE is false. In this case, Peter loses his
$rq and wins Paul’s $p, for a net loss
of $rq — $p.

If p > rq, then Paul reverses all his bets

and nets $p — $rq tfrom Peicr.

We can raise against this argument the
same objections to two-sided betting rates
that we raised when discussing de Finetti's
argument for additivity. We also can object
to the very conspicuous further assumption
that Peter knows in advance what evidence
that he might acquire at time tand has prob-
abilities tor the different possibilities.

It is not essential to the argument to lo-
cate a point at which Peter will find out
whether E is true or false by referring 10
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time as mecasured by a clock. We could in-
stead locate such a point by referring to other
cvents, It is essential, however, that Peter
and Paul should have some way ol identi-
fying in advance the point at which Peter
will find out about E. For clarity, we might
say that the symbol E stands not just for the
evidence, but tor the fact that this evidence
is acquired at the given point.

Another way to put the matter is to say
that there must be a protocol specitying the
ways in which Peter's knowledge may de-
velop, and that this protocol must be incor-
porated into Peter’s probability model. The
betting-rate argument establishes that it there
is such a protocol, and it Peter announces
betting rates that do not obey Bayes's rule
of additivity, then someone eise who has the
same protocol can expect o make money
from Peter.

Various authors, including Bayes him-
self, have attempted to relax the assumption
that Peter and Paul have a protocol for how
Peter’s knowledge may develop, but these
attempts have not produced convincing ar-
guments |Shater 1982a]. Moreover, certain
puzzies and paradoxes suggest that condi-
toning on what we have leamned can be
misleading if there is no such protocol
[Shafer 1985b].

In the realm of statistical theory, where
Bayesian ideas were first developed, the as-
sumption that there is a protocol for new
evidence poses no problem. In a statistical
experiment, there is such a protocol; it is
called the sample space. It is understood be-
fore the experiment is performed that our
new evidence is going to be one of the ele-
ments of this sample space. In many of the
domains in which we would like to use nu
mierical probability judgment, however, we
do not have a sample space delined in ad-
vance.

In the case of auditing, we sometimes
have a protocol for new cvidence, but we
sometimes do not. na typical engagement,
an auditor develops a plan for gathering evi-
dence. In the case of financial statements,
the plan may call for questioning clients and
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employees, visiting the place of operation,
examining documents and records, reper-
forming some computations, requesting
confirmations from customers, observing
inventory counts, ¢tc. Moreover, the audi-
tor will give some thought in advance to the
possibilities for how the plan will wrn out.
But often the auditor will encounter re-
sponses and results that he or she had not
thought of. The auditor may even encounter
unanticipated sources of evidence. It will be
impossible, theretore, to define in advance
a “sumple space” whose points are all the
alternatives for what evidence the auditor
might obtain.

Conclusion. The purely subjective ap-
proach to probability seeks to quiet doubis
about the existence of numerical probabili-
ties by interpreting them as betting rates and
arguing that it is normative o have them.
We do not find the argument convincing. It
is not always reasonable 1o require that peo-
ple state two-sided betting rates, and it is
unrealistic to demand that people should have
enough foresight 1o spell out all the possi-
bilities for their future evidence.

The Constructive Interpretation

We have reviewed two interpretations ol
the Bayesian formalism, the objective inter-
pretation and the purely subjective interpre-
tation. Both begin with valid insights: the
objective interpretation with the insight that
probability judgment must be based on ex-
perience, the purely subjective interpreta-
tion with the insight that probability judg-
ment is necessarity subjective. Both carry
their insights 10 unreasonable extremes. We
need a compromise. We need an interpre-
tation ol probability that recognizes both the
objectivity of evidence and the subjectivity
of its assessment.

Shater and ‘T'versky [1Y85] argue that a
balanced interpretation can be achieved if
we cmphasize the constructive nature of
probability. Numericul probabilities usually
do not have objective reality independent of
human judgment. Nor do they exist in peo-
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ple’s minds prior to deliberation. But peo-
ple can construct numerical probabilities on
the basis ol objective evidence.,

The constructive interpretation gains depth
from the idea that probability judgment in-
volves matching practical problems to ub-
stract canonical examples. The canonical
examples for the Bayesian formalism are
those examples from physics apd gambling
where objective probabilities ;j‘rc well de-
fined and known. The constructive inter-
pretation says that when we make probabil-
iy judgments using the Bayesian formalism,
we are matching our actual problem 1o a scule
of these canonical examples. We must miake
a subjective judgment about which canom-
cal example on the scale best matches the
strength and structure of the evidence in our
problem. We also must make a judgment
about whether this best match is good enough
to constitute a sound argument,

Of course, we do not mateh all our evi-
dence o a complex canonical example in
one fell swoop. Instead, we match parts of
our problem or parts of our evidence o more
madest canonical examples. Then we try 10
fit these partial matches together. This pro-
cess amounts 1o the construction of an ar-
gument, an argument that draws an analogy
between our actual evidence and knowledge
ol objective probabilities in i complex
physical experiment or game of chance.

Shafer and Tversky [1985] emphasize the
latitude that we have in designing probabil-
ity arguments. ‘There is room for both in-
genuity and subjectivity when we decide how
to break our evidence down and how 1o put
it buck together ina probability model. We
must choose what to think of as fixed when
making numerical probability judgments,
what level of detail 10 use (the problem of
small worlds), and on what, it anything, to
condition.,

One advantage of the constructive inter-
pretation s that it pulls us down from the
funtasy that o Bayesian probability analysis

can tike all evidence into account and, hence,
provide the Tinal word on a question, to the
reality that such an analysis is just one more
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argument. 1t 1y an argument by analogy, and
the weight it carries depends not just on what
numbers it results in (what numerical prob-
ability it gives to the existence of & material
error, say) but also on how good the anal-
ogy is.

It is only common sense, of course, that
a numerical probability argument must be
followed by non-numerical evaluation. It is
a corollary of this bit of common sense that
the cvaluation may be negative. The argu-
ment may be unconvincing. Our evidence
may fail to fit the scale of canonical ex-
amples 10 which we are (rying to match it
Our evidence may be inadequate 10 justify
some of the numerical probabilities in our
arpument. Traditionally, we worry about
whether our evidence is adequate to justity
prior probabilities for statistical hypotheses,
but there is nothing special about these
probabilities. We need adequate cvidence
tor all the probability judgments in a Bayes-
ian model, including the judgments about
how we should combine individual numer-
ical judgments. There is no guarantee that
we will have all this evidence.

The constructive interpretation allows us
to deal in a straight-forward way with the
problems that we discussed regarding the
purely subjective interpretation: the prob-
lem of small worlds, the problem of non-

existent preferences, and the problem of

missing protocols. Within the constructive
interpretation, the problem of small worlds
is the problem of deciding the level of detail
at which to construct probabilities. ‘The con-
structive interpretation allows us to ac-
knowledge that this involves a trade-oft be-
tween the completeness of our argument and
the adequacy of our evidence. Non-exis-
tence of prelerence is no problem for the
constructive interpretation; on the contrary,
1 is the natural starting point. Things that
we construct do not exist beforchand. Fi-
nally, whether we can give a convincing
protocol for our new evidence-—a convine-
ing story about the process thut produced that
evidence -is just one more element that en-
ters into the guality of the analogy between
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our problem and a canonical example in-
volving a game of chance that unfolds step-
by-step.

For our purposes in this paper, the most
important feature of the constructive inter-
pretation of the Bayesian formalism is that
it allows us to use the Bayesan formalism
without giving it an exclusive status, Bayes-
ian arguments match practical problems to
one particular scale of canonical examples.
In the examples on this scale, the answer o
the question with which we are concerned
is determined by chance, and we know the
objective probabilities tor the different pos-
sible answers. Other scales of canonical ex-
amples will yield other formalisms. The
constructive use of these other tormalisins
will involve subjectivity in the same way
constructive use of the Bayesian formalism
involves subjectivity.

Like many ol the consequences of the
constructive interpretation, the idea that
subjective probability judgment need not be
Bayesian is common-sensical but often is
overlooked. Consider, for example, these
remarks [rom the auditing hierature:

there is hitle disagreement that au-
ditors tead 1o behave as af they are Bayoes-
lans . |Kinney, 1984, p. 131];

Aamyone who does not believe in the
Bayesian approach should be doing a con-
stant amount of work on all audits regard-
less ol how low or lgh inherent risk is
assessed. . L [heshie, 1984, p. 1S

These strong statements are based on the
unspoken and unquestioned assumption that
the only way 0 use subjective judgment is
through a Bayesian analysis. Our purpose in

this paper is 10 broaden the perspective of

the auditing literature by ¢stablishing the
belief-funcuon formalism as an alternative
subjective frimework.

THE BELIEF-FUNCTION
FORMALISM

The beliect-function formalisn s less well-
known than the Bayesian tormalism. 1t has
antecedents in the seventeenth-century work
of George Hooper and James Bernoulh, but
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this early work was neglected atter the
Bayesian formalism was popularized by [La-
place 1in the eighteenth century  [Shaler,
1978]. The beliel-function fonmalism as we
now know it was developed by A. P.
Dempster in a series of articles in the 1960s
and by Glenn Shafer in his 1976 book, A
Mathematical Theory of Evidence.

As we mentioned in the introduction, the
belief-tunction formalism is based on math-
ematical probability just as the Bayesian
formalism is, but it usually brings proba-
bility statements to bear on questions of -
terest in an indirect way. We begin by giv-
ing some simple examples of this
indirectness. Next, we will provide a bricf
but formal mathematical introduction to be-
liel tunctions. Then we will review how the
Bayesian formalism fits into the beliel-
tunction formalism as 4 special case.

For more thorough introductions to betief
functions, we refer readers to other publi-
cations, especially the articles by Dempster
and Shafer in the bibliography. Shaler’s 1976
book still is the standard seference for the
mathematical theory. For information on the
use ol belief functions in expert systems and
artificial intelligence, see Shafer [ 1987a).

Some Informal Examples

Here we give some simple examples of

the kinds of reasoning and calculation that
the beliet-function formalism permits. First,
we give an example of how a single simple
degree of belief can be obtained. Then we
give three examples of Dempster’s rule lor
combining degrees of belief based on in-
dependent items of cvidence. In the first ex-
ample, the two items of evidence are cor-
roborating. lu the second example, they are
conflicting. In the third, their combination
corresponds 1o g chain of reasoning.

A Simple Degree of Belief. Suppose a
manager tells us that his/her departiment
tollows a certan internal control procedure.
And suppose that we atiribute a probability
ol Y0 peercent - the statement that the
manager is honest and thoroughly compe-
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tent. Then we have strong reason to believe
that the departiment does tollow the proce-
dure—we might say that we have a 90 per-
cent reason to belicve i, or that the man-
ager's estumony supports it to the 90 percent
degree, or that we can behieve ot the 90
pereent degree, based on the manager’s tes-
timony alone.

The beliel-function formalism is based
on this kind ot shift from probgbilites for
one topic to degrees of beliel fbr another,
We have probabilities for whether or not the
manager is honest and competont, and we
use the manager's testunony to transkate these
probabilities into degrees of beliet” about
whether the department follows the proce-
dure.

In this and in many other examples, the
translution may be one-sided. Suppose that
we consider 1t possible that the department
tollows the procedure even it the manager
is dishonest or incompetent. Then our lack
of full contidence in the manager’s honesty
and competence will not translate into i de-
gree of beliet that the department does not
tollow the procedure. From our 90 percent
probability that the manager is honest and
competent, we obtain a Y0 percent degree
of beliet that the department follows the
procedure. But from our 10 pereent proba-
bility that the manager is either dishonest or
incompetent, we do not obtn a 1O percent
degree of beliet that the department does not
follow the procedure.

We express this last point within the be-
liet-lunction formalism by saying that we
have a zero percent degree ol beliet that the
department docs not follow the procedure
We have only a 90 percent degree ol beliet
that they do. but only a zero percent degree
of beliel that they do not. The meaning of
these degrees of beliet s obviously ditterent
from the meaning ot Bayesian probubilities.
In the Bayesiun tormalism, giving a zero
probability to something indicates that we
are sure it is talse. But m the beliet-tunction
tormalism. giving a zero degiee of behet 1o
something mdheates only that we have no
evidence tor i,
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We have here an example of the fact that
the degrees of beliel” given by belief tunc-
tions can fail o obey the Bayesian rule of
additivity. We have two contradictory prop-
ositions, A = “The department follows the
procedure,” and B = ~The department does
not follow the procedure.™ We have Bel [A]
= .9, Bel [A or B] = 1.0, and yet Bel |B|
= (). Thus, Bel [A or B] # Bel |A] + Bel
|B]. Notice that we can interpret these de-
grees of belief as betting rates even though
they are not additive. The degree of belief
Bel [A| = .9 can be interpreted as an offer
to give 9:1 odds on A, while the degree of
belief Bel [B] = 0 can be interpreted as an
ofter to give zero odds on A, (Oftering zero
odds is not really offering to bet, of course.)
The lack of additivity means only that the
rates are one-sided instead of two-sided. We
are not setting odds and offering 10 bet on
cither side at those odds.

It should be noted, however, that this non-
additivity is not obligatory in the belief-
function formalism. The formalism atlows
us, if we wish, to make the judgment that
the department will not follow the proce-
dure if the manager is dishonest or incom-
petent, and to adopt as a consequence the
additive degrees of belief Bel [A] = .9 und
Bel [B] = .1.

It is tempting, but incorrect, to describe
the degrees of belief given by beliet tunc-
tions as bounds on probabilities. In our ex-
ample, it is tempting to say that there is somie
objective probability p that the department
is tollowing the procedure, and that p = 90
percent. But as we argued in the first main
section, there may be no such objective
probability. Moreover, as it turns out, many
ol rules used by the theory of belief func-
tions do not make sense it degrees of belief
are interpreted as bounds on probabilitics
|Shafer, 1981, 19854).

The Combination of Evidence. Suppose
now that we get new evidence corroborating
the manager’s statement. Suppose, for con-
creteness, that the procedure which the
manager said is being followed involves two
individuals who have no responsibility tor
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handling cash or for preparing records of
sales or accounts receivable. One of these
two individuals mails monthly statements,
and the other resolves disagreements about
balances. The new evidence consists of our
observation of the mailing of statements and
our examination of files of correspondence
with customers. Suppose that we assess the
reliability of this new evidence at 80 per-
cent. We are 80 percent certain that the
monthly statements and the customer cor-
respondence could only be the result of reg-
ularly followed procedures.

The new evidence standing alone gives
us 80 percent reason to believe that the de-
partment is following the procedure. How
should we combine this 80 percent with the
90 percent derived trom the manager’s tes-
timony in order to obtain a degree of beliel
based on buth items of evidence together?

We may reason as follows. Our uncer-
tainties about the two items of evidence are
independent. Whether or not the manager 1s
dishonest or incompetent is independent ot
whether or not our observations and docu-
mentary evidence could be misleading. So
we may multiply probabilities, obtaining four
probabilities that add to one:

-9 x 8 = 72, the probability that both

items of evidence are reliable.

-.9 x .2 = 18§, the probability that the
manager’s testimony is reliable, but that
our understanding of the documentary
evidence is not.

—.1 x .8 = .08, the probability that the
manager's testimony is not reliable, but
that our understanding of the docu-
mentary evidence is.

—.1 % .2 = .02, the probability that nei-
ther item ol evidence is reliable.

If at least one ol the two items of evidence
is reliable, then the department is tollowing
the procedure. The probability of this is .72

L1808, or (98, So the two items of

evidence together justity a total degree of
beliel of 98 percent that the departiment 1y
tollowing the procedure. We sull have a zero
degree of behief that the department is not
following the procedure
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We could express our reasoning more
simply by looking just at the probabilities
that the two items of evidence are not re-
liable. Our probability for the manager not
being reliable is 10 percent, and our prob-
ability for our interpretation of the other
evidence not being reliable is 20 percent.
Since we regard these two uncertainties as
independent, our probability for both not
being reliable is .1 X .2 = .02, Hence, our
probability for at teast one being reliable is
98 percent, and if at lcast one is reliable,
then the intemal control procedure is being
tollowed.

This rule for combining corroborating
evidence goes back to George Hooper, who
wrote shout it in 1685 [Shafer, 1986a]. It
Is o special case of Dempster’s rule of com-
bination, a general rule used for combining
independent items of evidence in the belief-
function tormalism.

There ure ways of generalizing Demp-

ster’s rule to cases where items of evidence
are not independent (see Shater | 1987a,b}).
In many cases, however,#it is useful to sort
evidence out in such a way that we are con-
sidering independent uncertainties. In this
example, we did this by concentrating on
our uncertainty about whether the docu-
mentary evidence could have been con-
cocted, not on our uncertainty about whether
it way concocted. This makes the indepen-
dence work. It is reasonable that the chance
of error in our judgment of the manager
should be independent ol the chance of er-
ror in our judgment about the difficulty of
producing and mailing the batch of monthly
statements and  producing the correspon-
dence file were the procedure not regularly
followed. It would not be so reasonable o
assume that the manager’s honesty s in-
dependent of whether the documents ac-
tually were lalsificd.
Conflicting Evidence. In the example that
we just considered, the two items of evi-
dence that we wanted to combine corrobo-
rated cach other. There are other cases,
however, where we must combine contlict-
ing items of evidence.
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Suppose, for example, that we interview
the clerks who were supposed to implement
the internal control procedure that the man-
ager described (o us. There are three clerks
involved. Two still are in the department;
the third is no longer with the firm, though
he/she was in the department during most
of the audit period. The two clerks still in
the department verity the manager’s de-
scription of the internal contro} procedure.
The third, however, when c)mluclcd by
telephone, denies ever hearing ol any such
procedure. !

Atter deliberation, we decide that the
testimony of the two clerks still in the de-
partment adds nothing to the manager’s tes-
timony, and that the testimony ol the third
has real but limited force. The person that
we reached on the telephone may have been
pulling our leg even when he/she acknowl-
cdged being the person that we were trying .
to reach. We judge that there is a 60 percent
chance that this telephone respondent iy re-
hable. If he/she s reliable, then the de-
partment has not been following the internal
control procedure. So this testimony, by -
self, justifies a 60 percent degree of belief
that the department has not been following
the procedure. How do we combine this 60
percent negative degree of beliet with the
98 pereent positive degree of beliel based
on our previous evidence?

We may reason as follows. Our uncer-
tainty about our new evidence is indepen-
dent of our uncertainty about the previous
evidence. Betore taking into account what
the person on the welephone told us, we con-
sider his or her rediability independent of
whether or not the manager is dishonest or
incompetent and whether or not the docu
mentary evidence could have been con-
cocted. So we may multiply probabilities,
obtaining four probabilities that add 1o one:

Y8 x4 - 392 the probability that
al least one part of our original evi-
dence s reliable, and that our tele-
phone respondent is unreliable

<02 x 6 - 012, the probability that

both parts of our original evidence are
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unreliable, and that our telephone re-
spondent is reliable.

—.02 x .4 = 008, the probability that
both parts of our original evidence are
unreliable, and that our telephone re-
spondent also is unreliable.

— .98 x .6 = .588, the probability that
at least one part of our original evi-
dence is reliable, and that our tele-
phone respondent also is reliable.

The last of these four probabilitics, .58,

is attached to a possibility that has become,
in light of the evidence, an impossibility. In
the abstract, it is possible that both our tele-
phone respondent and our original evidence
should be reliable, but in fact, they have
contradicted each other. The beliet-function
formalism tells us, in this situation, to elim-
inate this possibility and to rescale the other
three probabilities so that they add to one.
These three probabilities, .392, .012, and
008, add 0 .412. To rescale them, we di-
vide each by .412, obtaining, approxi-
mately, .95, .03, and .02, respectively.

We now have a 95 percent probability that

at least one of our first two items of evi-
dence is reliable. This becomes our new de-
gree of belief that the department has been
tollowing the procedure, based on all three
items of evidence combined. On the other
hand, we now have a three percent proba-
bility that our telephone respondent is reli-
able. This becomes our new degree of be-
lief that the department has not been
following the procedure. Before we took
account of our telephone respondent’s neg-
ative evidence, our degrees of belief were
98 percent for and zero percent against. Now
they are 95 percent lor and 3 percent against.
Notice that we still have non-additivity: 95
percent and 3 percent do not add to 100 per-
cent.

Logical Reasoning. If Joc Wilson is a re-
liable analyst, and he says the Thompson
account is collectible, then it is collectible.
If all recorded sales are valid, and all cash
receipts are recorded, then all recorded ac-
counts receivable are valid. These are ex-
amples of logical reasoning in auditing. From
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two or more premises, we draw a conclu-
sion.

How do we qualify such logical reason-
ing 10 take uncertainty into account” Often
we must qualify our premises—we believe
them only to a certain degree. Can we de-
rive a qualitied conclusion from qualified
premises? Can we derive a degree of belief
tor a conclusion from degrees of beliet for
premises?

The belief-function formalism does
sometimes permit this, but there is an im-
portant proviso. In order 10 combine de-
grees of belief, we must understand the re-
lation between the items of evidence on
which they are based. In the case of two
premises, for example, we need to know
whether the degrees of beliet for these
premises are based on independent items of
evidence, on the same evidence, or on de-
pendent items of evidence.

Here, as always, independence is the
simplest case. 1t Joe Wilson claims to be 95
percent confident that the Thompson uc-
count is collectible, and il we are Y0 percent
confident of Wilson's judgment, and we
consider the evidence on which we base our
assessment of Wilson independent of the
evidence on which he is basing his judg-
ment, then we are entitled o a degree of
belief of .90 X .95, or 855, that the
Thompson account is collectible. 1f we put
together one bady ol evidence justifying a
99 percent degree ol beliel that all recorded
sales are valid and an independent body off
cvidence justifying a 99 percent degree of
belief that all cash receipts are recorded, then
all this evidence together justities @ degree
ol belief of 199 x99, or approximately 98
pereent, that sales are vahd and cash re-
cepts are complete and, hence, the re-
corded accounts recewvable are valhid,

The Formalism

In order to formalize beliet-tunction
thinking, we necd an explicit notation for
the relation between topics, a notation that
we can use to go from probabilities tor one
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topie to degrees of belief for another. Here
we will use a notation that relies on the wea
of compatibility between answers (o ques-
tions,
Compatibility Relations. When two ques-
tions are related, either by logic or by evi-
dence, some answers to one of the questions
are not compatible with all the possible an-
swers to the other. For example, once man-
ager John Doe has told us his department
follows procedure X, not all answers to
Question 1. Is John Doe honest and
competent?
are compatible with all answers o
Question 2. Does Doe’s department fol-
low procedure X?
To fix ideas, let us limit ourselves to the
two simplest possible answers 1o Ques-
tion |:

51 = Yes, Doe is honest and competent;
s, = No, Doe is cither dishonest or in-
CO"]PC[CI][.

Similarly, let us consider two possible an-
swers to Question 2: .

t, = Yes, the department follows the
procedure;

ta = No, the department docs not follow
the procedure.

Our point is that the answer s, 10 Question
I is not compatible with the answer 1, to
Question 2, ’

Let us write “sCt” to express the idea that
the answer s (0 one guestion is compatible
with the answer t 10 another. In our exam-
ple, we have s,Cty, s,Ct,, and 5,Cty, but we
do not have 5,Ct,.

Let us call a set of possible answers (o
question g frame if we know that exactly
onc of the answers is correct. The sets {s,,
sband {ty, t in our example are frames.
We may call the relation C between these
two frames a comparibility relation.

Belief Functions. In the simple example we
gave above, a Y0 percent probability tor s,
led to a Y0 percent degree off beliet for o,
We are now in a position to describe for-
mally this transition from probabilities 10

degrees of beliel. Formally, the transition
takes us from a probability measure on one
frame, {s,, s,} in this case, w a belief func-
tion on another frame, {t,, ) in this case.
I order to deseribe the transition in tull
generality, et us consider two arbitrary
frames S and T, with a compatibibty rela-
tion ¢ between them, and suppose that we
have a probability measure Pr on the frame
S. Recall that a probability measgre is a “set
function:” 1t assigns i pl'ohuhil:‘y o every
subset of its frame. For every subset A of
S, we have a probability PrlA|. ‘We use the
probability meusure Pr and the compaubil-
ity relation C to define a set function on T,
This set function, which is called a belief
function and is denoted by Bel, assigns 1o
cach subset B ol T the degree of beliet

BellB) = Pri{y] if s€S,
LET, and sCt, then tEBY. (1)

This formula may require some cxplana-
tion. The set whose probability we are re-
ferting to in the formula can be described
in several less formal ways. We may write

{s]its €S, t ET, und sCi, then1 € B}

]

{s| every t compatible with s is in B}

{s] it s is the answer to the first
question, then the answer to the
second yuestion is in B}

= {s] s implics B}

So the formula says that Bell B, our degree
of belief in B, is the total probability for all
the answers to the first question which im
ply that the answer to the sccond question
is in B,

IU B is the empty set, then dos probabil-
1y s zero; we have Bel|)] 0 for every
beliet functon Bel. 1B i~ the whole set T,
then the probability s one: we have Bel|'T'|

I for every beliet function Bel on T

A further pownt of clarification may be
helptul to some readers. The tight-hand side
of formuli C1y s the probability of a subsct
of So Let us assume S s fimie, so that the
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probability of a subset is the same as the
sum of the probabilities of its elements. Then
we can alternatively write the formula with
a summation sign:

Bel[B] = D {Pri{s}] if s€S,

teT, and sCt, then LEB}.  (2)

We call Bel a belief function instead of
a probability measure, and we call Bel|B]
a degree of belief instead of a probability,
because these degrees of belief may fail to
obey some of the usual rules for probabil-
ities. We alrecady have seen one example of
this; there may be subsets B of T such that
Bel|B] and Bel|not B} add to less than one.

Let us apply (1) to the simple example
of John Doe. In this case, 8 = {5,, .}, T
= {1,, t,}, and each s is compatible with each
t except that s, is not compatible with t,.
Our probability measure on § assigns a 90
percent probability to s, and a 10 percent
probability 10 sy; Pri{s,}] = .9 and Pr({s,}|
= _1. The set T has four subsets: 9, {t,},
{ts}, and the whole set T itselt. Applying (1)
with each of these in the place of B, we
obtain

1}

Bel({1,}]
Bell{t,}] = Pr(@] = 0,
Bel|3] = Prid] = 0, and
Bel|'T| = Pr|S] = I.

Pri{s )} = .9,

1

This agrees with the result that we stated in
our initial discussion. We have a 90 percent
degree of beliet that the department does
follow the procedure and a zero percent de-
gree of beliel that it does not.

Dempster’s Rule of Combination

We have seen three examples of the
combination of degrees of belief based on
independent items of evidence—an exam-
ple of corroborating evidence, an example

of contlicting evidence, and an example of

logical rcasoning. All three examples were

actually special cases of Dempster’s rule of
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combination. We now will study this rule
more formally.

First, we give a formal description of
Dempster’s rule in terms ol compatibility
relations. Then we will relate our formal
description to two examples. The first is an-
other example of corroborating evidence. The
second is another example of logical rea-
soning.

We ask the reader to bear in mind that
these simple examples, in which cach frame
has only a few elements, are meant only to
show how the rule of combination works.
More serious examples would involve frames
with many elements, and then the central
issue would be how to manage the concep-
wal and computational complexitics.
Formal Description. Consider a tframe T
that interests us. Suppose that we have two
items of evidence that bear on T. Using the
first, we construct a frame §,, a probability
measure Pr, on S;, and a compatibility re-
lation C, between S, and T, This gives us
a belief funcuion Bel, on T. Using the sec-
ond, we construct a frame S;, a probability
measure Pry on S,, and a compatibility re-
lation C, between 8, and T. This gives us
a belief function Bely on T. We want de-
grees of belief about T based on both items
of evidence together. How can we obtain
them?

Suppose the two items of evidence are
independent. ‘This means two things: (1) the
evidence for Pry is independent of the evi-
dence tor Pry, in the sense that these two
iems of evidence together can be repre-
sented by the product probability measure
Pr, X Pr, on the Cartesian product §; X
S, (2) the evidence for €, is independent
of the evidence for Cy, in the sense that these
two items of evidence together can be rep-
resented by the compatibility relation €
tween 8, X 8, and T detined by

(5, spCO and only if
5, Citand s,Cit. (3)

If these conditions are satisfied, then pool-

ing the evidence does give a single beliel

Shafer anid Srivastava

function Bel over T, namely, the belief
function that we obtain trom (1) when we
pul'S, x 8, in the place of S and Pr, x Pr,

in the place of Pr. (If € rules out some of

the elements of 8§, X S,, then lor 8 we use
the subset of 8, X 8, consisting of the e¢le-
ments not ruled out, and for Pr we use the
result ol conditioning Pry X Pr, on this sub-
set.) As it turns out, this belief function Bel
depends only on Bel, and Bel,, not on the
other details [Shafer, 1976, 1987b]. This
method of constructing Bel trom Bel, and
Bel, is called Dempster's rule of combina-
tion.

Dempster’s rule obviously can be gen-
eralized in various ways to deal with de-
pendent bodies of evidence. In some cases,
pooling the evidence will result in measures
on 8; X 8, that are not product measures;
in others, it will result in compatibility mea-
sures ditferent from C [Shater, 1987a, b|.
We will not explore these generalizations in
this paper.

Example: Corroborating Evidence. Sup-
pose that an auditor wants to assess whether
a client will be able to collect an account
receivable with a large balance. The ac-
count is with a customer in an industry that
has been having severe problems in recent
months, and the auditor is concerned about
its collectubility. The auditor gathers infor-
mation from two individuals, the client’s
credit manager, Dick Hauser, and an inde-
pendent financial analyst, Tom Keiser.
Suppose that cach has credibility .95, and
both advise the auditor that the account re-
ceivable is collectible. Suppose also that their
analyses are independent. Hauser is relying
on his own expericnee with the customer,
while Keiser is relying on the customer’s
overall credit rating and an assessment of
prospects for the customer’s industry.

The trames for which we have probabil-
ities are 8, = {s,,, 8,5}, where

s, = Tom 1s rehabie, and
s = Tom s not reliable,

and 8, = {s,,, 53}, where
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sy = Dick s rehiable, and
sy = Dick is not reliable.

We represent the credibilities that we give
10 Tom and Dick by probability measures.
To represent Tom’s credibility, we use a
probability measure Pr; on S, that assigns
probability .95 to s, and probability .05 10
s;,. To represent Dick’s credibility, we use
a probability measure Pr; on 8, that assigns
probability .95 to s,, and pruba}»ility .05 w0
S

The frame that we want 10 know about
is T = {t,, 1.}, where {

t, = the account receivable is collectible,

t, = the account recetvable is not collec-
tible.

The compatibility relation C, between 8§,
and T is simple; s,, is compatible only with
t;. while s, is compatible with both ele-
ments of T, The beliel function Bel, based
on Tom’s credibility alone, therefore, has
the values Bel [ T| = 1, Bely|{t,}] = .95, and
Bel,[{t;}] = Bel,|©)} = 0.

The compatibility relation C, between S,
and T is analogous: s,, is compatible only
with t,, while s,, is compatible with both
elements of ‘T, The behet function Bel, based
on Dick’s credibility alone s exactly the
same as Bel,.

Since Bely and Bel, are mathematically
identical, we are tenipted 1o say that they
agree with cach other, and we nught think
that when we combine them we should get
another beliet” functiion that also agrees. This
is wrong. Though the two belief tunctions
are mathematically dentical, they say dit-
ferent things because they represent dilter-
entitems ol evidence . Their combination by
Dempster’s rule is supposed o represent the
pooling of these items ol evidence, and
hence, it will result in stronger degrees of
belief

To carry out Dempster’s rule, we first
obtain the product probability mcasure Pr,
X Pry on the Cartesian product 8, X S
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Pri{(s,,, s20}] = .95 x .95 = 9025,

W

Pri{(s,,, s} = .95 x .05 = 0475,
Pri{ts,2. 20t}

Pri{(s.2, 20}

.05 x .95 = 0475, and

]

.05 X .05 = 0025,

Next, we follow the recipe for constructing
a compatibility relation C between S, X S,
and T. We find_that (s, s3,) is compatible
only with (;, (s,,, 532) is compatible only with
1, (811, $2) is compatible only with ©,, and
()2, $22) is compatible with both elements
of T. The resulting beliet function Bel has
the values

BellT) =1,
Bel[{t,}] = .9025 + 0475 + 0475 = 9975, and

Bell{(,}] = Bel{®] = 0.

This result agrees with the less formal way
of reasoning about corroborating evidence
that we learned earlier. Each of our inde-
pendent analysts has only a five percent
chance of not being reliable; hence, there is
only a .05 x .05 = .0025 chance that nei-
ther is reliable. So there is a 9975 chance
that at least one is reliable, in which case
the account is collectible.

Example: Logical Reasoning. Suppose
now that the auditor asks only Dick, the
client's credit manager, about the collect-
bility of the account receivable. Dick does
not analyze the situation himself. Instead,
he calls Tom, a local tinancial analyst. He
reports to the auditor that Tom considers the
account definitely collectible, and he adds
a description of Tom's qualifications. The
auditor feels that this is important evidence,
but he/she sees two uncertainties. First, he/
she is only 95 percent confident that an an-
alyst with the deseribed qualifications would
be reliable on such & matter. Second, he/
she is only 95 percent contident that Dick
can be relied on 1o transmit Tom’s opinion
fully and accurately and to describe Tom’s
qualifications fairly.

According to our carlier discussion of

Jogical reasoning, the auditor should mul-

Auditinyg, Supplement, 194

tiply the two 95 percents, obtaining a de-
gree of belief in the collectibility of the ac-
count of .95 x 95 = 9025, How do we
express this caleulation as a special case of
Dempster’s rule?

We can use basically the same frames S,
= {sy. s and Sy = {8y, s that we used
in the preceding example, except that we
need to describe the elements of 8, in such
a way to make clear that we are talking not
necessarily about Tom, but rather about a
possibly hypothetical analyst with the qual-
ifications Dick attributes to Tom. We may
do this succinctly as follows:

s,, = such an analyst would be reliable;
s;> = such an analyst would not bhe rehi-
able.

We have exactly the sume probability mea-
sures Pry, and Pry on the frames 8, and S,
and so we also have the same product prob-
ability measure Pr, X Pr; on the Cartesian
product 8, X 8§,

In order to capture the logical reasoning
involved in combining the evidence, we
must, however, enlarge our frame T. W
must set T = {(,, 1, t,, .}, where

i

1, = Dick’s report is correct, and the ac-
count is collectible:

. — Dick’s report is correet, but the ac-

count is not collectible;

Dick’s report is incorrect, bul the

account is collectible;

t, — Dick’s report is incorrect, and the

1}

G

account is not collectible.

The compatibility relation C, between 8§, and
I is clear. All the elements of 8, are com-
patible with all the clements of T, except
that s,, is not compatible with t,. (11 Dick’s
report is correct, and yet the account is not
collectible, then Tom, the analyst that Dick
deseribes, must not be rehiable.) The com-
paubility relation €, between S, and T also
is clear; s, is compatible with (, and t,, but
not with t, or ty, while s, is compatible with
all tour clements of T,

We obtain a belie! function Bel, on T from
S,, Cpy and Pry. lts values are Bel ['F] - 1,
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Beli{t,, 1, L} = .95, and Bel,|B] = O for
any other subset B of 'I'. Similarly, we ob-
tain a beliet function Bel, trom 8, C,, and
Pr,. Its values are Beb|'T| = 1, Bely|{t,, 1,}]
= Bely({t,, t., 4} = Bell{t,, 1, 1,}] = 5,
and BelB| = 0 for any other subset B of
T.

To combine Bel, and Bel, by Dempster's
rule, we must use the general recipe for
constructing the compatibility selation €
between S, X S; and T. We find that (s,,,
$3;) is compatible only with t,, (8, S22) is
compatible with t,, ty, and t;, (5,5, $3,) is
compatible with t; and t,, and (5,5, 53,) is
compatible with all four ¢lements of T. The
resulting beliel function Bel has the values

Bel|T| = 1,
Bel{{t,}] = Bell{1,, 1,}| = Beli{t,. t,}]
= .9025,

Bell{t,. 1.}] = Bell{t,, t., 1.}

= Bell{t,, to, ,} = 95,
Bel({t,, t.. i,;}) = .95, and:
Bel[B| = O for any other subset B of T,

The degree of belief of main interest here
is, of course, Bell{t,, 4} - .9025, the de-

2D,

gree of belief that the account is collectible.

The Constructive Interpretation

Like the Bayesian forimalism, the beliet-
function formalism should be given a con-
structive interpretation. As in the case of the
Bayesian formalism, this constructive inter-
pretation involves comparison of our actual
problem and our actual evidence to a canon-
ical example in which our evidence consists
of knowledge of objective probabilines.

The only ditference between the Bayes-
ian and behief-function canonical examples
is that the known probabilities in the beliet-
function canonmcal examples are not objec
tive probabihitics for the possible answers to
the question with which we are concerned.
Instead, they are objective probabilities tar
the possible answers 1o a related question,
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They are objective probabilities for the tframe
S, not for the frame T ihat we really want
10 know about.

Real problems to which we want to apply
the behiet-function tformalism do not, ot
course, come supplied with frames § and 'T',
In a real problem, it is the task of the user
of the formalism to settle on a way of de-
fining frames 8 and T, 10 identify evidence
on which 1o base a compatibility retation C
between S and T, and o idrnlxlry other evi
dence on which 10 base o probability mea-
sure Pr on S. The user then must make cat-
egorical judgments 1o construct C and
numerical judgments to construct Pr. Then,
finally, the user can calculate degrees of be
lief on ‘I'. The result, just as 1 the case of
the Bayesian formalism, is more than just
these degrees of beliel. 1tis an argument by
analogy.

COMPARING THE TWO
FORMALISMS

The Bayesian formalism is a special case
of the beliet-function tormalism. This means
that adopting the belicl“function formalism
does not cut us off from any ol the re-
sources of the Bayestan formalism. 1t also
means that the case for using the beliefl-
function formihsm must be based on ity
greater Clexability.

The Nexibility of beliet functions is valu-
able because it often allows us o construct
probability arguments that require tewer nu-
merical probabilitics as inputs. When fewer
inputs are required, we have a better chance
of Nnding reasonably solid evidence on
which to base these inputs, and thus, we have
a better chance of producing an overall ar-
gument based on evidence rather than mere
fancy.

I this section, we explinn i detail how
the Bayesian tormalism Lits mnto the beliet-
function formalism s special case. We
tllustrate this with an example, which also
illustrates the flexibility available with be
lict functions

We conclude by discussing some special
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topics. We discuss one cxtreme situation
where the flexibility of belief functions is
helpful—the situation where we want to
represent complete ignorance. We explain
how expected value is handled in the belief-
function formalism. Finally, we briefly dis-
cuss statistical evidence.

Bayes as a Special Case

The Bayesian formalism has two ele-

ments—the idea of a probability measure
and the rule of conditioning. Both of these
elements have their place in the belief-func-
tion formalism. A probability measure is a
special kind of belief function. Condition-
ing can be applied to any beliel function,
whether or not it is a probability measure.
Conditioning a belief function on a subset
E of its [rame is equivalent to combining it
with a special belief function that represents
the knowledge that E is true.
Bayesian Belief Functions. In the second
main section, we introduced a simple ex-
ample of the evaluation of testimony. A
manager assures us that his or her depart-
ment follows a certain procedure. Since we
are 90 percemt confident of the manager’s
honesty and competence, this testimony gives
us a 90 percent degree of beliet that the de-
partment does tollow the procedure. In our
initial discussion, we assumed that the de-
partment would not necessarily tail to fol-
low the procedure it the manager were dis-
honest or incompetent, and therefore, our
10 percent degree of belief that the manager
was dishonest or incompetent did not trans-
late into a 10 percent degree of belief that
the department was not following the pro-
cedure. We mentioned, however, that this
judgment could go the other way. We might
instead judge that the departiment would tail
to foliow the procedure were the manager
dishonest or incompetent, and then we would
get a 10 percent degree of belief i the de-
partient not following the procedure. In this
case, our degrees of belief about the de-
partment would match our probabilities about
the manager.
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The general point is that both (Bayesian)
additivity and (non-Bayesian) nonadditivity
are permitted in the beliet-function formal-
ism. A belief function does not have to be
a probability measure, but it can be one. If
it is, we call it a Bayesiun belief function.

Our general recipe for constructing a be-
lief function Bel on a frame T requires us
first to construct a probability measure Pr
on a different frame 8 and then to construct
a compatibility relation € between S and T.
Whether or not Bel is Bayesian depends on
the nature of C. In the example of the man-
ager, $ consists of

s, = the manager is honest and compe-

tent, and
» = the manager 15 ¢ither dishonest or
incompetent,

.
M
1

and T consists of

t, = the department follows the proce-
dure, and

t, = the department does not follow the
procedure.

As soon as we say that s, is compatible only
with {, and s, is compatible only with t,, we
have set up a one-tv-one correspondence
between S and T, and so Bel is simply Pr
transterred to T,

Actually, we do not quite need i one-to-
one correspondence between S and T an or-
der for Bel 10 be Bayesian. It is sufficicnt
that cach s should be compatible with only
one L, for then the probability for each s is
assigned o just one . Bel is non-Bayesian
(not a probability measure) when C tells us
that some s is (are) compatible with more
than one t.

As a practical matter, if we can construct
directly a convincing probability measure
on T, then we can use this probability mea-
sure as a beliet tunction, without further ado.
We do not need 1o set up a framework in-
volving an 8§ and a C. (If pressed for such
a framework, we might respond that S is the
same as T, and C makes each element com-
patible only with itselt, but this is just math-
ematical play.)
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Conditioning Belief Functions. If we have
a probability measure Pr on a frame T, and
we get new evidence that amounts to
knowiledge that the truth is in a certain sub-
set E of T, then we condition Pr on E. Re-
call what this means: we change our degree
ol beliet for each subset A of T from PriA|]
o PrlANE}/Pr(E].

We incorporated conditioning into the
definition of Dempster’s rule in the belief-
function formalism. So we might expect the
change from Pr{A| to PrlANE|/Pr|E] to
be a special case of Dempster’s rule. But
how exactly does this work? What belief
function are we combining with Pr by
Dempster's rule when we make the change
from PriA] to P |ANE|/Pr|L}?

The answer is that we are combining Pr
with Bely, where Bely is the beliet function
on T defined by

I if A contains E, and

I =
BelA] 0 if A does not contain £,

4)
Itis intitively clear that Belg represents the
knowledge E, because Belg gives full behet
to E and everything E implies, but no belief
at all to anything else.

How do we know that Belg qualifies
mathematically to be a beliet function”? To
see that it does qualify, let us construct it
from a compatibility relation. We let 8§ be

any non-empty set; we let Probe any prob-’

ability measure on S5 and we let C be the
compatibility relation between S and T that
says every element s of 8 is compatible with
all the elements of E but with none of the
other elements of T. It is easy 1o see that
(1) then produces (4).

We will leave to the reader the task of
tracing through the process of combining Pr
with Belg by Dempster’s rule and verilying
that the result is a beliel function that gives
cach subset A of T the degree of belief
PriANE|/Pr|E|.

We also can combine a non-Bayesian be-
lef tunction Bel on 'T' with the special beliet
function Bel,. This resulis in the beliet
function on ‘T' that gives each subset A the
degree of belief

(Bel| AU(not E)] — Bellnot E})/
(1 = Bellnot E]) (5)

|Shafer, 1976). If Bel is Bayesian, (5) re-
duces to Bel| ANE|/Bel|EE]. In any case, we
may call (5) the conditional degree of belief
in A given E.

Bayesian and Non-Bayesian Analysis

Our constructive philosophy gells us that
there will be many different bc*lcl'—t'unction
analyses for any given pn)hlc?\, some of
them Bayesian. Which analysis that we pre-
fer will depend on which best represents the
evidence that we have. This statement is ap-
pealingly tolerant, but abstract. In this sub-
section, we will try to make the idea of al-
ternative analyses more concrete by looking
at several different analyses of a single ex-
ample.

It will do no harm to consider the sim-
plest of our examples, the example of the
manager who says his or her department is
following a certain procedure. We consider
once again with the frame § consisting of

s the manager is honest and compe-
tent, and

sy — the manager is cither dishonest or
incompetent;

and the frame T consisung ol

t, - the department follows the proce-
dure, and

t; = the department does not follow the
procedure.

Recall that i our original non-Bayesian
analysis, we judged that cach s 18 compat-
ible with cach t except that s, is not com-
patible with .. Our probability meuasure Pr
on 8§ assigned a 90 percent probability to s,
and @ 10 percent probability o s, Pri{s,}|
= 9and Pri{s.}] = .1. So we obtained Bel
Hull = Prifs)] - .0, und Bel )| = Prig)
= 0.

A Bayesian Analysis. What nught 4 Bayes-
ian analysis of this same example look hike?
There are many possibilities, but since 8 and
T already have been formulated, we nght
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first think about constructing a joint prob-
ability measure for § und T (i.e., a proba-
bility measure for the Cartesian product 8§
x T). We already took a first step by as-
signing s, the probability .9 and s, the prob-
ability .1. To tinish the task, we need con-
ditional probabilities Pri{t,}|{s,}] and
Pri{t,}|{s,}]. 1If we think that the internal
control procedure in question is appropriate
for the department, so that there is a priori
reason to think a competent manager would
have adoped it, we might set Pr{t}[{s,}] =
.8, say. It may be harder for us to give a
probability that the manager would adopt the
procedure were he dishonest or incompe-
tent; say we set Pri{t}i{s,}] = 4. In this
case, our probabilities for the four elements
of § x T would be

Prl[(sl' l|)“ =.9x §=.72
9 x.

()
I
o

Pri{(s,, 1}l
Pri{(s., 1)} =

(6)

|
x
IS

I

A, and

Pri{(s,, 1D} = .1 X .6 = .06,

Next, we consider the manager’s testimony
that the department does follow the proce-
dure. We did not take this evidence into ac-
count in constructing our probabilities tor
S x T. One Bayesian way of taking it into
account is (o assess its conditional proba-
bility given each of the clements in the frame
8§ x T. We might, for example, give the
conditional probabilities

PriE[{(s,, tHH = 1
Pr|E

s, =0,
((N H 7

PriEf{(s,, tH} = .99, and
Pr|Lf{(s.. 1)}l = .07,

where E denotes the manager’s testimony.
The values | and 0 retlect the tautology thit
an honest and competent manager tells the
truth. "The high probability 99 reflects the
thought thit the manager is not hikely o have
any reason {0 hide the procedure it itis fol-
Jowed, while the low probability .07 re-
flects the thought that even a dishonest vr
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incompetent manager probably would con-
sider it good policy not to fubricate a story
about such a procedure.

Given the cight probabilities 1 (0) and
(7), we can caleulste conditional probabil-
ities given E by Bayes's theorem. This
theorem says that

Pri{ts,. pHEL = K Pri{es, () PriEcs,. 1)
for all four (s, t), or

Pri{ts,. (O}EI = K.72)(h = . T2 K,

i

Prl{(s,, WJE] = K (.18) () = 0,
Pri{ts,. (E] - K (.04)(.99) = 0396 K,
and

Pri{(s,, L] - K (.06) (.07) = 0042 K.

The constant K must be chosen so that these
numbers add o one. This means K = 1/
(.7638) = 1.309, whence

Prl{'-\l- l.)}'E] = 943,
Pri{(s,. }EL = 0,

r“(\l _)H | )
Pr({ts:, t)OIE] = 052, and
Pri{(s,, YE] = 005,

So we have a total probability of 943 +
L0052 = 995 that the department tollows the
procedure, and a probability of only 005
that it does naot.

Bayes's theorem is only a mathematical
convenience here. The more fundamental
way to derive (8) is to use (6) and (7) to
construct a probability measure on the
Cartesian product 8 3 °I' x U, where U ~
{uy, uyb, uy represents B, oand o, epresents
the negation of E. We then get the proba-
bilities () on 8 X 'I' by conditioning on u,.

Nouce that this Bayesian analysis indi-
cates @ much higher degree of beliel in the
departiient’s following the procedure than
our orginal non-Bayesian analysis did. This
higher degree of beliet 1s appropriate il there
is evidence on which to base the additional
numerical inputs. 1 is not appropriate 1§ there
IS not.
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Another Belief-Function Analysis. The
Bayesian and non-Bayesian analyses that we
have just given can be thought of as two
extremes. “The Bayesian analysis uses a very
thorough probability maodel— perhaps a more
thorough model than we are comfortable
with. Our ariginal non-Bayesian analysis uses
a very Spurtan model; it relies only on the
probable honesty and competence of the
manager. There are many possible beliel-
function analyses between these two ex-
tremes.

Suppose, for example, that we are com-
fortable with the probabilities given by (6).
We feel that we do have adequate expern-
ence or argument o support these probi-
bilities. But we are not comfortable with the
99 and .07 in (7). We feel that these num-
hers are totally specalative. Then we night
sumply represent the manager’s testimony
by a beliel” function that gives a very high
degree of beliet—perhaps a degree of heliel
ol one—against (5. ). If the degree of be-
hiet is one, then combining this belief func-
tion with the probability amcasure (6) on 8§
x T s the same as conditioning this prob-
ability measure on {(s,, 1,), (52, 1), (51, L)}
This results in a degree of belief of (.72
04 /.82 =93 for the department follow-
ing the procedure, and a degree of beliet of
06/.82 = .07 against it. If the degree of
beliet against (s, 1) is only a little less than
one, then the result is nearly the same.

We can move farther back toward our
onginal non-Bayesian belief-function anal-
ysis by substituting a belief tuncuon for the
probability measure (6) on 8 x T betore
conditioning on {(s,, 1,). (s, 4}, (s, )}
We leave it to the reader to check that if we
use o behet tunction that assigns degree ol
belief 9 1o {(s,. 1), (5,, L)} and degree of
behiet C 1 1o {(s,, 1), (5., )} but no positive
degrees of beliet to smaller subscets, then we
get back exactly o the original avalysis.

The Representation of Ignorance

One well-known shortcoming of the
Bayesian formalism s the ditficulty that it
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has in handhing ignorance or lack of evi-
dence. “The ditficulty is that the Baycesian
formalism requires us o disibute our total
probability over the clements of T, and any
way of doing so seems o be a positive
expression of beliel. not an expression ol
ignorance, 1 often is suggesied that we
should distribute our probability evenly; 1t
there are n elements in T, then we should
give cach probability 1/u. But i nis large,
and we turn our attention to ;u?y particular
element of T, then this solutign seems 1o
tell us that the particular elemeni is very un-
likely—that there is a probability (n = 1)/
1 against it. Morcover, when we spread our
ignorance evenly, the result is sensitive 10
how finely we split hairs in our descriptions
of various possibilities

This problem has been discussed and de-
bated for over a century. but it sull may be
usclul to lustrate 1t an auditing context
Here is one simple example. Suppose o new
client's inventory is stored at iwo diflerent
locations. The auditor is interested in whether
or not there is o material mis-statement in
the inventory at either or both locations, and
he/she initially considers himselt /herself
completely ignorant about the situation in
hoth locations. He/she might try to repre-
sent this ignorance 1n the Bayesian forinal-
ism by stiting the following probabihities:

Prino material error in iventory
location one| = p,, - 0.5,

Primatenial error i inventory at lo-
cation one| = pyy = 0.5,

Prino material error im mventory
location two| ~ py = 0.5, and
Primaterial error in mventory s lo

cation two| = py, < 05,

I he/she also i ignorant about how prac-
tices i the locutions nght be related, then,
perhaps, he/she will use independence o
get Joint probabilities.
Prino material error i the combined
mventory| - pyy X pyy 25 and
Prlimaterial crror in the combined -
venlory | P X Pt P X py
Ppe X ope - 75
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Does this represcat our ignorance about the
total inventory at the two locations? Pre-
sumably, we should represent our ignorance
about the total inventory by using a 50 per-
cent probability for the existence of a ma-
terial error, not a 75 percent probability. This
problem in maintaining consistency be-
comes more severe when more than two lo-
cations are combined in an audit and the au-
ditor is ignorant about all the locations.

Ultimately, the only consistent way to deal
with this difficulty, while insisting on the
usefulness of the Bayesian formalism, is to
deny that the concept of ignorance is useful.
We must claim that we are never totally ig-
norant about anything. We always have some
evidence. Hence, we do not have to dis-
tribute our probability uniformly. We can
distribute it according to our actual beliets.
This is the view taken by most contempo-
rary Bayesian subjectivists (e.g., Lindley
[1971].

In contrast to the narrower Bayesian for-
malism, the belief-function formalism has a
very simple and straightforward way ol ex-
pressing ignorance about a frame T. It does
this using the vacuous belief function on T -
the belief function that gives zero degree of
beliet 10 every subset of T except T itsell.

A user of the belief-tunction formalism
does not need, however, to debate the ques-
tion of whether we are ever really ignorant.
This is because when we use the belief-
function formalism, we always work with
specific items of evidence. We are always
concerncd with making probability judg-
ments on the basis ot specific evidence. Af-
ter doing this, we may turn to other specific
evidence and do the same with it. And then
we may try to combine the judgments. But
WC are never in a position of trying 1o assess
degrees of belief directly on the basis of “all
relevant background knowledge,” and hence,
never in i position where we have to decide
whether there is any.

In practice, the issue is thus not whether
we have evidence or whether we are igno-
rant, but whether the evidence we are con-
sidering is relevant to the frame T that we
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are considering. If it is not, then we will
represent it by the vacuous beliel function
on T. This belief function has the property
that when it is combined with any other be-
lief function on 'I' by Dempster’s rule, it
leaves the other belief function unchanged.

Expected Values

The auditor, like other accountants, must
sometimes assign expected values 1o assets
and liabilities. We know how to calculate
expected values in the Bayesian formalism;
we multiply each possible value by its prob-
ability and add the results. Is there a similar
procedure in the belief-function formalism®?
Yes, there is. But, in general, it does not
produce a single sharply defined expected
value. Instead, it produces two numbers, a
lower expected value and an upper expected
value.

Suppose, for concreteness, that we are
concerned with the total amount (suitably
discounted) that a client will eventually col-
lect on a given account. Let T denote the
possible values for the amount, and suppose
that we have represented our evidence about
the matter by a beliet function Bel on °'I'.
How do we calculate the lower and upper
expected values? The simplest way, in the
context of this paper, is to use the under-
lying probability measure Proon the back-
ground Irame S, gether with the compat-
ibility refation C that links the trames 8 and
T For each clement s of 8, we let t,(s) de-
note the smallest element of T compatible
with s, and we let L (s) denote the largest
clement of T compatible with s, Then we
use the probabilitics for s given by Pr (o
calculate expected values for t.(s) and 1i(s):

Els)] = D APrl{sh x Gk,
and
Elt)l = D APt x 4},

These are the lower and upper expected val-
ues, respectively.

Shafer und Srivastava

In the extreme case, where we have no
evidence and Bel is, therefore, the vacuous
belict function, the lower expected value,
El14(s)], will be the smallest number in T,
and the upper expected value, Eft.(s)], will
be the largest number in T. In other cases,
E[t«(s)] and E[t.(s)] will move in from these
extremes, but only when Bel is Bayesian will
they be equal.

The smaller of the two numbers, the lower
expected value, provides a way of valuing
the account conservatively. Such a conser-
vative valustion may be appropriate in some
cases—it provides a statement of the value
of the account based just on the evidence
the auditor has.

As a simple example, consider an ac-
count with a balance of $100,000. We have
strong, but inconclusive, evidence that the
firm that owes this balance is about w0 be
liquidated. Say we have a probability of 90
percent that it will be liquidated, and a
probability of 10 percent that it will not be.
We know enough about the firm’s linancial
position to know that it will be able 1o honor
no more than 50 percent ol its liabilities it
it is liquidated. We are completely uncer-
tain about how much of the balance that our
client eventually will collect it the firm is
not liquidated soon.

T'o formalize this example, we take § to
be the frame consisting ol

s, = the firm will be liquidated soon, and
5, the firm will not be liguidated soon,

with probabilities Pris;| = .9 and Pr[s,] =
1. We take T to be the frame consisting of
atl dollar amounts from $0 o $100,000. The
element s, of § is compatible with all t in
T, but the element &, is compatible only with
t less than or equal to $50,000. So

s = 5O, s = $50,000, and

sy = 30, (s = $100,000.

Our lower and upper expected values arc,
therefore,

Elte(s)] - .9 x $0 + .1 x $0 = %0, and

Elt.(s)] = .9 x $50,000

+ .1 x $T00.000 = $55,000.

Thus, we remain uncertain about the value
of the account. A comervative valuation is
$0, but we are not certain that the account
will turn out 1o be worthless.

One way to interpret lower and upper ex-
pectations is as buying and sglling prices.
In this example, we might say'that our cvi-
dence does not justity paying more than $0
for the accouat, but it also dogs not justity
selling it for less than $55,000. This inter-
pretation is consistent with the interpreia-
tion ot beliet-function degrees of belicl s
one-sided, as opposed to two-sided betting
rates.

Statistical Evidence

It may be helptul in understanding the
differences in attitude between proponents
of the Bayesian and belief-function formal-
isins, (o recognize the importance of statis-
tical evidence us a paradigm for the Bayes-
ian formalism,

In this puper, we have emphasized a very
general constructive interpretation of  the
Bayesian formalism, and we have de-em-
phasized Bayes's theorem. Many Bayesian
authors, on the other hand, present this
theorem as the essence of the formalism.
Since Bayes’s theorem 1s most appropriate
for statistical evidence. these authors are, in
elfect, singling out statistical evidence o
serve as the primary source of canonicil ex-
amples to which to compare other evidence.

The beliet-function tramework does not
encourage this emphasis on statistical evi-
dence. 1tis true that the belief-function for-
malism, like Bayes's theorem, derives from
ettorts 1o deal with stutistical cvidence, and
that there are o variety ol nethods o deal
with statistical evidence within the beliel-
tunction formalism |Dempster, 1968; Shaler,
1982b, ¢}. Statistical evidence is not, how-
ever, the kind ol evidence tor which the be-
liet-function Tormalism 1s most simple and
MOSE natural
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What is statistical evidence? We call ob-
servations statistical evidence when we have
an objective probability model for the ob-
servations, but we are uncertain about the
values of the objective probabilities. "The
observations are statistical evidence about
the objective probabilities. The results of a
series of tosses of a coin, for example, are
statistical evidence about the coin's true ob-
jective bias. In many cases, the assumption
of random sampling allows us to use data
as statistical evidence about the value of an
unknown proportion or some other quan-
tity. Data from sampled sales transactions,
for example, can be used as statistical evi-
dence about the proportion of errors in a sales
ledger.

The most general description of statisti-
cal evidence involves two frames, say R and
U. The frame R consists of possible an-
swers to a question of substantive interest,
while the frame U consists of possible an-
swers 10 a gquestion that we can get a direct
answer to. We have a statistical model which
specifies objective probabilities for the ele-
ments of U, given cach element of R, We
ask the question corresponding to U, and we
gel the answer. This answer is our statistical
evidence, and we want to know what it tells
us about U.

The Bayesian treatment of statistical evi-

Auditing, Supplement, 1990

dence can be presented as an application of
Bayes’s theorem, We have a prior proba-
bility Pr({r}] for each element r of R. Given
the observed element u of U, we use Bayes’s
theorem to combine these prior probabilitics
with the objective probabilities Pr{{u}|{r}],
obtaining posterior probubilities Pr({r}l{u}}.
The use of Bayes's theorem otten can be
taken as a signal that a problem is being tik-
ened to a problem of statistical evidence.
This is what is happening, for example, in
the Bayesian analysis in the third main sec-
tion. In that analysis, we are tempted to be-
lieve that the proubabilities (7) are appropri-
ate not because they represent evidence, but
because we imagine a causal model in which
they have objective reality, just like the ob-
jective probabilities in statistical models.
Such temptations should be resisted. It is
no more legitimate 10 posit objective con-
ditional probabilities without evidence or
argument than it is 0 posit objective un-
conditional probabilities of the kind we dis-
cussed i the first main section. And while
statistical evidence is important, much ol our
most important evidence in auditing prob-
lems and in many other problems is non-
statistical. We need not try 1o cram such non-

statistical evidence into the framework of

Bayes's theorem. The beliet-function for-
malism ofters an alternative.
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Discussion of
The Bayesian and Belief-Function
Formalisms: A General
Perspective for Auditing

G. R. Chesley

I am pleased to have been asked to re-
view Shafer and Srivastava’s [1990] paper
because it discusses an area that | feel is
important and an area of interest to me. |
congratulate and thank Professors Shafer and
Srivastava for their courage in discussing the
carly development of beliet functions in an
auditing context because it will help to force
issues to the fore, to obtain funding tor this
work, and o make more people aware of
this area of rescarch.

To begin my review, | would like 10
paraphrase a famous person, Anonymous
Reteree:

1. This paper is badly written, and am-
biguous in theme, content, and its re-
lationship to auditing

2. There is no well-thought-out, well-uar-

ticulated, and structured model that
holds the paper together.

. The mathematical contribution of the

paper s essentially trivial,

4. The connections to auditing appear o
be totally unarelated appendages.

5. Why should the reader accept this ap-
proach and not any of the other meth-
ods 1y the vast hiterature.

6. The authors should have set up an un-
ambiguous madel of auditing and de-

'~

rived the results within this frame-
work .

7. The authors should have discussed the
incremental contribution ot the resulis
and presented these results in cco-
nomic terms.

These comments are true of this paper as
they were of the paper about which they were
written. but | behieve that they really indi-
cate o misunderstanding of the presentation,
the field of auditing, and the contribution of
the paper. However, they do represent a
typical response to a reading of this paper.

The paper under review is two papers.
The first hall contains a discussion of prob-
ability to maotivate the later discussion of
beliel tunctions much like Chesley | 1984]
did on the implications of coherence. One
contribution of this halt is contained in what
the authors call the “constructive™ interpre-
tation ol probability. Essentially it says, au-
diting needs a view ol probability that 1 a

G. R. Chesley is Professor of Ac-
counting at Saint Mary's University,
Halifux, Nova Scotia B3H 3C4.

My review comments were facilitared by dis-
ctosatons with my colleague, Sy Larsson

Chesley

compromise between the objective and sub-
jective views 1o avoid the confusing, and
certainly erroncous, statemnents about prob-
abilistic inference evident in even a cursory
reading of the audit literature.

The second contribution of the first hall

of the puper lies in the discussion of addi-
tivity, Dutch Books, and one-sided inter-
ence. This discussion of one-sided infer-
ence is necessary o point out where the
major adjustinent is needed in portraying in-
ference in order w accommodate the changes
that may possibly help when representing
auditing inference. The discussion also points
out the apparent need 1o reorient one's
thinking away from the traditional sub-
Jective expected utility and game-oriented
objectives of traditional decision theory rep-
resentations of audit inference. Unfortu-
nately, a misinterpretation ot Savage's ex-
istence axiom creeps in here to detract.
Savage postulated existence; he did not say
it had to exist in the minds of a decision
maker when a problem is initially analyzed.
How and when such preferences exist is left
open by Savage (sce Savage [1972, pp. 18
21).

Except for the above, constructive inter-
pretation of probability is, | believe, simply
a restatement of practices that have been used
in decision theory and probability assess-
ment for many years. The constructive
interpretation can hardly be called a new
formalism given the lack of formality in its
development.

The second part of the paper concerns
beliel functions, a topic based on Dempster
|1968] and Shafer [1976].

Some key ideas become immediately ap-
parent:

—Bel [B] = 0 is used 1o denote the fact
that no cvidence exists in the person’s
mind on which-to believe B,

—Bel | | represents a “constructive”™ ar-
gument about the evidence in a given
situation.

—Under certain restrictive conditions Bel
| | and P | ] are the same.

—Bel | ] comes from a compatibility re-
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lation between frames. Frames are seis

ol possible answers 1o questions.

The advantages of Bel | | are reported

to be:

1. tlexibility,

2. fewer numerical probabilities may
be needed as inputs,

3. ignorance, an important unse-
solved area in infctrncc, can be
dealt with, and

4. expected values stll exist.

Given these points, it is worth noting a
few unanswered issues.

What does, say, Bel [A] = 90 mean
when it is not a probability? It has no phys-
ical property despite the claim o canonical
references. There is no obvious way to re-
late Bel | | scales to sacrifices of the infer-
rer as one can do with subjective probabil-
ities.

The selection of Bel | ] trom the set of
probabilities is performed without a set of
rules, without revealed preterences, without
counts, and without physical phenomena.
The subsection on “conflicting evidence™ in
the second main section of the paper pro-
vides a good example of the difficalties one
can encounter. A probability of (588 is cal-
culated from a .98 chance that the proce
dure is tollowed and a .60 probability of
reliable evidence source indicating that the
system is not tollowed. This result should
never have been calculated because it is im-
possible.

A second example of the ease with which
logicul errors can occur is the statement that
it evidence is independent, then Bel | | x
Bel | | is possible. This statement is illog-
ical because the product rule is used to de-
fine independence; it is not 4 result of in-
dependence.

Belief functions are a specilied result of
a mapping from the probabilities in one de-
cision frame to the beliets in another spec-
ified frame. In most cases where beliet
functions have advintages over probabili-
ties, two frames and a mapping are necded
While it may be advantageous 0 cxanune
situations in o oumber of ways, study sug-
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gests that framing shilts can ctfect the log-
ical understanding of problems in perverse
ways. For example, Tversky and Kahne-
man [1981] found that people systemati-
cally violate the commonly understood con-
sistency and coherence axioms of rationality
when framing is altered for the same prob-
lem.

One may ask, are Bel | | assessiments ac-
curale, or at lcast more accurate than P [ |
assessments? Will Bel | | result in a more
efficient or eftective audit? Will Bel | | stand
up 1o expert witnesses in count? In cach case,
the answer is unknown at this juncture in
the development of this research. A Bel | |
does away with the additivity property of
probabilitics and substitutes other rules
without presenting a rigorous justification
or analysis. Even Dempster [1968, p. 208

admits this. The problem is that this fack of

rigor hinders the user once simple situations
are left, and it also hinders the researcher
in comparisons to other formalisms or in-
ference approaches.

Belief functions are presented here with-
out considering the other side. Scales are
lett ambiguous, along with the construction
of the reference canons. Even existence 1s
not proven. The properties of the key com-
patibility relation between probabilities and
beliefs arc vaguely defined and of insufti-
cient help tor inferrers.

In summary, then, the paper lacks what
other papers lack at such an carly stage.
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However, its importance can be character-
ized by a quote from Jonathan Cohen | 1981,
p. 317} in his famous debate with Kahne-
man and Tversky:
Since a theory of competence has to pre-
dict the very same intuitions, it must as-
cribe ranonality to ordinary peoples .
What then follows from this thesis is that
ordinary  human reasoning—by  which |
mean the reasoning ot adults who have not
been systenmatically educated in any branch
of logic or probability thcory—-cunnot be
held 10 be faultily programmed: it sets ity
own standards.
In other words, heauty is in the eyes of the
beholder, but it dues not mean that we should
not study what is seen to be beautilul.
Beliel functions, prospect theory |Tver-
sky and Kahneman, [981], interval proba-
bilities [Larsson and Chesley, 1986}, runk
order probabilities |Kmictowicz and Pear-
man, 1981 and Baconian probabilities
|Cohen, 1979, 0 mention a few formal al-
ternatives, all involve axioms. Choices of
axioms are in large mcasure aesthetic
choices. Tradeoffs and choices cannot be
assessed at this point in the rescearch, but
further study of various approaches should
help facilitate such assessments in auditing.
A rigorous statement of the axioms and
properties is needed 1o begin the research
But such analysis canuot commence with-
oul a relaxation of the rigidity imposed by
the subjective expected utility tormalism of
audit inference.
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Discussion of
The Bayesian and Belief-Function
Formalisms: A General
Perspective for Auditing

Susan M.

MY assessment will examine

Shafer and Srivastava’s |1990] paper from
4 practitioner’s point of view on two fronts:
auditing practice and automation of the au-
dit process. My own direct experience is with
information systems and applied expert sys-
tems. 1 consulted with colleagues to gain an
auditing perspective from which | then could
conduct my review. Itis my understanding
that this paper is an early entry of a series
where one of the later objectives is to ex-
plore the use of expert systems for postions
of the audit process. Therefore, | have con-
sidered the implications of expert systems
in my discussion.

APPLICATION OF BELIEF-
FUNCTION MODELS

The authors present a refreshing point of
view. With my own investigation of applied
expert systems, | am not surprised that they
are proposing alternative belief-function
formalisms. Hink and Woods {1987} review
the rescarch indicating that human behavior
does not contform well to the Bayesian
model. They discuss the biases and distor-
tions that arise when humans deal with un-
centain knowledge. However, 1 don’t be-
licve that at the present time the authors’
proposal alone will change an audit ap-

Gardner

proach which is based on Bayesian princi-
ples. [ agree with the authors that much of
the audit evidence is judgemental rather than
statistical. This is particularly true when
assessing inherent and, to a lesser extent,
control risks. However, [ propose that there
are criticisms which could be made of an
audit approach which is based on a Bayes-
ian risk model. The implications of this will
be addressed later.
When deciding whether or not to adopt
a new practice or method, one typically ooks
tor benefits 1o one’s business in three arcas:
increasing revenue, improving quality, and
cost avoidance. | do not believe that the
proposed approach, while interesting, will
contribute 10 measurable ncreases nreve-
nue. | do propose that the adoption of the
“Overall Audit Risk Assessment Model,”
as described by the authors, has advantages
which include:
1. greatly improving the consistency ot
application for situations which are
simlar,

Susan M. Gardner is a Senior Con-
sultant with the Pear Murwick Consult-
ing Group, 200 Queens Avenue, Suile
700, London, Ontario, NOA 1J3.

Gardner
2. forcing auditors to make exphaut
judgements where formerly these may
have been made implicitly:

3. improving  elficiency 1o the extent
where judgements have been ex-
tended 1o be made on an assertion ba-
sis; and

4. widespread general acceptance.

My colleagues have idenutied shortcom-

ings with the model itsell, specificalty:

1. the inability sometimes to clearly dis-

tinguish between evidence presented

to assess inherent risk and that pre-
sented 1o assess control nisk:

2. the frequent di

iculty, from a prac-
tical perspective, ol expressing evi-
dence independent from all other evi-
dence;

3. the subjectivity involved in attribut-
ing a numerical value to a beliet in
the evidence: and

4. the complexity involved in revising
judgements explicitly with the intro-
duction of new or changed evidence

Despite these shoricomings, application of
the Bayesian model has provided auditors
with satistactory resulls. The shortcomings,
cited above, will be explored from an au-
tomation perspective later in this discus-
sion.

At this point, the greatest motivation (and
no auditing firm stands alone in this con’
siderably competitive eavironment) for
changing procedures and methods, would
be o reduce audit costs while maimtaining
the quality of the audit. Specifically. the
greatest opportunity is in the arca of 1m-
proved efticiency. It would, however, be
inappropriate o pursue this opportumty f
there was a risk of adversely unpacting the
current guality of results.

AUTOMATION OF THE AUDIT
PROCESS
1 encourage the authors o continue with
their work because in today s technological
environment, many business persons, -
cluding auditors, re particularly interested
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in any automated wols which assist them in
their work, Applied expert systems are po-
tendally i solution. Expert systems mimie
an expert’s reAsOnIng Provess ina specile
wrea of expertise and are commonly applicd
to situations where consistency of resulis,
distribution of expertise, and etficiency ol
repetitious activities are amportant. An ex-
pert systen contains an encoding of a prob-
lem-solving process already well-pertormed
by an accepled expert. With the lurrenl state-
of-the-art i this field. no intuition or com-
MoR-sense reasoning can be rcpﬁesemcd with
expert systems in a prachical way. This still
1s @ young research area.

1Cappears that, at a conceptual level, au-
dit problems sull require common sense.
Furthermore, overall audit experience 1s
ditficult to wansfer. The reasoning process
does not appear on the surfuce 10 be well-
defined and seems very much inwitive. It
strikes me that an auditor’s assessment is
only as good as the inputs and underlying
structure. | will use my own understanding
of computer-aided softwarce engineering an
a parallel. The quality of the engineered re-
sult 1s only as good as the understanding ot
the requirements, framework, and con-
straints input to the engineering provess. It
is my understanding that the inputs and
structures tor the “Overall Audit Rish Model™
do not match the real world. The require-
ment o quantify subjective inputs and or-
ganize evidence independently are exam-
ples.

1 question the usetulness ot building an
applied expert system when a clearly de-
fined overall framework Tor auditing sull s
under development. [ olten caution people
against using the creation ol an expert sys-
e o delfime eapertise. A expert system,
in my view, iy simply an implementation ot
existing capertise. However, 1 support us
illg CXPCrl sysleis Convepts as a means (o
turther explore applicability and vahdation
of new methods Trom i rescarcli viewpoint

There are opportunitics for automated as
sistinice, periaps using expert sysems tech
nology, at the detl dati collection and as-
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sessment level where the activity is routine
and similar between engagements. Ull ad-
dress these opportunities using the cate-
gories of shortcomings mentioned earlier.

Automated assists could be provided to
help auditors clearly distinguish between
evidence presented to assess inherent risk
and that presented 1o assess control risk.
These assists could tuke the form of pre-
senting the auditor with examples from other
situations.

There are two mechanisms for dealing
with the difficulty of expressing evidence
independently from all other evidence. If it
is assumed that this is possible within the
current model, then automated assists could
help the auditor to ensure that there is no
overlap in assessment by insuring or con-
firming independence. If, on the other hand,
it is not possible to ensure independence and
dependencies cannot be eliminated, then an
entire new sct of principles apply. Accord-
ing to Heckerman and Horvitz | 1987],
knowledge representations quite  ditferent
from those used where independence exists
must be used. | believe that it is important
to recognize that, in spite of the complexity
introduced with dependencies between evi-
dence, there is research underway address-
ing knowledge representation techniqgues for
these situations.

There are many possibilities o address
the difficulty of attributing a numerical value
to beliel in the evidence. With autonustion,
one could be provided with a4 mechanism o
compare with other situations or use a non-
numeric scale. For example, a sliding scale
using words instead of numbers.

The iterative nature of evidence gather-
ing 1o support an auditors’ report on a set
of financial statements suggests that there is
great potential for revisions. It is iy un-
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derstanding that accommaodating these re-
visions in the model today is time-consume-
ing and complex. Automated assists could
be used 1o automate the caleulations to res-
tate the probabilitics as new evidence is col-
lected.

There are situations where there are no
statistical measures or where there is un-
certaimty about the evidence. My colleagues
acknowledge that the flexibility o use -
dividual auditor judgement, while still
scarching for opportunities to standardize
good judgement, is needed. The application
of alternative formalisms could deliver that
tlexibility. However, it is inappropriate to
introduce this type of tlexibility into our
procedures if' it introduces an additional level
of complexity and possibly impacts timely
audit completion. This could oceur when
auditors have to make the decision o apply
a given formalism or technique that is ap-
propriate 1 the given circumstances. If the
selection of the appropriate formalisin and
its use could be automated, this provides an
opportunity for efficiency and an applica-
tion for the authors’ approach.

CONCLUSION

In conclusion, | see a need for alternative
belict-function Tormalisms, but | don't see
an immediate application. There is always
a concern if the use of more flexible pro-
cedures negatively impacts the defensibility
of the final judgement. | believe that it is
tair (o conclude that an suditor would be
willing 10 consider the applicability of the
authors” proposal for certain sitwations and
would likely be interested in the results ol
practical experunentation which explores
actual applicability and demonstrates ime
proved cfficiency with the same or better
defensibility of judgements.
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Reply

Glenn Shafer and Rajendra Srivastava*

i ‘ E would like to thank Ms.

Gurdner [1990] and Professor Chesley [1990)]
for their comments on our paper. We will
respond to cach discussant in turn.

RESPONSE TO GARDNER'S
COMMENTS

We agree with Gardner’s general com-
ments on cxpert systems and with her con-
clusion that the ideas that we have presented
are not sulficient to serve as a blueprint for
the construction of an expert system for au-
diting. As she points out, the construction
of an expert system requires the identifica-
tion of inputs and structures that match the
problem area. In order to put probability
(either Bayesian or belief-function proba-
bility) into an expert system, we need more
than simple formulas. We need a way of
combining probability with structural un-
derstanding.

Fortunately, theoretical work on combin-
ing probability with structural understand-
ing is now flourishing. On the Bayesian side,
important recent advances have been made
by Pearl | 1986} and Lauritzen and Spiegel-
halter [1987]. On the beliet-function side,
advances have been reported by Kong | 1980)]
and Shafer, Shenoy, and Mcellouli [ 1987].

In the Hayesian case, the basic idea is o
construct o network of proposttions and
variables representing the causal structure
of a problem. For the auditing problem, this
network would include propositions about

details of internal control and about the in-
tegrity of individuals, and it would link these
propositions 1o variables that measure the
completencss and validity of various ac-
counts. Then it would link propositions about
internal control to variables measuring the
results of tests of controls, and it would link
variables measuring the completeness and
validity of accounts to variables measuring
the results of direct tests. In the belief-func-
tion case, similar networks are required,
though the insistence on complete causal
models can be relaxed.

It is a daunting task to construct so am-
bitious a model for even a single audit en-
gagement. 1t is a yet more daunting task to
design an expert system flexible enough to
help auser construct many such models. In
our paper, we did not dare to embark on this
task; we concentrated instead on the clari-
lication of basic ideas. We do believe, how-
ever, that implementation depends on de-
veloping interactive tools thit can help users
construct structural models. We have been
working on one such interactive tool with
support from the Peat Marwick Foundation
|Shater, Shenoy, and Srivastava, 1986]. We
hope to bring this work to the point where

it can be used to give realistic examples of

both Bayesian and belief-function applica-
tions to the auditing problen.

*Reter to onginal paper ot authors’ alfiliations

Shafer and Srivastava

Gardner identifies independence as a
crucial concern. Dempster’s rule tor com-
bining beliel functions is based on the as-
sumption that the uncertaintics involved in
the beliel tunctions are independent. Surely
this requircment is sometimes, perhaps usu-
ally, violated. What do we do then?

The issue of independence is closely re-
lated 1o the problem of structure. This is es-
pecially clear in the Bayesian case, for the
structures studied by Pearl und others are,
in fact, conditional independence structures;
they are networks of variables in which sep-
aration implies conditional independence.

The word “conditional™ is important here.
Probabilistic independence is seldom un-
conditional. When we say two variables X
and Y arc independent, we invariably mean
that they are independent given some other
variable Z. For example, two flips of a coin
arc independent only conditional on the bias
or lack of bias of the coin. If we did not
know the coin’s bias, then the first flip would
give us evidence about this bias and, hence,
evidence about the second flip, and thus the
two flips would not be independent relative
to vur knowledge. When we deplore the lack
of independence between two variables, we
mean that they arc not independent given
certain other variables. This usually does not
mean that the concept of independence s
useless in the situation. Rather, it means that
more variables must be brought into the
conditioning set.

Matters are more subtle in the beliel-
function case, but here also the gquestion off
independence is largely a question of
knowledge engineering. There usually are
independent uncertainties in our evidence,
but we must find the right structure 1n order
to sort out these uncertainties (see Shafer
1 1984])). 1t also is worth noting that the ba-
sic idea of beliet functions does not actually
require independence. ltems of evidence can
be combined on background frames i non-
independent ways and then projected onto
frames of interest (sce Shaler [1987]).

There 15 one pomt that puzzled us n
Gardner’s comments. She seems 1o assume
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that current audit practice is Bayesian, We
cannot agree. Though a number of theore-
ticiuns have advocated Bayesian principles
in auditing, they have usually done so in a
spirit of retorm. They have seldom claimed
that practice and official doctrine fully con-
form 10 these principles. [t is pussible that
some aspects of auditing practice and doc-
trine accord better with belief-function the-
ory than with Bayesian theory. )

RESPONSE TO CHESLAY’S
COMMENTS

We agree with Chesley that our construc-
tive interpretation 1s “simply a restatement
of practices that have been used in decision
theory and probability assessment for many
yeurs.” We also agree that the constructive
interpretation cannot be called @ formalism.
Rather, it is an interpretation of the Bayes-
ian formalism, an interpretation that de-
serves to stand alongside the objective and
subjective interpretation.

We also agree that it would be a misin-
terpretation o say that Savage required
preferences to exist in a person’s mind be-
fore the person analyzed a problem. We
cannot find this misinterpretation in our pa-
per. On the contrary, we criticize Savage
for his claim that it is always normative tor
us (o go fo the elfort (o create extensive
preferences.

We were disappointed 1o see Chesley's
battlement about the meaning of the de
grees of behiel in behiet tuncoons, since this
is the central issue that we were trying to
address i our paper. 1 is true that these
degrees of beliel cannot be given meanings
analogous 1o the meanings grven o Bayes-
ian probabilities by the objective and sub-
jective interpretations. (As Chesley says, we
cannot interpret them e terms ot physical
phenomena or revealed prelerences.) On the
other hand, 1t1s possible o give a construg-
tive anterpretation of beliel tunctions anal-
ogous (o the constructive anterpretiation off
Bayesian probabdites, and this 15 what we
have tried o doan our paper.
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