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ABSTRACT

This article gives an algorithm for the exact implementation of Dempster's ruldin the case of
hierarchical evidence. This algorithm is computationally efficient, and it makes the approximation
suggested by Gordon and Shortliffe unnecessary. The algorithm itself is simple, but its derivation
depends on a detailed understanding of the interaction of hierarchical evidence.

Introduction

Gordon and Shortliffe [4] propose an algorithm for approximating the results
of Dempster’s rule of combination for the case where the evidence being
combined is evidence for and against hypotheses that can be arranged in a
hicrarchical or tree-like structure. This proposal is motivated by the computa-
tional complexity of Dempster’s rule. In general, the amount of computation
needed to implement the rule increases exponentially with the number of
possible answers in a diagnostic problem. Gordon and Shortliffe’s algorithm
avoids this exponential explosion; the amount of computation it requires
increases only linearly with the number of possible answers.

Gordon and Shortliffe’s algorithm usually produces a good approximation.
In the case of highly conflicting evidence, however, the approximation can be
poor; an example is given in Section 2. Moreover, the algorithm does not give
degrees of belief for all hypotheses (i.e., all subsets of the set of possible
answers). It gives degrees of belief only for hypotheses in the tree.

In this article we show that it is not necessary to resort to Gordon and
Shortliffe’s approximation. We give an algorithm for exact implementation that
is linear in its computational complexity. This algorithm works for slightly
more general types of evidence than Gordon and Shortliffe’s algorithm, and it
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. gives degrees of belief for more hypotheses. In particular, it gives plausibilities
as well as degrees of belief for hypotheses in the tree.

Dempster's rule is part of the theory of belief functions, sometimes called
the Dempster—Shafer theory in the artificial intelligence community. A basic
reference for the elementary aspects of this theory is Shafer [9]. A more recent
exposition and an extensive bibliography are included in Shafer {10]. Exposi-
tions that discuss the theory’s relevance to artificial intclligence include Gar-
vey, Lowrence, and Fischler [2], Gordon and Shortliffe [3], and Shafer [11].

In the next section, we provide a reasonably self-contained discussion of
those mathematical aspects of the theory of belief functions that are relevant to
the algorithm presented in this article. Readers will need to turn to the
references just cited for further details of the theory and for information on its
intuitive interpretation.

In Section 2, we review the problem posed by Gordon and Shortliffe and
describe the approximation they propose. In Section 3 we derive some
mathematical facts about the problem, and in Section 4 we use these facts to
derive our algorithm. In Section 5, we discuss generalizations.

1. The Mathematics of Belief Functions

Suppose @ denotes a set of possible answers to some question, and assume that
one and only one of these answers can be correct. We call @ a frame of
discernment. A function Bel that assigns a degree of belief Bel(A) to every
subset A of @ is called a belief function if it satisfics ccrtain mathematical
conditions.

Those familiar with the usual mathematical theory of probability can under-
stand the mathematical structure of belief functions by thinking about random
sets. A function Bel defined for every subset A of @ qualifies as a belief
function if and only if there is a random non-empty subset § of @ such that

Bel(A) = Pr[S C A]

for all A. (It should be emphasized that this interpretation in terms of a
random subset S provides insight only into the mathematical structure of belief
functions. It does not provide insight into the interpretation of Bel(A) as a
degree of belief based on evidence. Sce Shafer |9, 10] for cxplanations of the
evidential interpretation.)

The information in a belief function Bel can also be expressed in terms of the
plausibility function P, given by

PI(A)=1-Bel(A)=Pi[SN A#0],

where A denotes the complement of A. In the evidential interpretation, PI(A)
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is the plausibility of A in light of the evidence—a measurc of the extent to
which the evidence fails to refute A. To recover Bel from Pl, we use the
relation Bel(A) = | — PI(A). Notice that Bel(A) < PI(A) for cvery subsct A of
@. Both Bel and Pl are monotone: Bel(A)<Bel(B) and PI(A) < PI(B)
whenever AC B.

In this article we assume that the frame of discernment @ is finite. In this
case the information in Bel or Pl is also contained in the commonality function
Q, dcfined by

Q(A) = Pr(S D A
for every subset A of @. Indeed, it is shown in |9, Chapter 2] that

Q(A) =2 ((-1)"""'PIB) |8 # B C A} (1)
and »

PI(A) = 2 {(-1)""""'Q(B) |8+ BC A} (2)

for every non-cmpty subsct A of @, where | B| denotes the number of elements
in the set B. (Formulas (1) and (2) do not give values for Q(#) or PI(#), but we
know that Q(#) = 1 and PI(@) = 0 for any belicf function.)

1.1. Dempster’s rule

Consider two random non-empty subsets S, and §,. Suppose §, and S, are
probabilistically independent—i.e.,

Pr[S,= A, and §, = A,] =Pr[S, = A,|P1[S, = A,].

And suppose Pr{S, NS, #@] >0. Let S be a random non-empty subset that has
the probability distribution of §; N S, conditional on §, N §, #@—i.c.,

Pr[S, NS, = A]
PriS = A= 35 s, =0 (3)
for every non-empty subset A of ©.

If Bel, and Bel, arc the belief functions corresponding to S, and §,, then we
denote the belief function corresponding to S by Bel, @ Bel,, and we call
Bel, ®Bel, the orthogonal sum of Bel, and Bel,. The rule for forming
Bel, @ Bel, is called Dempster’s rule of combination. This rule corresponds. in
the evidential interpretation, to the combination or pooling of independent
bodies of evidence. (If Pr[S,NS,#@]=0, then the two belief functions
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ontradict each other—i.e., there exists A such that Bel (A)=1 and
sel,(A)=1. It makes no sense to try to pool the evidence in this case.)

The formation of orthogonal sums by Dempster’s rule corresponds to the
aultiplication of commonality functions. Indeed, if the commonality functions
or Bel,, Bel,, and Bel, ®Bel, are denoted by Q,, Q,, and Q, respectively,
hen

Q(A) =Prls 2 4]
=KPr[S,NS,DA]=KPr[S, DA and 5,2 A]
= K Pr(S, D A]Pr[S, 2 A] = K Q,(A)0,(4),
vhere K does not depend on A;
K '=Pr[S,NS,#0).

Ve can find K from Q, and Q, if we substitute KQ (B)Q,(B) for Q(B) and @
or A in (2). Since PI(@®) = 1, this gives

1= 2 {(~-1)""*'KQ,(B)0,(B) |8+ BC ©)

K'=2{(-1)"""'0(B)Q,(B)|##BCO)}. (4)

We may summarize by saying that the multiplication of commonality func-
ions gives a recipe for computing the plausibility function Pl for Bel, ® Bel,.
‘irst we find the plausibility functions Pl, and Pl, using the relation

PL(A)=1—Bel,(A).
‘hen we find the commonality functions Q; using the relation

0,(4)= 21" PI(B) |8~ BC A). )
then we ﬁnd Pl using the relation

PI(A) = K 2 {(-1)"""Q,(B)Q:(B) |07 BC 4} , (6)

vhere K is given by (4). This recipe generalizes to the case where we wish to
ombine more than two belief functions; we merely put Q,(B)--- Q,(B) in the
face of Q,(B)Q,(B) in (4) and (6).

Unfortunately, this recipe is computationally forbidding if @ contains a large
wumber of elements. The number of subsets of @ increases exponentially with
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the number elements of @, and the sum in (4), for example, involves a term for
each of these subsets.

This computational complexity seems to be intrinsic to Dempster's rule.
There does not seem to be any general way of implementing the rule that will
always involve fewer computations than are involved in (4), (5), and (06).
There are, however, special cases where alternative methods involving less
computation are possible.

1.2. Focal elements, simple support functions, and dichotomous belief functions

A subset S of O is called a focal element of Bel if Pr(S = S] is positive.

The simplest belief function is the belief function whose only focal element is
the whole frame @; in this case Pr[S = @] = 1. This belief function is called the
vacuous belief function. It is obvious that if Bel is the vacuous belief function,
then Bel® Bel’ = Bel’ for any other belief function Bel'.

A belief function is called a simple support function if it has atenost one focal
element not equal to the whole frame @. If a simple support function does
have a focal element not equal to @ (i.e., if it is not vacuous), then this focal

" element is called the focus of the simple support function.

A belief function is called dichotomous with dichotomy { A, A} if it has no
focal elements other than A, A, and 0.

In general, combination by Dempster’s rule involves the intersection of focal
elements. The focal elements for Bel, @ - - - @ Bel,, will consist of all non-empty
intersections of the form S, N---N S , where §; is a focal element of Bel,.
Therefore, the orthogonal sum of simple support functions with a common
focus will be another simple support function with that focus. Similarly, the
orthogonal sum of dichotomous belief functions with a common dichotomy will
be another dichotomous belief function with that dichotomy.

1.3. Bayesian belief functions

This theory of belief functions is a generalization of the more familiar Bayesian
theory, which uses probability measures as expressions of subjective judg-
ments and updates these mcasures by conditioning. A probability measure is a
belief function, and conditioning is a special case of Dempster’s rule.

Let us call a belief function a Bayesian belief function if it is a probability
measure, A belief function is Bayesian if and only if its focal elements arc all
singletons. This is equivalent to saying that the corresponding random subsct is
always equal to a singleton. Since a singleton is contained in a subset A if and
only if it has a non-empty intersection with A, a Bayesian belief function is
equal to its plausibility function.

In the Bayesian theory, conditioning a belief function Bel, on knowledge
that a subsct B of @ is true means changing one’s degree of belief for each
subset A from Bel,(A) to



276 G. SHAFER AND R. LOGAN

Bell},(A N B) N )
cl,(B)

In the theory of belief functions, on the other hand, knowledge that a subset B
of @ is true is rcpresented by a belief function, say Bel,, that has B as its only
focal element. And the way to change Bel, to take this knowledge into account
is to combine Bel, with Bel, by Dempster’s rule. In order to see that this
application of Dempster’s rule gives the same result as (7), let us return to (3)
for a moment,

It is clear that from (3) that if §, is always a singleton, then S is also always a
singleton, so Bel, @ Bel, will indeed be Bayesian. Moreover, if we substitute
{s} for A in (3) and bear in mind that S, is always a singleton and S, is always
equal to B, then we obtain

Pi[S, N B = {s}]

PriS=1{)1= S5, A B =]
Bel,({s}) .

_ WI(B)— , fsEB,

0, ifs&ZB.

Adding Pr[§ = {s}] for all s in A, we obtain (7) for our degree of belief in A.

1.4. Partitions

One case where the computational complexity of Dempster’s rule can be
reduced is the case where the belief functions being combined are carried by a
partition P of the frame ©. In this case, , which has fewer elements than @,
can in effect be used in the place of @ when the computations (5), (6) and (4)
are carried out.

A partition of a frame of discernment @ is a set of disjoint non-empty subscts
of @ whose union equals @. Such a partition & can itself be regarded as a
frame of discernment; it is the set of possible answers to the question, “which
element of P contains the correct answer to the question corresponding to ©7”
If ?, and P, are partitions of @ and for every element P, in &, there is an
element P, in @, such that P, C P,, then we say that P, is a refinement of P,.

Given a partition P of ©, we denote by ?* the set consisting of all unions of
elements of P; P* is a field of subsets of 6.

We say that a belief function Bel over @ is carried by P if the random subset
§ corresponding to Bel satisfies

PSeP*]=1.

It is evident that if Bel, and Bel, are both carried by ®, then Bel, @ Bel, will
also be carried by @; for if S, and S, are both in the field ?* with probability
one, then §, N S, is as well. ‘
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For a given partition @ of @ and a given subset A of @ there is a largest
element of #* contained in A, namely

A= (P|PEP PCA}.

There is also a smallest element of ?* containing A, namely
AT=U(P|PEP, PNA#H).

When Bel is carried by 2, its values for clements of ?* determine its values

for the other subsets of @ . Indeed, since S€ P*, SC Aifandonlyif SC A ,,
and so

Bel(A) = Pr[S C A] = Pr|S C A,
=Bel(A,) =max{Bel(B)| BC A, BE ?*}. (8)

Similarly,
PI(A) = P A7) =min{PI(B) | BD A, BE P*}. (9)

It turns out that when Bel is carried by # we can replace (1) and (2) by
analogous formulas that only involve elements of P*:

Q(A) =2 (1" PB) | BE P* .8 B C A) (10)
and

PI(A) =2 {((-1)""""*'Q(B) | BE P*, 8= BC A) (11)
for every non-empty element A of ?*, where |B|” denotes the number of
elements of P contained in B. It follows that if Bel, and Bel, are both carried
by #, we can compute the plausibility function Pi for Bel, @ Bel, by first
computing

Pl,(A)=1-Bel,(A)
just for A in @*, then computing

0.(A) = 2A(-D)"""*"PI(B)| BE P*, 8+~ BC A} (12)

just for A in #*, and then computing

PI(A)= K 2 {(-1)""*'Q,(B)Q,(B) | BE ®*. 8% BC A)  (13)
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or Ain @*, where

K =2H{(-1)""*'Q(B)Q,(B) | BEP*. = BC A} (14)

The values PI(A) for A not in 2* can then be obtained, if they are desired,
rom (9).

Why do (10) and (11)-hold for elements of *? The easiest way to see that
hey do hold is to recognize that * is isomorphic to the set of all subsets of 2.
And when we do this, we see that (10) and (11) are merely (1) and (2) with @
n the place of @. When we use (12)-(14) we are treating our belief functions
s if they were really belief functions on the simpler frame 9.

Formulas (13) and (14) generalize, of course, to the casc where more than
wo belief functions carried by ? are combined. As before, we simply replace

2:(B)Q,(B) by Q,(B)--- Q,(B).

.5. Coarsenings

3iven a random subset S and a partition 2, let 7 denote the random subset
hat is always equal to A” when § is equal to A. If Bel is the belief function
:c;rrespondigg to S, then let Bely, denote the belicf function corresponding to
77, Since §7 is always in #*, Bel is carried by ®. Since 7 C A if and only if
ICAg,

Bel,(A)=Pr[S” C A]=Pr[SC A,]|=Bcl(A,).

‘his means in particular that Bela(A) = Bel(A) if A€ 2*. Thus, Bel, is the
inique belief function that agrees with Bel on @* and is carried by &.

Suppose we want to combine two belief functions Bel, and Bel,. And
uppose we are tempted to do so using (12), (13), and (14), even though Bel,
ind Bel, are not carried by the partition #. We know that we will not get the
ight answer; we will get Bel,, @ Bel,, instead of Bel, @ Bel,. But suppose we
wre not interested in the whole belief function Bel, @ Bel,. Suppose we are
nterested only in the values of Bel, @ Bel, on #M* for some partition 4. We
vill get these values right if and only if

(Bel,p ®Bel,y ) , = (Bel, ®Bel,),, .
This is equivalent to
(S7NS8)*=(5,ns)". (15)

tis also equivalent to the condition that MNP #@, S, N P#@, and S, N P #@
ogether imply S, NS, N M #0 whenever ME M, PE P, S, is a focal element
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of Bel,, and S, is a focal element of Bel,. If this condition is satisficd, then we
say that @ discerns the interaction between Bel, and Bel, that is relevant to .{f.
It is easy to see that if ?, ', M, and A’ are all partitions, @' is finer than
P, M’ is coarser than A, and P discerns the interaction relevant to A, then &'
discerns the interaction relevant to '
We are most often interested in whether 2 discerns the interaction relcvant
to itself. In this casc (15) becomes

Si"ns:;:(sl ﬂsz)g‘ ’

and this is cquivalent to thc condition that S, N P #@ and S, N P # @ together
imply §, NS, N P # @ whenever P€ 2, §, is a focal element of Bel,, and §, is a
focal element of Bel,. Notice that if one of the pair Bel, and Bel, is carried by
P, then P will necessarily discern the interaction between Bel, and Bel, that is
relevant to itself.

It might be thought that if @ discerns the interaction relevant tofitself and &
is finer than @, then @' will also discern the interaction relevant to itself. But
this is not necessarily true; @' will discern the interaction relevant to 2, but it
may not discern the interaction relevant to @', Figure 1 illustrates this point. If
our two belief functions are simple support functions with foci §; and S,.
respectively, then the partition {P,, P, U P,} discerns the interaction relevant
to itself, but the partition {P,, P,, P;} does not. Figure 2 illustrates the
oppesite situation; {P,, P,, P,} discerns the interaction relevant to itself. but
{P,, P,U P,} does not.

The preceding discussion generalizes readily to the case where we have more
than two belief functions. For example, 2 discerns the interaction among
Bel,, ..., Bel, that is relevant to itself if and only if

Py P2 Py Py P, P,

S,

Sa

FiG. 1. A partition that does not discern:
the interaction relevant to itself.

FiG. 2. A partition that does discern the
interaction relevant to itself.
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s?n---nsf—j(s,n---nsn)"‘,

and this is equivalent to the condition that S;N P#@ fori=1, ..., n implies
$;N---NS, NP#@ whenever PE P and §; is a focal element of Bel,. Notice
that if ® discerns the interaction among Bel,, . . ., Bel, that is relevant to itself
and Bel,,,,...,Bel,,, are carried by %, then 2 discerns thc interaction
among Bel, ..., Bel,,, that is relevant to itself.

1.6. Barnett’s technique

Barnett [1] has shown that Dempster’s rule can be implemented in a number of
computations that increases only linearly with the number of elements in @ if
the belief functions being combined are all simple support functions focused on
singletons or their complements. Here we will explain Barnett’s technique in
terms of the commonality function.

Recall that a simple support function focused on S is a belief function whose
only focal elements are S and @. If 8 is an element of ©, Bcl, is a simple
support function focused on the singleton {0}, and Bel, is a simple support
function focused on its complement {6}, then Bel, @ Bel, is easy to calculate;
it is dichotomous with the dichotomy {{6}, (0}} In describing Barnett’s
technique we may, therefore, assume that we begin with dichotomous belief
functions of this form. In fact, we may assume, without loss of gencrality, that
we have such a dichotomous belief function, Bel, say, for every clement 6 of
O; our task is to combine the Bel,. (If Bel,({08}) = Bel,({6}) =0, then Bel, is
vacuous, and its presence in the combination makes no difference.)

For brevity, we denote Bel,({#}) and Bel,({8}) by 8" and 0 respectively.
In order to avoid trivialities, we assume that both 6 and 6~ are less than one.
Then the commonality function for Bel, is given by

1-6, if B= {0},
Q,(B)=4{1-0", ifoZB,
1-6"-06", ifo€Band|B|>1
for all non-empty subsets B of €, and
a-e)I1(1-0%, if B={6,)
— 076y
Ho®=111a-6""6)[T1-6%, if | B|> 1
sEB 0eB
ITa-ema-e5)ia-er), if B=1{6,),

H(l—o )H(l— T-0%)I(1-6"), if|B|>1.

eco
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So implementation of the generalization of (6) involves calculating

> ﬂg Q.(B)

BCA
B9
1 [H| 0“'
H(I—O)Zl YNNI § gl
(1Y) peA 1 — BCA (141
|B|I>1
=[la-6%
0o
1-6° 1-6" -9
[ogA 1-6° o§4 1-6
1-6"-0"
- 2 (-n" 1] T]
BCA 8EB

“o-onle 2510 )]
“[La-on[1+3 -1

0EO 8EA 1_6 EEAJ-_

] (16)

The next to last equality is the crucial step; it reduces the summation over
subsets of A to a product over elements of A, which can be implemented in
linear time.
Substituting (16) in the generalizations of (4) and (6) and omitting the
common factor [,¢(1 — 0+), we obtain
). a7

OeAl— OEAl_

PI(A) = (

where

=14 > ——

se6 1 oco 1 — 0

(18)

The statement that (17) and (18) allow the implementation of Dempster’s
rulc in linear time should be interpreted with caution. It is truc that the
number of computations required by (18) increases only linearly with the
number of elements in @, and the same is true of any particular instance of
(17). If, however, we wish to compute the whole belief function Bel, then we
need to calculate PI(A) for cvery subset A of @, and the number of such
subsets increases exponentially with the size of €. In some problems this will
cause no difficulty, for we will be able to identify a priori a few subsets A of @
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s the only ones for which we need to know Bel(A) or PI(A). But in other
roblems we may be interested simply in finding the smallcst subsets A that
iave high values of Bel(A), and if it is not feasible to calculate and look at
lel(A) for all A, then some search strategy may be neceded.

If0' +6 =1 for all elements @ in O, then it is easy to locate the subscts A
>f @ that have the highest values of Bel(A). Indeed, in this situation Bel is a
3ayesian beliel function; Bel(A) = PI(A) for all subsets A, and (17) and (18)
Yecome

Bel(4)= 2 f(0), (19)

EA

there

10)= 775/ Z

1_0v+ * (20)

n this case, to locate subsets A with high values of Bel(A) we need only order
he elements of @ from largest to smallest in the value of f(#), and consider
ubsets obtained by taking initial sequences from this list.

In general 8% + 6~ will not equal one; in fact, #” + 8~ can approach one
nly as the weights of evidence for and against @ become infinitely large (see [9,
“hapter 9]). However, when there is a substantial amount of evidence both for
nd against most of the 6, (19) and (20) may be nearly enough correct to help
1s identify subsets for which (17) should be computed.

Barnett’s technique applies, of course, not only to the case where we begin
vith simple support functions for and against singletons but also to the case
vhere we begin with simple support functions for and against elements of some
oarser partition ?. Indeed, if PI(A) is the plausnblhty function for the belief
unction @ {Bel,|P€ 9’} where Bel, is dichotomous with dichotomy
P, P}, and we write P* for Bel #(P) and P~ for Bel (P) then

p* p-

PI(A K(1+ - )

(A)= EAI & pl;IAl—P 21)
PEDP Pe®

or every element A of P*, where

Pt P
K™'=1+ -
2 i (22)
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2. Gordon and Shortliffe’s Problem

Gordon and Shortliffe [3, 4] discussed the problem of implementing Demps-
ter’s rule in the case where one begins with simple support functions focused
for or against subscts of @ that can be arranged hierarchically in a tree. They
concluded that it is not feasible to compute Dempster’s rule in such cases, and
they proposed a simplification of the rule that can be computed easily.

Figurc 3 shows a trce of the kind Gordon and Shortliffe considered. This
tree represents the frame @ = {a, b, ¢, d, e, f}. We have labeled each node of
the tree with a capital letter, which we will use to name both the node and thc
subsct of @ to which it corresponds. The terminal nodes of the tree correspond
to singleton subsets; A= {a}, F={f}, etc. Each nonterminal node corres-
ponds to the union of the terminal nodes below it; G = {a, b, ¢}, H={d, €},
and I'={a, b, ¢, f}. Noticc that most subsets of @ are not represented in the
tree; there is no node, for example, that corresponds to the subset {d, f}.

In Gordon and Shortliffe’s example, the elements of © are possible diseases,
so that higher nodes in the tree correspond to classes of difeases. Thcy
suggested that diagnostic evidence tends either to support or refute particular
diseases or natural classes of diseases that appcar in the tree. Thus, they posed
the problem of combining simple support functions focused on nodes of the
tree and on the complements of these nodes.

Gordon and Shortliffe found that it is not difficult to combine simple support
functions focused on nodes of the tree, because the intersection of two subsets
corresponding to nodes will either be empty (because neither node lies below
the other) or else equal to one of the two subsets (the one lying below the
other). Combining negative evidence leads to computational difficulties, how-

FiG. 3. A tree of diseases.
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.ever, because the mlersecuon of the complements of nodes may fail to
correspond to a node or-its complement. The intersection of £ and G in Fig. 3,
for example, results in the subset {d, f}, and neither this subset nor its
complement is represented by a node in the tree.

Gordon and Shortliffe suggested the following procedure. First we combine
all the simple functions focused on nodes of the tree by Dempster’s rule. Then
we successively bring into the combination the simple support functions
focused on the complements, working down the tree. But when we bring in
one of the simple support functions focused on a complement, we modify
Dempster’s rule by replacing each intersection of focal elements by the smallest
subset in the tree that contains it. The final result depends, in general, on the
order in which the simple support functions focused on complements are
brought in, but Gordon and Shortliffe conjectured that if we bring these simple
support functions in as we work down the tree, then the result will approximate
the result that we would get using Dempster’s rule correctly.

We have found that Gordon and Shortliffe’s approximation is usually very
good when the degrees of support for the simple support functions are drawn
at random from a uniform distribution. It is easy to construct examples,
however, where the approximation is poor. Consider the tree in Fig. 4, and
suppose that we have three items of evidence. One of these indicates fairly
strongly that a patient’s disease is in I, while the other two indicate very

strongly that it is not f and not g. More precisely, we have threc simple support
functions to combine:

Bel, focused on I, with Bel,(/) =0.8,
Bel, focused on F, with Bel,(F) =0.99,
Bel, focused on G, with Bel,(G)=0.99.

Combining these by Dempster's rule, we obtain a belief function Bel =
Bel, @ Bel, @ Bel,, with Bel(H)=~0.91, corresponding to the judgment that

&

Fic. 4. A smaller tree of diseases.
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the positive evidence for I represented by Bel, is overwhelmed by the negative
evidence represented by Bel, and Bel,. If, however, we combine using Gordon
and Shortliffe’s procedure, then we obtain, Bel(H) =0.

Another shortcoming of Gordon and Shortliffe’s procedure is that it assigns
degrees of belief only to the subsets of @ that correspond to nodes in the tree.
It does not assign degrees of belief to the complements of these nodes. Thus it
does not allow us to assign plausibilities to the nodes. (Recall that the
plausibility of A, PI(A). is equal to 1—Bel(A).) Nor, for example, does it
assign a degree of belief to the subset {d, f} in Fig. 3. Since {d, f} is not a
natural class of diseases, it may be rare for evidence to support this class
without supporting either d or f alone. But such a situation is conceivable; it
would arise, for example, if one item of evidence weighed strongly against E
and another weighed strongly against G. If this did happen, we would want it
to come to our attention, so that we would know to look for further evidence
that might help us decide which of these two diseases the patient really has.

Gordon and Shortliffe used the term ‘‘hierarchical hypothesié space™ to
emphasize that they were interested only in hypotheses corresponding to nodes
of a tree. Since we think it is appropriate to be interested in degrees of belicf
for a broader class of hypotheses, we use instead the term ‘“hierarchical
evidence.” This term reflects the assumption that the evidence bears directly
only on hypotheses in the tree, but it leaves open the possibility that we might
want to calculate degrees of belief for other hypotheses as well.

3. The Interaction of Hierarchical Evidence

In this section we derive some mathematical facts about the interaction of
hierarchical evidence. In the next section we show how these facts enable us to
implement Dempster’s rule efficiently.

Here, as in the preceding section, we assume that we are working with a
finite tree such as the onc in Fig. 3. We denote by & the collection of all the
nodes below @—i.e., all the nodes except @ itself. If B is directly below 4, we
say that B is A’s daughter and A is B’s mother. In order to avoid trivialities, we
assume that every node that is not a terminal node has more than one
daughter. We call a set of nodes that consists of all the daughters of a given
nonterminal node a sib. We denote by &, the sib consisting of the daughters of
A.

We suppose that for each node A in & we have one simple support function
focused on A and another focused on the complement A. Here, as in our
discussion of Barnett’s technique, we begm by combining these two simple
support functions. Then for each node A in & we have a single dichotomous
belief function Bel , with the dichotomy { A, A}. We assume that Bel ,(A) and
Bel ,(A) are both stnctly less than one, but we allow either or both to be zero.

For any node A in the tree, we denote by Bel | 4 the orthogonal sum of Bel,
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for all nodes B that are strictly below A. In Fig. 3, for cxample, Bel) =
Bel, ®Bel,, and '

Bel; = Bel, ®Bel; ®Bel
= Bel . @ Bel; @ Bel , ® Bel , ®Bcl,. .

If A is a terminal node, then Bel} is vacuous. Our purpose, of course, is to
calculate values of Belg = @ (Bel, | A€ o).

For each node A in f, we denote by Bel$ the orthogonal sum of Bel, for all
nodes B in & that are neither below A nor equal to A. Thus

Bels = Bel} ®Bel,, ®Bel . (23)

LemTa 3.1. Suppose P is a partition of ©, and P € s{ N P. Then (Bel,ﬁ )p =
(Bely ) (p5)-

Proof. The belief function Bel, has only A, A, and © as focal elements. If
A C P, then each of these focal elements either contains P or else is contained
in P. A focal element § of Bel,{ is obtained by intersecting such focal elements
and hence must also either contain P or else be contained in P. If S contains P
but is not equal to P, then §”=5'""'=@. If § is equal to P, then $% =
S‘P'f’ =P. If S is contained in P, then S?=5"P =p In any case, 5% =
S(P'P). m}

Lemma 3.2. Suppose P is a partition of ©®, AE s, and AE P. Then
(Beli)!, = (Belg)m.j)-

Proof. Again, Bel, has only B, B, and @ as focal clements. If B € o and
BZ A, then B is either disjoint from A or else contains A, and hence each
focal element of Bel, either contains A or else is contained in A. Any focal
element S of Bel is the intersection of such focal elements and hence must
also contain A or else be contained in A. If S is equal to A, then §* = 544! =
S. If S contains A but is not_equal to A, then S*=5"*4 =0, If 4 is
contained in A, then §7=5"*4" = A, In any case, 7 =5, O

Lemma 3.3. Suppose P is a partition of ©. Then P discerns the interaction
relevant to itself among the belief functions in {Bel} | P€ o N ).

Proof. Suppose # NP ={P,,...,P,}, and let S, be a focal element of Bel,,
for i=1,2,...,n. Fix an element P of P, and suppose S,NP#@ for
i=1,...,n We must show that §, N---NS NP #H.

By the proof of Lemma 3.1, §, either contains P, or else is contained in P,.
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Since P is a partition, P, and I’ are cither disjoint or equal. If they are disjoint.
then since S, N P ##, S, cannot be contained in P;; instead it must contain P,,
and hence it must contain P.

At most one of the P, can equal P. If none equal P, then all the S, contain P,
and hence S, N---N S, N P = P. If one, say P;, does equal P, then

S,n---ns,,np=s,n[ﬂ(sinp)]
irj

=s,Nnr.
In either case, §,N---NS§ NP*p. O

Since the partition @ carries Bel, for each P € of N P, we can strengthen
Lemma 3.3 to the statement that @ discerns the interaction relevant to itsclf
among the belief functions in

{Bel, | PESANPYU (Bel} |PEALNP)} .

Consider, for example, the partition &, U { A}, where A is a nonterminal node
in . This partition discerns the interaction relevant to itself among

{Bel, | BEY,)U(Bel} |BEZ,}.

Since Bcl,ﬁ is thc orthogonal sum of these belief functions, it follows that
(Bela),uiay = D ((Belp)y,uiz) B (Bely )y ua) | BE S}

This can be written more simply as
(Bel3), uii) = D (Bel,®(Bel}) 55, | BE S, ; (24)
(Beln):r,,u(,«i} = Bel,

because Bel, is carricd by &, U (A}, and
(BCI; )szu(/i) = (Belli )(5.5)

by Lemma 3.1. It should be borne in mind that if the element B of ¥, is a
terminal node, then Bely is vacuous, and the orthogonal sum
Bel, @® (Bel } )(n.iy Teduces to Bel,.

The reasoning of the preceding paragraph applies to the case where A is the
topmost node ©, except that in this case the partition is simply . not
Fe U {O}. So
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(Belg )y, = @H{BeIBGB(Bel;)(B.E-,} |BE %,) . (25)

Formulas (24) and (25) tell us that in order to find for A and hcr immediate
daughters the degrees of belief resulting from all the evidence bearing on nodes
below A, it is sufficient to consider each daughter scparatcly. We find the
degrees of belief for and against each daughter resulting from evidence bearing
directly on it and on nodes below it, and then we combine the results for the
different daughters.

Lemma 3.4. Suppose A is a nonterminal element of sl. Then the partition
S, U{A) discerns the interaction relevant to itself between Bel} and Bel$.

Proof. Suppose S, is a focal element of Bel , and §, is a focal clement of
Bel. Then S, elther contains A or is contamed inA, whlle S, either contains A
or is contamed in A. Table 1 lists the four possibilities and shows what can
happen when S, N S, is intersected with an element P of ¥, U (A}. Inspection
of the table shows that if SN P#Pand S,N P40, then S NS, N P*P. This
establlshes lhat P, U(A) dlsccms the interaction rclcvanl to melf between
BelA and Bel$ D

Since Bel,, is carried by %, U {A}, Lemma 3.4 can be strengthened to the

statement that &, U {A) dlscems the interaction relevant to itself among
Bel} . Bel,, and Bel° So from (23) we can obtain

(Belé )yAu(A) = (BelAl )y‘Au(A) e(BeIA)SPAU(A-) e(Bel:)yAu(,i) . 26)

Since Bel , is carried by {A, A}, and since

(Belg)y,,u(,i) = (Belg)(,,',;,

TasLE 1. Verifying the discernment
P=A res,
5,24, §,24|8,NnS,NP=§,nP

5,NS,NP=5NP
S,CA, $,24

—1 S, NS, NP=§S NP=
S,CA, S,CA 1 2 1 ¢

$,24, S,CA|s,ns,npP=s,

5,NS,NP=5,nP=¢
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by Lemma 3.2, (26) reduces to
(Bdé )y 0id) = (BelAl )y uia) P Bel, GB(BEI;))M.M . (27)

This formula tells us that evidence from above A and down other branches
affects our degrees of belief about the daughters of A only inasmuch as it
affects our degrees of belief for and against A itself.

In the next section, we will have occasion to use two consequences of (27):

(Belg ) aiy = (Bel}) 4 4)DBel, ®(Bel$) 4 4 (28)
and
(Belé )(U.A—u.ﬁ) = (Bel: )(B.A—B,A’) ® Bel , Q(Beli)(n_,i) (29)

for every B in &,. These formulas follow from (27) because both ghe partition
{A. A} and the partition {B,A- B, A} carry the belief function
Bel GB(B(:IA)(,1 4y- Whenever a partition carries a belief function, it discerns
the interaction relevant to itself between that belief function and any other
belief function.

4. Implementing Dempster’s Rule

We now present our algorithm for calculating Belé(A) for A in o. We first
present the algorithm in general terms and explain how it is justified by the
results of the preceding section. We then give detailed formulas for the actual
calculations. We conclude with a complexity analysis and a comparison of the
complexity with that of Gordon and Shortliffe’s algorithm,

The algorithm can be broken down into three states. In the first stage we
begin with sibs of terminal nodes, combine the belief functions attached to
them to find degrees of belief for and against their mothers, then do the same
for the mothers’ mothers, and so on, until we have a dichotomous belief
function attached to each daughter of @ to obtain the values of Bel for these
daughters. In the third stage we use information stored as we moved up the
tree to move back down, calculating further values of Bel as we go.

4.1. First stage

Recall that we begin with a dichotomous belief function Bel , attached to cach
node A of o.

Choose a sib of terminal nodes, and let A denote its mother. According to
(24),
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(Bely)y,uiy = ® (Bel, | BE,) . (30)

iince Bel, is dichotomous with dichotomy {B, 5}, and since B is an atom of
he partition ¥, U {A}, Barnett’s technique can be used to calculate values of
he orthogonal sum in this formula. We use it to calculate Bel;(A) and
3el;(A) —i.e., to find (Bel}) , - . :

We now compute BeIAG3(Bel,£ )ia.4)- This is_easy, since both (Bel} )44y
ind Bel , are dichotomous with dichotomy { A, A}. We discard Bel 4 and store
n its place both (Bel} (4.4, and BelAEB(Bte)M‘,;,. This means that we
tore four numbers at A: Beli(A), Bel}(A), (Bel,®Bell)(A), and
Bel , ®Bel } )(A).

After we have completed the procedure of the two preceding paragraphs for
wvery sib of terminal nodes, we temporarily prune these terminal nodes from
he tree, as it were, so that the mothers of the original sibs of terminal nodes
ire not themselves terminal nodes. We then repeat the procedure with the sibs
f terminal nodes we now see, except that instead of (30), we now usc (24),

(Bels )y, (i) = D (Bel, ® (Bel} V5.5 | BE £,)

o calculate Belj_(A) and Belj (A) for the mother A of what are now terminal
ibs. (Of course, we really used (24) in the first round, too. When we wrote
lel, instead of Bel, @ (Bel} )(n.) in (30) above, we were just taking advan-
age of the fact that Bel, is vacuous when B is terminal.)

We continue this process until we have reached the daughtcrs of the topmost

iode ©. We then have (Bel} Jia.4y and BeIA®(Bte)M 4) stored at every
1ode A in . '

i.2. Second stage
Recall (25),

(Belg )y, = @ {Bel, ®(Bel}) 5 | BES,).

Ve lapply _Barnett’s technique to this formula to calculate Belé (A) and
3elg (A) for each A in ¥,. Knowing these two numbers amounts to knowing

! .
Belg )(4.4)- We store them at A, along side the four numbers already there.

1.3. Third stage

‘10\\{ consider a particular daughter A of @. We want to calculate Bel}, (B) and
3elg (B) for each daughter B of A. We can do this using (24), (28), and (29).
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Consider first (28):
(Beld) a4y = (Bel ) 4.4, ®Bel, @ (Bel?) 4 4, -

All the belicf functions in this formula are dichotomous with dichotomy
{A, A}, and (Bel,_l,)M_M and (Bel )(4.4, are stored at A. So we can easily
find Bel,, ® (Bel}) .z, by division.

Now consider (24) again. We have already applied Barnett’s technique to
this formula to calculate Beli(A) and Belj(/i). We now apply it again to
calculate Bel} (B), Belj(é), Bel} (A — B), and BeI:(BU A) for each B in
&,. This gives us the belief function (Bel} Yis.a-n.4) (Actually, as we shall
see in the next scction, we do not need to calculate Bel: (A- B).)

Now consider (29):

(Belé Vig.a-B.A)= (Bell Yin.a-n.4) DBel, ®(Belj)(A.A) .

We have just found BelA®(Bel°)M_,;, and (Belj)‘,,_,,_,,_h. So we can use

(29) to calculate Belé (B) and Bel/ (B). (Barnett's technique cannot be used
here, since (Bel ,ﬁ )(8.4-5.4) is not dichotomous. But since the partition we are
working with is only a trichotomy, a brute force application of Dempster’s rule
involves little computation.) _

We have just seen how to go from Bclé (A) and Bcl,l, (A) to Belé(B) and
Belé (B) for the daughters B of A. This process can be repeated for the
daughters of each B, and so on, until we have calculated Belé(C) and
Bel},((—?) for every node C in the tree. B

Usually, of course, we will not be interested in Belé(C) and Bel},(C) for
every node C in the tree. Once we have seen that Belé(B) is very small, we
know that Belé (C) will be at least as small for every descendant C of B, and
50 we may not want to go to the trouble of finding these values. We may decide
to look at descendants of B only if Bcl}, (B) is greater than 0.5, say. Since two
disjoint sets cannot both have degree of belief greater than 0.5, this decision
will result in our moving down the tree along just one path, which may stop
before reaching a terminal node.

4.4. Details of the algorithm

The numerical calculations that our algorithm requires can be described by
formulas, and we can group these formulas into six subroutines.

The following notation will allow us to write these formulas concisely. For
each node A in o, we set
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A = Bel ,(A), A; = Bel,,(A),
A} =Bel} (A), A} =Bcl;(A),

A*=(Bel ,®Bel})(A), A =(Bel,®Bel;)(A),
Al = (Bel ,®Bel{(A), A3 = (Bel,®Bel$)(A),
Al =Belg (A), Ag=Bell(A).

(If A is a terminal node, then Belj is vacuous, and thercfore AI =A, =0,
A' = A}, and A” = A;.) For each node B other than @ and its daughters, we
set

B, =Bell(B), B,=Bel}(B),
B%=Bel /,(BUA),

where A is B’s mother.

Recall that the first stage of our algorithm begins with the computation of
(Bel )(a.4, for mothers of sibs of terminal nodes. Subroutine 1 spccxﬁcs how
this is done. This is followed by the calculation of Bel, ® (Bel} )(a.4)> bY
Subroutine 2. After these operations have been completed for every node A
whose daughters are all terminal nodes, we pretend to prune all these terminal
nodes from the tree, and we repeat the process with the new sibs of terminal
nodes, and so on. Each round uses Subroutlne 1 followed by Subroutine 2. We
continue until we have calculated (Bel ; )(4.4) for the daughters A of 0.

At the second stage we apply Barnett’s technique to (25) to find Bel} (A) for
A € $g. This is Subroutine 3.

In the second stage, we go back down the tree. When we go from A to its
daughters, we first find Bel (& (Bel A)( 4.4y using (28); thls is Subroutme 4.
Then we return to formula (24) and calculate Bel} 4(B), Bel } 2(B) and
Bel } +(BU A) for each B in &,; this is Subroutine 5. Finally, we use (29) to
calculate BeI;(B) and Belé(é) for each B in &,; this is Subroutine 6.
(Alternatively, to minimize storage, we may execute Subroutines 5 and 6 for a
particular B in &,, then for another, and so on.)

In summary, we repeatedly cycle through Subroutines 4, 5 and 6 as we move
up the tree, we execute Subroutine 3 once at the top of the tree, and then we
repeatedly cycle through Subroutines 4, 5 and 6 as we move back down.

Subroutine 1. Calculating A} and A} from B* and B~ for B in &,;

Al=1-K, A;=K ]Il B/(1-B"),

Bev,

where
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K'=1+ 2 B'(1-B*).

Re,
Subroutine 2. Calculating A* and A™ from A,, A;, A7, and A]:
AT=1-K(1-A))1-A]), A =1-K1-A,)1-A7}).
where
K '=1-AjA] - AjA] .

Subroutine 3. Calculating A, and A, for A in &, from A* and A for A in
Fo:

A:,=1—K(1+ > B‘/(I—B*))— [T B10-8B"),

BEYy REYq
B#A B#A
A,=1-K(1-A)(1-A"), -

where

K'=1+ 2 B'/(1-B*)- [1 B1(1-B").

Bev, Be,
Subroutine 4. Calculating A; and Ag from A, A, A}, and A7:
AL=1—K(I= A= AY),  AZ=1-K(-Ag)/I(1-A)).
where

- 1 - A} 1-A, 1- A, — A
K': 9 4+ ?_ 2] ]
]—AI 1-A; I—AI—AI'

Subroutine 5. Calculating B, B}, and B from C* and C~ for C in &,:

B;=1—K(1+ > C"/(l—c*)),
ces,
C#B

B;=1-K(-B")/(1-B"),
=1—K(1+ > ctia-cH- 11 C'/(]—c*)),
CET, CEY,

CwB C#B

where
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K'=1+ X C'1(1-c*).

CeS,

Subroutine 6. Calculating B}, and B, from A, AL AL AL BY, B, and
B}, where B is a daughter of A:

Bo = K(A3(By~ A7)+ (1- A} - A3)B),
Bo=1-K(1- AZ)(1-B}),

where
K'=1-A414;- A 4%,

4.5. Miscellaneous comments

(1) The constant K in Subroutine S is the same as the constant K in
Subroutine 1. Recognition of this fact will save computation on the way back
down the tree, since we storc Bel,i(A) =1— K on our way up the tree. It is
probably most efficient, in fact, to store K~ or

K'-1= 2 B*I(1-B")

BeY,

instead of Bel } (A).

(2) Each sum or product in Subroutine 5 differs from the corresponding
product in Subroutine 1 only by the omission of a single term or factor. So if
we save the sums and products from Subroutine 1, we can obtain those in
Subroutine 5 by subtraction and division. This may be advantageous when the
sib sizes are large.

(3) In our description of the procedure for moving up the tree, we specified
that Bel,i(A) and Belj(fi) should be calculated first for those A whose
daughters are all terminal, then for those A whose daughters are either
terminal or else have only terminal daughters, and so on. In fact, however, we
have more freedom of choice than this. In order to calculate Belj(A) and
Belj(A) it is necessary only that these quantities should already have been
calculated for each nonterminal daughter of A.

(4) We could move up the tree faster if we were to calculate (Bcl,ﬁ )(a.4, for
disjoint A in parallel. A similar opportunity for parallelism occurs when we
move back down the trec, provided we want to move down all the branches,

(5) We set out to calculate only Bel}, (A) for all A in . As it turned out, we
also calculated Bel} (A ), since this was necessary for calculating the values of
Belé for A’s daughters. (This means we can calculate the plausibility of A,

Pl (A)=1-Bel} (A).) A glance at (24) and (27) makes it clear that we can

N
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also calewlate Bel, (8 for any A that s in the ficld (7 U (A }.)’ l"nl' .\‘m‘nc
node AL o general, however, there will renain many subsets /3 ol G for which
our method iy not helpfol. Tt does, not, dor example. help us caleulate
del, (el £y in g, 3,

IL(‘:')( l\\'c Ih';u)\c wsed Barnett's technigue in Subroutines 1.3, ;nuI.S. (Sub-
routine 2 can abso be cegarded as an application of Bacnett's lcchmquc.. hut
there s readly no distinetion: between Barnett's technigue and hruh:-hfrcc
caleulation of an orthogonal sum when we are working with o single dich-
atomy.) However, we hine used this technique only on the partitions /7, U
(.1 ;.‘II’ the sibs o are all reliatively small il iy, no sib contains more than
three or Tour dunghters - then those calenlitions swould he manageable even
without Barnet's ‘l-.'chniquc. Thus, the cthicieney of our adgorithm s mainly
due nat to Barnctt's technigue but 1o the Giet thant we are aole 1o break the
overall computation down into local computations,

4.6, Complexity analysis

Ieas clear tram our deseription ol the atgonthm that the sgmount ol arithmetic
imvalving a particulor node does not depend on the size of the tree. Iy lk.‘pcnd\'
only on the number of the node’s diaghterss and it inercases lincarly with the
mn;ﬂwr of daughters, (Subroutine 1. tor exaomple has o product with a lactor
for cach daughter amd @ sum with @ term for cich daughter.) Tefollows that the
L‘l!ll1]1l|lilli(\l\;ll complexity ol the algorithin s lincar in the number ol nodes in
the tree, 4

We can make o closer compleniny analvsis i we assume that the number “I.
daughters in a sib (the branching factor) is constant throughout the tree. Let f
denote the branching factor, Let o denote the number of sibs or, cqui\':ulcnl\_\".
the number of nonterminat nodes. Then we can expeet a4 by :n‘ilhn.\c.lnc
operations Tor cach sibo or nta v by altogether, where a and b oare positive
constants, .

This formuly clarifics the role ol Barnett's teehnigue in our :\|1~‘nr|llm‘:
Barnett’s technigue is responsible for the lincarity with respect to the sib .\‘izc. I
while the localization of the computition is responsible Tor the lincarity with
respect o the number of sibse i 1 we did not use Barnett's !cch!uquc. the
computational complexity would be exponential in f hat st proportional to n.
In place of n(a ¢+ by, we would have nexpla + by, .

Instead of talking about the number ol artthmetic operations per sib, we
might wish 1o talk about the number por node. Siace there are nf v 1 nodes
altogether, this is

ma + bf) nta b b o
nf+1 nf !

b ()

Alternatively, we might wish 1o Gdk about the number of operations per
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terminal node, since the number of terminal nodes is the size of our frame.
Since there are af = n+ 1 terminal nodes. the number of operations per
terminal node is

nia t bf’)
nf—n+1

~Matbfy W >
n(f -1 1 (22)

Both (31) and (32) are greatest tor binary trees (/=2)and tend towards b as f
increases. (There is no paradox here. When Jis furge. most nodes are terminal
nodes.)

The formuln '@ 4 bf for the number of operations per sib can be verilied
empirically. We have veritied it using o Lise implementation in a variety of
trees, with franging up 1o 3 and » ranging up to 30000, The (it was excellent.,
with 99.8%. of the variance explained. The least syuires estimaltes were o = 15§
and b = 44, (Strictly speaking. the counts on which these estimates were based
are counts of arguments in operations rather than counts of operations. Thus
an addition of & terms counts as . and the division of one number by another
counts as 2)) ’

As we mentioned in Scetion 4.3, iU is often possible 1o save computation by
moving down only some of the branches in the third stage. Since Subroutine 5
involves the greatest computation. the savings can be substantial,

4.7. Comparison with Gordon and Shortlilfe's algorithm

Gordon and shortiffe [4] do not give details Tor the implementation ol their
algorithms, V¢ have found, however, that it can also be implemented in lincar
time. “The pirticular implementation we have used s analogous o the im-
plementation of our own algorithm: it involves movements ui) and down the
tree. We have found that this implementation of Gordon and Shortliffe’s
algorithm is comparable in complexity 1o our algorithm, In all the trees we
checked it required fewer arithmetic operations than our algorithm, but never
fewer than hall as many. )

The details of our implementation of Gordon and Shortliffe's algorithm are
nearly as complicated as the details of our algorithm. and it is pu;sil‘»lc that a
more efficient implementation might be found,

5. Generalizations

In 'lhix article, we have retained Gordon and Shordilte's assumption that the
beliel functions being combined are simple support functions focused on nodes
or their complements. The essence of our computational scheme can be
retained. however, whenever cach belief function is carricd by a sib (more
precisely. by a partition /U A4} Tor some node /). Under this more general
assumption, Barnetr's technique is no longer available, and the amount of

IMPLEMENTING DEMPSTER’S RULE 297

arithmetic is exponential in the sib size, but it remains proportional to the
number of sibs. An interesting special case occurs when cach belief function is
conditionally Bayesian—i.e., when the belief function Bel, carried by ¥, U
{A} satisfies

Bel ,(B| A) + Bel ,(B | A) =1
and
Bel (B|A)+Bel,(B|A)=1

for every element B of the field (¥, U{A)})*. In this case, the result of
combining all the belief functions is Bayesian, and the computations can be
simplified; the amount of arithmetic is again linear rather than exponential in
the sib size. This case has been studied by Pearl [7].

A further generalization is to replace diagnostic trees with general trees of
partitions or variables. We need only a ““Markov” property: a given node in the
tree should discern the interaction among the belief functions on the different
branches of tree separated by the node. The problem of propagating belief
functions in such Markov trees is discussed by Shenoy and Shafer [14] and by
Shafer, Shenoy, and Mellouli [13]. The Bayesian special case is discussed by
Pearl [8].

The generalization to networks of variables has been studied by Kong [5];
see also Mellouli, Shafer, and Shenoy [6]. The last chapter of Kong [5] is of
particular interest; it shows how the algorithm of this article can be general-
ized, without loss of computational efficiency, to the case where a patient may
have more than one disease.
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