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ABSTRACT

This article studies the connections between the theories of beliet functions and possibility measures. It shows
how both use compatibility relations linking different frames of discernment. It explains the canonical examples
on which belief functions are based and challenges students of possibility measures to provide alternative canonical
examples to justify those rules for possibility measures that diverge from the rules for belief functions.

TABLE OF CONTENTS

I. £ Y0 e Yo T Tal € o o I N 52
IL. Frames of DISCEMMIMENT .. ..o ..ttt ittty 52
A. Mediating and Discerning Interaction ..............coooioiiiiiiii. 53
B. Constructing Frames and Compatibility Relations ........................ 55
III.  Sugeno Measures .......uvuriiir i et 55
A. Extending Sugeno Measures. ..........cooiiiiiiiiiiiiiiiiieiiienennaes 56
B. Impossible Possibilities............ooviiiiiii i 57
C. Probability Languages Based on Sugeno Measures....................... 57
[V.  Probability MEaSUIEs........coviiiiiiiiiiiiii e 58
A. Canonical Examples...........oooooii i 59
B. Countable Additivity ........oioieiiiiiiiiiii i 59
C. Product Probability Measures............coooiiiiiiiiii i 60
D. Conditional Probability ........c.oooiiiiiii i 60
V. Belief FUNCHONS ..ottt ettt et ettt 62
A. Canonical Examples...... ..o 63
B. Product Belief FUnctions ..........c.ooiiiiiiiiiiiiiii i 67
C. Dempster’s Rules of Conditioning and Combination ..................... 68
D. Conditioning and Products as Special Cases........................... ... 70
E. Marginals and Conditionals ........... ..o 71
F. Condensability. .....oooui i e e e 71
G. Consonant Belief Functions ..o 71
VI, Possibility Measures ........cooviviiiiiii e 75
A. Formalism.....cooiiiriiiiiiiii i et 76
B. INEErpretation ... ...t e 79
C. Zadeh's Criticism of Normalization ...........coooiviiiiiiiiiiin ... 80
ACKNOWIEdEMENLS . ..ottt i 82
List of SYmbOLS ... e 82

S o 0= 1o oA AP 82




52 Analvsis of Fuzzy Information
[. INTRODUCTION

There are close formal connections between the theory of belief functions, developed
by Dempster' and Shafer,”"” and the theory of possibility measures, developed by Za-
deh.*™** Associated with every belief function is another function called its plausibility
function. and a possibility measure is a special kind of plausibility function, a consonant
plausibility function. Moreover, the two theories agree in their treatment of marginalization
and extension. However, how much do the two theories have in common conceptually?

This article reviews the conceptual basis of the theory of belief functions and studies the
rules for consonant plausibility functions. It then examines the points of agreement and
disagreement between these rules and the rules Zadeh and others have suggested for pos-
sibility measures. It asks whether there is a conceptual basis for the theory of possibility
measures that can account for the divergences.

The theory of belief functions and the theory of possibility measures are both languages
for subjective probability judgment: they both provide a vocabulary within which a person
can make judgments about the strength of inconclusive evidence. One way to explain the
conceptual basis of such a language is to describe the language’s canonical examples — the
idealized examples to which the language compares real problems.>* As we see in Section
V below, the language of belief functions compares real problems to canonical examples in
which the meaning of evidence, though uncertain, depends on known chances. Possibility
measures, on the other hand, are said to gauge imprecision as well as uncertainty. Can we
formulate canonical examples that elucidate the nature of this imprecision? If we use canonical
examples in which the meaning of a statement is more or less precise with known proba-
bilities, then we are working with a subset of the canonical examples for belief functions,
and in this case possibility measures should obey all the rules for plausibility functions. To
justify different rules for possibility measures, we need different canonical examples.

The article begins with a study of frames of discernment and compatibility relations,
general concepts that provide a setting for both belief functions and possibility measures.
We then study Sugeno measures, the most general set functions that can be used to represent
subjective probability judgments within this framework. We then briefly review probability
measures, emphasizing those aspects that are generalized or imitated by belief functions and
possibility measures. After reviewing belief functions at length. we then study possibility
measures — their relation to consonant plausibility functions and the problem of finding
canonical examples for them. The article concludes with an examination of two examples
that Zadeh has used to criticize the normalization of belief functions.

II. FRAMES OF DISCERNMENT

A set is called a frame of discernment, or simply a frame, when its elements are interpreted
as possible answers to a certain question, and we know or believe that exactly one of these
answers is correct. A frame is an epistemic or doxic object; its elements are possible relative
to our knowledge and opinion.

Consider two frames S and T. We say that an element s of S is compatible with an element
t of T if it is possible, relative to our knowledge and opinion, that s is the answer to the
question considered by S and t is the answer to the question considered by T. It is worth
repeating that both compatibility and possibility, as the words are used here, are relative to
our knowledge and opinion. If we learn more or change our opinion, our frames themselves
may change (some previously possible answers may be ruled out) and even if they do not
change. the compatibility relation between them may change (some previously possible
combinations of answers may be ruled out). More radical changes are also possible.
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Given two frames S and T and an element s of S, there must be some element t of T that
is compatible with s. Otherwise. consideration of T would tell us that s is impossible, and
it is part of our idea of a frame that all its elements are possible relative to our knowledge.
Similarly, given three frames. S. T, and U, and given compatible elements s of S and u of
U, there must exist an element t of T such that t is compatible both with s and with u. If
we write sCt for *‘s is compatible with t°, then these two principles can be written as
follows:

Principle I: If s is in S, then there exists t in T such that sCt.

Principle II: If s is in S, u is in U, and sCu, then there exists t in T such that sCt and
tCu.

We also take it for granted, of course, that compatibility is symmetric: sCt if and only if
tCs.

If sCt for all sin S and all t in T, we say that S and T are independent; otherwise they
are dependent. If for each s in S there is only one t in T such that sCt, we say that T is a
coarsening of S and that S is a refinement of T.

A relation between two sets is a subset of their Cartesian product — the subset consisting
of all pairs for which the relation holds. Let us denote by C(S,T) the subset of S X T consisting
of all pairs (s,t) such that sCt. By Principle I. we must have C(S, TH)N({s} xT) # 0 for all
sin S and C(S.T)N(S X {t}) # 0 for all t in T. In general, let us call any subset C of SxT
such that CN({s} x T) # @ for all s in S and CN(S X {t}) # O for all t in T a compatibility
relation between S and T.

The actual compatibility relation C(S,T) between two frames S and T can be thought of
as a third frame that is a refinement of both S and T. Indeed, the elements of C(S,T) are
the possible answers to the conjunction of the questions asked by S and T. The frame C(S,T)
is the minimal refinement of S and T; any other frame that refines both S and T also refines
C(S.T). (Note: When I call C(S,T) the actual compatibility relation between S and T, 1
mean only that it is the compatibility relation that actually represents our knowledge and
opinion: | do not mean that it tells which elements of S and T are compatible in some
objective sense, independent of our knowledge and opinion.)

Another way to represent a compatibility relation mathematically is through a multivalued
mapping from one of the frames to the power set of the other.® A compatibility relation
between S and T can be represented by the multivalued mapping G:S — 27 given by G(s)
= {t in T|sCt}. (It can also be represented by the multivalued mapping H:T — 2° given by
H(t) = {sin S|sCt}.) In general, a multivalued mapping G:S — 27 represents a compatibility
relation if and only if G(s) # 0 for all s in S and U{G(s)|s in S} = T.

A. Mediating and Discerning Interaction
Given three frames S, T, and U, set

C(S,U) = {(s,w|for some t in T, sCt, and tCu} Q)

It follows from Principle II above that C(S,U) must contain C(S.U). However, the two
may fail to be equal. If they are equal, then we say that the interaction between S and U
is mediated by T. This means that the compatibility relation between S and U can be deduced
from the compatibility relations between S and T and between T and U. It follows from
Principle II that the compatibility relation between S and U is mediated by T whenever
either S or U is a coarsening of T.
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We will find it useful later to express Equation | in terms of multivalued mappings: if
G;:S—2". G.:T— 2", and G:S — 2Y are multivalued mappings describing C(S.T). C(T,U).
and C(S.U), respectively, then

G(s) = U{G.(D|t in G,(s)} (2)

for all s in S.

It may be helptul to give an example where T mediates the relation between S and U
even though neither S nor U are coarsenings of T. Suppose Tom and Mary know that Early
Bird Airways has only one flight a day from San Francisco to Kansas City. However, they
are uncertain about the time of departure. One schedule, which Tom got from a friend
yesterday, says that the flight departs at 8:00 a.m. Another, which Mary just found in their
hotel's rack of travel literature, says that it departs at 7:00 a.m. Suppose Tom and Mary
form three frames: S, which considers whether the hotel’s travel literature is kept scrupulously
up to date; T, which considers which, if either, of the schedules is current; and U, which
considers the time of the flight. We can list the elements of these frames as follows:

S = {kept up to date, not kept up to date},
T = {Tom'’s schedule current, Mary’s current, neither current},
U = {00:00, 00:05, 00:10, . . ., 23:45, 23:50, 23:55}.

For brevity, let us also denote the elements of S and T by s,. s., t, t., t;, respectively. It
is evident that s, is compatible only with t, in T, while s, is compatible with all three elements
of T. Similarly, t, is compatible only with 8:00 in U, t, is compatible only with 7:00 in U,
and t, is compatible with any element of U. We can see, moreover, that T mediates the
relation between S and U. So s, is compatible only with 7:00 in U, while s, is compatible
with all 288 elements of U.

Thus far we have considered only pairwise compatibility of elements of different frames.
However, we can also ask about the compatibility of larger collections of answers to different
questions. Given, for example, elements s, t, and u of three frames S, T, and U, we can
ask whether these elements are compatible as a triplet: is it possible that s is the correct
answer to the question considered by S, t is the correct answer to the question considered
by T, and u is the correct answer to the question considered by U? Compatibility as a triplet
can also be defined in terms of the notation we have already introduced; s, t, and u are
compatible as a triplet if (s,u) is in C(S,U) and ((s,u).t) is in C(C(S,U),T). In general, the
pairwise compatibility of s,t, and u does not imply their compatibility as a triplet: we can
have sCt, tCu, and sCu without having (s,u)Ct. We can, however, strengthen Principle II
to the following.

Principle III: If s is in S, u is in U, and sCu, then there exists t in T such that s, t, and
u are compatible as a triplet.

It follows from Principle III that if one of the three frames S, T, and U is a refinement
of at least one of the others, then any pairwise compatible elements s, t, and u are also
compatible as a triplet. If, for example, U is a refinement of T, then there is only one
element of T that is compatible with a given element u of U, and so if sCu and tCu. then
t must be the element of T that satisfies Principle III.

In general, the possibility that s, t, and u can be pairwise compatible without being
compatible as a triplet can always be eliminated by making one of the frames finer. and
usually it is not necessary to make it so fine that it is a refinement of one of the others. By
putting more detail into t, say, we can assure that whenever it is ruled out by s and u
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together, it is also ruled out by at least one of them separately. This suggests the following
terminology: if three frames are such that three pairwise compatible elements are always
compatible as a triplet, then we say that each frame discerns the relevant interaction between
the other two.

Let us say that T strongly mediates the interaction between S and U whenever T both
mediates the interaction between S and U and also discerns the relevent interaction between
them. This means that from sCt and tCu it follows that s, t, and u are compatible as a triplet.
In the example concerning Early Bird Airways, we would probably say that T strongly
mediates the interaction between S and U.

B. Constructing Frames and Compatibility Relations

When probability is studied in the context of formal logic, it is assumed that probabilities
are attached to sentences or propositions in a formal language. In this context, a frame of
discernment is a list of sentences. If it is assumed that the language is rich enough to express
all our knowledge that is revelant to the question considered by the frame, then it can further
be assumed that the sentences in this list are detailed enough that our knowledge that only
one can be correct is reflected in the syntax of the sentences: they are mutually contradictory.

In practice, however, a frame of discernment is constructed for a particular problem in
the context of our knowledge of that problem, using a plethora of assumptions and judgments,
many of which are both implicit and provisional. The elements of the frame are described
linguistically, but in a language that is, to some extent, made for the occasion. The meaning
of each element is only partly communicated by its linguistic form; it is further specified
by the assertion that one and only one of the elements is correct and by discussion of how
we might learn which is correct.

The compatibility relations between frames are also constructed, and this construction
further refines the meaning of the elements in each frame. One kind of judgment that can
help in the construction of a compatibility relation is the judgment that one frame mediates
the interaction between two others. In the example concerning Early Bird Airways, we made
such a judgment in order to construct C(S,U) on the basis of our construction of C(S,T)
and C(T,U). In this example, and probably in most other examples where we make the
judgment that one frame mediates the interaction between two other frames, we are also
implicitly making the judgment that it strongly mediates this interaction, and thus we are
constructing not only a compatibility relation between the two frames but also a compatibility
relation among all three.

[II. SUGENO MEASURES

Suppose S is a frame, and suppose Bel is a real-valued function on 2*, the set of all
subsets of S, satisfying

(1) Bel(@®) = 0,
(ii) Bel(S) 1,
(iit) Bel(A) < Bel(B) whenever AC B C S

Il

Then we may call Bel a Sugeno measure. A Sugeno measure Bel is of interest when Bel(A)
can be interpreted as our degree of belief that A contains the correct answer to the question
considered by S. Conditions (i) and (ii) can be regarded as conventions; they indicate that
zero means no belief, while one means total belief. Condition (iii) has more content; it is
based on the idea that when A C B, the correct answer can be in A only if it is also in B,
so that belief in the former should also count as belief in the latter. (Note: The set functions
called Sugeno measures here have been called fuzzy measures by Sugeno®* and other au-




56 Analvsis of Fuzzv Information

thors.*** Such meusures are not, however. related to ordinary measures in the way fuzzy
sets are related to ordinary sets.)

Degrees of belief must. of course, be constructed; they are judgments based on evidence.
The degree of belief Bel(A) marks a judgment about how strongly the evidence we are
considering points to the correct answer being in A. When we talk about degrees of belief
being defined for all subsets of the frame S. we are assuming that this judgmental work is
feasible. We are assuming that S is small enough or easily enough manipulated, or that the
evidence is simple enough, that it is practical for us to consider the relation of the evidence
to all the subsets of S. We are also assuming, when we state condition (iii) for Sugeno
measures, that our way of considering these subsets makes the containment relations between
them manifest. It is of interest to relax these assumptions and to consider situations where
we construct degrees of belief for only some subsets of a frame, but we will not do so in
this article.

What does it mean when Bel(A) is greater than zero? Various interpretations are con-
ceivable, but in this article we will suppose that a positive value of Bel(A) represents a
judgment that our evidence gives us positive reason to believe A. Lack of evidence against
A does not suffice. We distinguish, therefore, between lack of belief and disbelief. A degree
of belief of zero in A indicates lack of belief in A, resulting from lack of evidence favoring
A. It does not necessarily indicate disbelief in A, such as might result from evidence against
A. It does not, that is to say, necessarily indicate any belief in A, the negation of A.

The simplest kind of Sugeno measure is one that assigns degree of belief zero to every
proper subset of a frame S. (It must, of course, assign degree of belief one to the frame
itself; this is condition (ii).) Such a vacuous Sugeno measure is appropriate for representing
evidence that tells us nothing at all about the question considered by S.

A. Extending Sugeno Measures

Suppose we have constructed two frames S and T and a compatibility relation between
them, and suppose we have also constructed degrees of belief for both frames, giving us
Sugeno measures Belg on 25 and Bel; on 27. Then the same logic that demands condition

(iii) also demands that
Bel,(B) = Belg(A) (3)

whenever A and B are such that the correct answer to the question considered by S can be
in A only if the correct answer to the question considered by T is in B — i.e., whenever
A and B are such that

sin A, tin T, and sCt=> t in B. 4)

For fixed B, the demand is that Equation 3 should be satisfied for all A satisfying Equation
4; given (iii), this is equivalent to the demand that

Bel(B) = Bely({s in S|t in T and sCt => t in B}),
or
Bel,(B) = Bels({s in S|G(s) C B}), (5)
where G is the multivalued mapping from S to 2T.

Now suppose we have constructed frames S and T, a compatibility relation between them,
and degrees of belief for S, forming a Sugeno measure Belg, but we have not yet constructed
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degrees of belief for T, and suppose we make the judgment that the evidence we are
considering bears on the question considered by T only indirectly, through its relevance to
the question considered by S. (This is analogous to the judgment that S mediates the
interaction between T and another frame; here we may say that S mediates the interaction
between T and the evidence.) Then it seems reasonable that we should accord to each subset
B of T just that degree of beliet required by our degrees of belief on S and the compatibility
relation between S and T — i.e., we should define Bel, on 27 by Equation 5. with = in
the place of =:

Bel(B) = Bely({s in S|G(s) C B}). (6)

We may call the function Bel, defined by Equation 6 the extension of Belg to T. If T is a
coarsening of S, then the extention of Belg to T is also called the marginal of Belg over T.
The extension of a Sugeno measure is always a Sugeno measure.

B. Impossible Possibilities

In Section II, I insisted on the idea that a frame is a list of answers to a question, all of
which are possible relative to our knowledge and opinion. This means that whenever we
learn something that rules out some of these possible answers, we must formally change
the frame. It also means that we will not be interested in a Sugeno measure that assigns
degree of belief one to a proper subset of a frame, since such a Sugeno measure would
indicate complete belief that the answers not in the proper subset are impossible.

It is sometimes convenient, however, to relax this attitude. If we do relax it, we will not
need to change our frames so often; instead, we can just change our Sugeno measures. If,
for example, we begin with the vacuous Sugeno measure over S and we then acquire new
evidence that tells us that the correct answer to the question considered by S is in a proper
subset S,, but tells us nothing more than this, then we need not change our frame from S
to S,; instead we can simply change our Sugeno measure to the Sugeno measure Bel over
S that is given by

0 ifS,C A
Bel(A) =
| ifS,CA

for every subset A of S. This Sugeno measure may be called the binary Sugeno measure
focused on S,.

C. Probability Languages Based on Sugeno Measures

We have looked at some very simple Sugeno measures, and we have considered how a
Sugeno measure on one frame might be extended to a Sugeno measure on another. However,
how can we construct more complicated Sugeno measures? How can we construct a Sugeno
measure that gives degrees of belief that are less than one, but greater than zero?

There are two important problems here. First, there is the problem of giving a meaning
to the scale. What is meant by a degree of belief of one third, say? More generally, what
is meant by the adoption of a whole Sugeno measure? Secondly, there is the problem of
locating real evidence on the scale. How do we decide what degree of belief is appropriate
for a given subset of a frame in light of given evidence?

In order to give meaning to the scale. we need canonical examples. examples in which
we agree that given numerical degrees of belief, and hence a given Sugeno measure, are
appropriate, and in order to locate real evidence on the scale, we need ways of relating real
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evidence to the kinds of evidence and knowledge that are assumed in the canonical examples.
When we specify a set of appropriate canonical examples together with methods for matching
real evidence to the scale of Sugeno measures determined by these canonical examples, we
have, in effect, formulated a particular theory or language for subjective probability
judgment.'=**

A language for subjective probability judgment formulated in this way typically does not
use the whole set of all Sugeno measures. It does not, that is to say. have a canonical
example corresponding to every Sugeno measure, and different languages usually use dif-
ferent subsets of the Sugeno measures. It is therefore convenient, though sometimes mis-
leading, to label different languages with the names of the different kinds of of Sugeno
measures they use.

The most familiar language of subjective probability judgment is the Bayesian language,
which is reviewed in the next section. This language uses probability measures, Sugeno
measures that have the structure of frequencies. It compares problems to canonical examples
in which the correct answer to a question is determined by chance, with the chances com-
pletely known.

A Sugeno measure obtained by extending a probability measure is called a belief function.
As we explain in Section V below, the language of belief functions compares problems to
canonical examples in which the meaning and reliability of the evidence depend on known
chances.

A Sugeno measure obtained by taking lower bounds over a class of probability measures
is called a lower probability measure. The language of lower probabilities uses canonical
examples in which the answer to a question is determined by chance, with the chances only
partially known. Lower probabilities have been studied by Smith.*” Good,** Williams,*
Walley and Fine,* and others. The set of belief functions is actually a subset of the set of
lower probability measures, but the two languages use different canonical examples and
hence use different rules to manipulate these functions; this point is discussed in detail by
Shafer'” and is touched on in Section V. We will not study the language of lower probabilities
in detail in this article.

Are there yet other languages for subjective probability judgment that use Sugeno meas-
ures? Other classes of Sugeno measures have been studied, but so far this study does not
seem to have led to other languages for probability judgment. Several authors, for example,
have studied a class of Sugeno measures called the g, measures,*-***' and Dubois** has
called attention to the class of Sugeno measures obtained by extension of the g, measures.
However, there is no language of g, measures; no one has given canonical examples that
would enable us to use these measures in probability judgment. Fine and students®*-* have
recently investigated a class of Sugeno measures that is broader than the class of lower
probability measures, but the intention of this work seems to be to generalize probability as
a model for objective phenomena rather than to provide another language for subjective
judgment.

Possibility measures constitute another subset of the Sugeno measures. However, again,
there is not yet a language of possibility measures; we do not yet have appropriate canonical
examples. This point will be discussed further in Section VI

[V. PROBABILITY MEASURES

A Sugeno measure Bel over a frame S is called a probability measure if in addition to
conditions (i) to (iii) it also satisfies

(iv) Bel(AUB) = Bel(A) + Bel(B)
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for all disjoint subsets A and B of S. Usually the letter P is used instead of Bel to denote
a probability measure. When P is a probability measure and S is its frame. the pair (S.P)
is called a probability space.

Probability measures are important because we are often able to construct them from
observed or conjectured frequencies. Sometimes our evidence about the question considered
by S consists just of knowledge of the answers to similar questions, and in these cases we
may construct a probability measure P over S by setting P(A) equal to the proportion of all
answers that are in A. In other cases, our evidence may allow us to make reasonable
conjectures about such frequencies. In yet other cases. we may judge that our evidence is
similar in strength to the knowledge of such frequencies. In this section we will review some
facts about probability measures and some ideas about subjective probability judgment using
probability measures that are relevant to our later discussion of belief functions and possibility
measures.

A. Canonical Examples

The mathematical picture of chance, which originated in the 17th century study of games
of chance, is well known in our culture. It is a picture in which different events happen
with different chances. These chances are objective frequencies, and since they are known
to us we can also call them our degrees of belief. They define fair betting rates — rates at
which we can repeatedly offer to bet and expect to break even in the long run.

In games of chance, and also in modern particle physics. we can find examples that fit
the mathematical picture of chance perfectly. When we construct a probability measure to
represent more ordinary sorts of evidence, we may say that we are comparing our ordinary
evidence to those special, or canonical, examples from gambling and physics. The com-
parison may not be perfect, but it still provides an argument, sometimes a convincing one.?
If we make a number of probability judgments by giving numerical probabilities that seem
to match in strength the evidence we have for several different assertions and we then
combine these numerical probabilities using the rules that follow from the picture of chance,
then we may be able to construct a probability measure that yields convincing conclusions
that were not obvious at the outset.

When we used observed or conjectured frequencies to construct a probability measure
over a frame S, we are locating our evidence on a scale of canonical examples in which the
correct answer to the question considered by S is determined by chance. We may also say
that in doing so we are using the Bavesian language of probability judgment, for this name
has come to be associated with subjective probability judgments that directly match the
picture of chance.!’

B. Countable Additivity

It may be appropriate to offer some technical remarks to excuse the lack of any mention
of countable additivity in our definition of probability measure. In the mathematical study
of probability, it is usually assumed that a probability measure is defined only on an algebra
of subsets of a frame S instead of on 25, the set of all subsets of S.% (An algebra of subsets
of a set S is a collection of subsets of S that contains @ and S and is closed under comple-
mentation and finite unions and intersections. An algebra that is closed under countable
unions and intersections is called a o-algebra.) This assumption is sound from a constructive
viewpoint, since it may not be feasible, especially in the case of complicated infinite sets,
to specify values of a probability measure for all subsets.

A probability measure P that is defined on a o-algebra of subsets of S is said to be
countably additive if

P(U A) = ZP(A)
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for every sequence A,,A,, ... of disjoint subsets in the o-algebra. This condition is
equivalent to the requirement that P be continuous, in the sense that

P(N A) = inf P(A) N

for every decreasing sequence A, = A, = ... of elements of the o-algebra.’® The
requirement of countable additivity is associated with the definition of probability measures
on o-algebras because many important countably additive probability measures cannot be
extended to countably additive probability measures defined for all subsets of their frames.

Some advocates of the Bayesian language of probability judgment, e.g., de Finetti,*” have
argued against countable additivity and for the assumption that probabilities are at least
potentially defined for all subsets of one’s frame. I do not agree with this argument, but
since the issue of countable additivity is not relevant to the questions studied in this article
and since it is tiresome to repeatedly refer to algebras on which probability measures are
defined, 1 will often write as if all probability measures are defined for all subsets of their
frames. When convenient, | will even assume that the frames are finite.

C. Product Probability Measures
Given two probability spaces (S,,P,) and (S,,P,), we may form a product probability
space (S, X S,,P), where P, the product of P, and P,, is characterized by the relation

P(A, X A;) = P(A)P,(A)) (8

for all subsets A, of S, and A, of S,. (If S, and S, are finite, P, is defined for all subsets
of S,, and P, is defined on all subsets of S,, then Equation 8 uniquely characterizes a
probability measure defined for all subsets of S, x S,. If P, and P, are defined only on
algebras of subsets. then Equation 8 uniquely characterizes a probability measure on the

product algebra.)
The use of product probability measures in Bayesian probability judgment involves two

judgments of independence: (a) a judgment that S, and S, are independent, so that S, X S,
is a frame, and (b) a judgment that the evidence on which the probability measure P, is
based is independent of the evidence on which the probability measure P, is based, so that
the probabilities given by P, X P, may be used as degrees of belief on the frame S, xS,.
After judging that our evidence about the question considered by S, is similar in import to
knowledge that the answer has been drawn at random from a certain frequency distribution
and after making a similar judgment about the question considered by S,, we further judge
that our evidence about the one question is so unrelated to our evidence about the other that
answering both is similar to making these two drawings independently.

D. Conditional Probability

The 17th century theory of games of chance. from which the mathematical theory of
probability derives. considered games that unfold step by step. The rules of such a game
determine a prorocol — a specification, at each step, of what may happen next. Since each
player keeps abreast of events, his expectations and probabilities about the eventual outcome
of the game change as the game unfolds in accordance with this protocol. Since the game
is a closed system, these expectations and probabilities depend only on what has happened
so far in the game. For mathematical treatments of the idea of a protocol, see Shafer, -+

Suppose the frame U considers the question of what the eventual outcome of the game
will be; each element u of U completely describes one possible way the game might unfold.
Let P denote the initial probability measure on U. Suppose that at a certain point in the
game, only the outcomes in the subset U, of U remain possible. This subset amounts to a
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specification of everything that has happened so far in the game and therefore. according
to the preceding paragraph. fully determines how the probabilities given by P have changed.
So the phrase **the probability for a subset A of U at the point when only the outcomes in
U, remain possible’” labels a unique number. Let us denote this probability by P(A[U,).
Using the frequency or betting interpretation of the probabilities involved, we can demonstrate
that*’

PANU,) = P(Ul))P(A|U()) (9)

The demonstration depends on the existence of the protocol and requires that U, be specified
by the protocol as one of the possibilities for the set of still possible outcomes at some point
in the game. We may call a subset U, of U an exacr event if the protocol specifies U, as
one of these possibilities; in general not all subsets of U will be exact events. When U, is
an exact event, so that P(AjU,) is well defined, this number may be called the conditional
probability of a given U,. Formula 9 is called the rule of compound probabiliry.

Suppose U = SXT, and suppose the protocol specifies, for each s in S, a subset B(s)
of T such that (1) {s} X B(s) is an exact event and (2) if B is any other subset of T such that
{s} x B is an exact event, then B = B(s). (This means that at the point in the unfolding of
the game where we first find out that s is the answer to the question considered by S, B(s)
will constitute our knowledge about the question considered by T.) Notice that for each s
in S, {s} X B(s) is impossible, so that P({s} X B(s)) = P({s} X T) = Pg({s}). For each s in S
and each subset A of T, let us denote P(S X A|{s} x B(s)) by Pp(A). The set function Py,
defined in this way is a probability measure over T; it is called the conditional over T of P
given s.

If tis in B(s). then substitution of S X {t} for A and {s} X B(s) for U, in Equation 9 yields

P{(s.0h = Ps({shPp({th. (10)

This formula also holds if t is not in B(s), for then both sides are zero. If we suppose that
S X T is finite, then P is completely determined by its values on the points {(s,0)}. So in this
case at least, P can be completely reconstructed from knowledge of its marginal Pg and its
conditionals Pr,.

It follows from Equation 9 that

P(ANU
PA|U,) = W (11)
0

This formula can serve as the symbolic expression of a rule. This rule, the Bavesian rule
of conditioning, says that when new knowledge or evidence tells us that the correct answer
to the question considered by U is in the subset U, we should change our probability for
another subset A from P(A) to the new probability given by this quotient. Strictly speaking.
this rule is valid only when the receipt of the information U, is itself a part of our probability
model — i.e., was foreseen by the protocol. In practice, however, the rule is used more
broadly than this in subjective probability judgment. This broader use is reasonable, but it
must be emphasized that the calculation is only an argument — an argument that is imperfect
because it involves a comparison of the actual evidential situation with a situation where U,
was specified by a protocol.
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V. BELIEF FUNCTIONS
A Sugeno measure Bel on 27" is called a belief function over T if it satisfies

(v) Bel(B,U...UB,)=
2 Bel(B)->'Bel(B,NB)) + > Bel(B,NB,NB,)— +...
] 1.}

ik

for any finite collection B, . . ., B, of subsets of T. (It is also possible to consider belief
functions defined only for some subsets of a frame.'")

It can be shown''*' that a function Bely on 27 is a belief function if and only if there
exists a frame S, a compatibility relation between S and T, and a probability measure Belg
on 2% that is related to Bely by Equation 6. In other words, belief functions are the Sugeno
measures that can be obtained by extending probability measures.

Since a probability measure is, in a trivial sense, an extension of itself, all probability
measures are belief functions. It can also be shown that vacuous Sugeno measures and.
more generally, binary Sugeno measures are belief functions.

Given a belief function Bel on 25, we may define another real-valued function Pl on 23

by
Pl(A) = | — Bel(A).

This function is called the plausibility function associated with Bel. A belief function can
be recovered from its plausibility function: Bel(A) = 1 — P1(A). We always have Bel(A)
< PI(A), but Bel and Pl are equal only if Bel is a probability measure. While Bel(A) is our
judgment of the extent to which the evidence we are considering supports A, PI(A) is our
judgment of the extent to which this evidence falls short of refuting A. If we judge that the
evidence provides neither support nor refutation for A, we may set Bel(A) = 0 and PI(A)
= 1.

(Note: Mathematically, a plausibility function is a Sugeno measure. We do not, however,
interpret plausibility functions in the way that we proposed to interpret Sugeno measures in
Section III above. A positive value of PI(A) does not necessarily indicate a judgment that
there is evidence favoring A.)

Any extension of a belief function is also a belief function. To see this, note that if Bel,
is the extension of Belg from S to T and Bely, is the extension of Bel; from T to U, then
Bely is the extension of Belg from S to U. This can be verified using Equation 6; if the
compatibility relations C(S,T), C(T,U), and C(S,U) are represented by multivalued map-
pings G,, G,, and G, as in Equation 2 above, then

Bel (C) = Bel,({t in TIG«(t) C C}

Bels({s in S|G,(s) C {tin T|G,(t) C C}})
Belg({s in S|U{G,()|t in G,(s)} C C}
Belg({s in S|G(s) C C})

for any subset C of U (compare Section 4 of Dubois and Prade*?). If Bel, is a belief function,
then we may choose S and Belg so that Belg is a probability measure; this means that Bel,
is also an extension of a probability measure and hence also a belief function.

We say that one belief function Bel, over a frame T is stronger than another belief function
Bel, over the same frame if Bel,(B) = Bel,(B) for all subsets B of T. This is equivalent to
the requirement that P1,(B) < PI,(B) for all subsets B of T.
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A. Canonical Examples

If we construct a probability measure using observed or conjectured frequencies and then
extend this probability measure through a compatibility relation, we obtain a beliet function.
However, when is such extension appropriate?

In order to deepen our understanding, we need canonical examples — stories about
situations where we have a probability measure P over a frame S and a compatibility relation
between S and unother frame T und where we can make the judgment that S mediates the
interaction between T and the evidence on which P is based, thereby justifying the degree
of belief

Bel(B) = P{s in S|G(s) C B} (12)

for each subset B of T.

Here are three stories in which the extension of a probability measure to a belief function
seems reasonable. As we shall see, the second and third of these stories leads to the language
that I have called the ‘‘language of belief functions’ . The first story provides a basis for
some of the rules of that language, including the rule for forming product belief functions,
but it does not provide a basis for Dempster’s rule of combination.

1. Consider two frames S and T and a probability measure P over S. Suppose the answers
to the questions considered by S and T are both initially undetermined. However, we
know that s, the answer to the question considered by S, is to be determined by a
random selection from S. this selection being governed by the probability distribution
P. We also know that this determination of s partially determines t, the answer to the
question considered by T; it forces t to be in a certain subset of T, say G(s). The
further determination of t is to be accomplished in some way that is not known to us.
We are assuming that our only evidence about s is our knowledge of P and our
knowledge that s is selected at random according to P. It is reasonable, therefore, to
adopt the probabilities given by P as our degrees of belief about s. We are also assuming
that our evidence tells us nothing further about t — i.e., that S mediates the interaction
between this evidence and T. We therefore adopt the belief function over T given by
Equation 12. Here the probability measure P over S is causally as well as epistemically
relevant to T; the answer to the question considered by S is the partial cause of the
answer to the question considered by T.

2. Wierzchon's story:*' Consider two frames S” and T° and a probability measure P° over
S°. Initially the answer to the question considered by T° is already determined, but
the answer to the question considered by S° is not. Each element s of S° is actually a
mapping from T° to another set Q. It is arranged that s is to be selected at random
from SO, this selection being governed by the probability distribution P°. We will not
be told the element s that is selected, but we will be told the value of s(t), where t is
the correct answer to the question considered by T°. Suppose this value turns out to
be q. Then we know that s could have been selected and t can be the correct answer
to the question considered by T" only if s(t) = q. So we may replace the frames S°
and T° by S and T, respectively. where

S a},

{s in S"|for some t in T° s(t)

and

q}.

-
I

{t in T°|for some s in S° s(t)
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Our knowledge that the mapping s actually selected is in the subset S of S justifies
changing our degrees of belief about this answer by conditioning the probability
measure P’ on S; we may denote the resulting probability measure over S by P. Our
knowledge also establishes a compatibility relation between the frames S and T:

CiS.T) = {(s,0ls(v) = g}.

It is clear that our evidence about S bears on T only through this compatibility relation
— i.e., S mediates the interaction between this evidence and T. We can make this
story more concrete by thinking of q as the result of measuring t; s describes the
random influences that determine how the measurement will err. There is a causal
element in this story; t is one of the causes of s. However, the reverse relationship,
from s to t, is not causal. Here, in contrast to the preceding example, the probability
measure P over S has purely epistemic relevance to T. '

Shafer’s story:'? Consider again frames S° and T° and a probability measure P° over
S°. However, now suppose that each element s of S° maps subsets of T° to elements
of a set Q. Again, t, the correct answer to the question considered by T°, has already
been determined. Moreover, someone has singled out a subset M of T° that contains
t. An element s of S® will be selected at random, the selection being governed by P°.
We will not be told t, M, or s, but we will be told the value of s(M). Suppose this
value turns out to be q. Then we know that the correct t and the s that was selected
must be such that s maps some set containing t to q. So we may replace the frames
S° and T° by

S = {s in $%s(M) = q for some subset M of T°},
and

T = U{M|s(M) = q for some s in S°%.

We may change our degrees of belief for S to those given by P, the result of conditioning
P° on S, and we may use the compatibility relation

C(S,T) = {(s,t)|stM) = q for some M containing t}

Again, it is clear that the evidence represented by P bears on T only through this
compatibility relation — i.e.. S mediates the interaction between this evidence and T.
We can make this story more concrete by thinking of M as a message that is conveyed
to us in coded form. The code s is selected at random. After we receive the encoded
version q, we try to decode it using all the possible codes. The results may rule out
some of the codes in S°, but they may leave a number of possibilities for which code
s was used, what plaintext message M was sent, and which answer t is correct. Our
krniowledge about how s was selected bears on the identity of M and t only through
what it tells us about which s was selected.

In each of these stories, the knowledge on which the probabilities for s are based provides
evidence about t only through the compatibility relation between S and T. The value of s

has a causal bearing on the value of t in the first story, but a purely epistemic bearing in
the second and third stories. In the first story, Equation 12 is interpreted as the probability
that the selection of s will force t into B, but in the other two stories it is interpreted as the
probability that the evidence (the measurement or the encoded message) means or implies
that t is in B.
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(Note: The second and third stories seem very similar. How are they related? The simplest
way to relate them is to make explicit, in the third story, a frame U that considers the
question: Which subset M of T° has been singled out? The frames S” and U® are related in
the third story just as the frames S® and T" are related in the second story. However, in the
third story there is a further step, the extension of the belief function over U = {M|s(M)
= q for some s in $Y} to a belief function over T, which is the union of the sets in U. The
compatibility relation between U and T is given by saying that MCt if and only if t is an
element of M.)

Both the language of belief functions and the Bayesian language use observed or conjec-
tured frequencies to construct probability judgments. However, whereas the Bayesian lan-
guage uses canonical examples in which the correct answer to the question we are considering
is directly determined by chance, the language of belief functions uses canonical examples
in which only the meaning of the evidence bearing on this question depends on chance.

One consequence of this difference is the fact that it may be impossible to interpret the
numerical degrees of belief given by a belief function over a frame T as hypothetical
frequencies. This may be true even if these degrees of belief are derived from degrees of
belief over a frame S that can be interpreted as hypothetical frequencies. The reason for this
is that the compatibility relation between the frames S and T, since it is constructed for the
particular problem, may not be constant over the set of hypothetical repetitions that we must
consider in order to think of the degrees of belief on S as frequencies.

We can see this point more clearly if we look at the possibility of a hypothetical frequency
interpretation in each of our three stories or canonical examples for belief functions. Such
an interpretation may be possible in the first story, but not in the second two.

In the first story we can construct a set of hypothetical repetitions by imagining that
elements of S are selected repeatedly in accordance with the chances given by P. Following
each selection from S a selection from T is also made: if s is selected from S. then an
element t is selected from G(s) according to some rules that are unknown to us. The degree
of belief Bel(B) given by Equation 12 has a frequency interpretation in terms of these
hypothetical repetitions; we can say that the element of T selected will be in B with at least
this frequency.

In the second and the third stories we begin with a probability measure not on the frame
S, but on a frame S°. We may imagine repeated selections of an element s from S°, but it
is not clear how the other elements of the story are to be varied as this selection is repeated.
In the first story, the determination of s partially determined t, but here the selection of s
is not supposed to affect t. It is also not supposed, in the third story, to affect the selection
of M. This suggests that we imagine repeated selections of s with t (or both t and M) held
constant, but doing so will not produce anything interesting; when t is held constant the
frequency with which it will be in a fixed subset B of T will be either zero or one. It should
also be noted that the conditioning of P° on S does not inherit a frequency interpretation
from the imagined repeated selections of s from S°. As | emphasized in Section IV.D above,
the conditioning of probabilities can be given a frequency justification only if the process
by which the information conditioned on is obtained is itself built into the probability model.
Here the selection of t (or of t and M) and hence the process by which S” and T° are reduced
to S and T are not part of the probability model.

Some readers will feel that the lack of a thorough frequency interpretation for our second
and third stories for belief functions makes these stories unconvincing. I believe, however,
that this attitude depends on a too uncritical acceptance of the relevance of imagined rep-
etitions. To the extent that we recognize that the choice of a set of hypothetical repetitions
is largely arbitrary, we will be more interested in this choice as a device for calibrating the
strength of our evidence rather than as a basis for claiming objective validity for our judg-
ments. | have already mentioned that the causal canonical example for belief functions
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(the first of our three stories) does not provide a basis for Dempster’s rule of combination.
while the purely epistemic canonical examples (the second and third stories) do provide such
a basis (see Section V.C). This fact, together with the fact that only the first example leads
to a frequency or betting interpretation for the degrees of belief given by a belief function,
has led some authors**+** to claim that Dempster’s rule is incorrect. It is more appropriate,
however, simply to say that there is no hypothetical frequency or betting interpretation for
final degrees of belief in the language of belief functions.

It is also enlightening to note that the first of our three canonical examples, the causal
one, can be interpreted as a canonical example for the language of lower probabilities (see
Section I11.C above). Indeed, if we imagine that the further determination of t within G(s)
is effected according to some unknown probabilities, then our knowledge of P over S amounts
to partial knowledge of a probability measure that is used to determine the answer to the
question considered by T. It follows from this observation that belief functions, mathemat-
ically, are lower probability functions. As we have already remarked, however, the language
of belief functions, since it uses our purely epistemic canonical examples, is not a subset
of the language of lower probabilities.

(Note: It may be useful to sketch the relation between the preccding statement of canonical
examples for belief functions and the approaches to belief functions taken in earlier expo-
sitions. Dempster® introduced belief functions (or ‘‘lower probabilities’’, as he called them
then) in terms of multivalued mappings. He did not give canonical examples to show how
the multivalued mappings were to be interpreted, and many of his readers seem to have
interpreted them in the causal sense spelled out in our first story above. Shafer.* in an
attempt to avoid the confusion arising from this causal interpretation, left aside the multi-
valued mapping altogether and treated belief functions in purely axiomatic terms. This
axiomatic approach did escape from the causal interpretation, but it did not solve the problem
of providing an alternative interpretation. Shafer'? introduced the canonical examples in-
volving randomly coded messages in order to provide such an alternative interpretation. The
present exposition returns to the level of abstraction of the multivalued mapping, but em-
phasizes the epistemic interpretation of *‘compatibility’’.)

The canonical example of the randomly coded message is very general, but it is also
distant from our everyday experience, and it therefore seems very abstract. So it may be
useful to conclude this section with a discussion of a simple but more concrete example,
the example of testimony.

Suppose that a witness testifies that the answer to the question considered by the frame
T is in the subset T,. Suppose that we have no evidence about this question other than this
testimony (or at least that we want to leave our other evidence aside for the moment) and
that our only evidence about the reliability of the witness comes from experience that tells
us that witnesses such as this one are usually reliable (say 80% of the time), are rarely
deceitful (say 2% of the time), but fairly often do not know what they are talking about (the
rest, or 18%, of the time).

The frequencies 80, 2, and 18% clearly do not bear directly on the frame T. Instead they
bear directly on a frame S that considers the reliability of the witness: S = {a,b.c}, where
a is the possibility that the witness is reliable, b is the possibility he is deceitful, and c is
the possibility he does not know what he is talking about. These frequencies amount to a
probability measure P over S: P({a}) = 0.8, P({b}) = 0.02, and P({c}) = 0.18.

The compatibility relation between S and T is simple. We have aCt if and only if t is in
Ty, bCt if and only if t is not in T,, and cCt for all t in T. When we extend P to T using
this compatibility relation, we get the belief function Bely given by
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080 if T,CB#T
002 if T,CB#T

0.00 if T,CBandT, CB
1.00 if B=T

Bel,(B) =

In particular, Bel(T,) = 0.8 and Bel(T,) = 0.02.

B. Product Belief Functions

Consider now two belief functions Bel, and Bel,, defined over frames T, and T,, re-
spectively. It can be shown®'' that there is a unique belief function Bel over T, X T, that
satisfies both

Bel(A xA,) = Bel (A))Bel,(A,) (13)
and
PI(A,xA.) = PL,(A)PL(A,) (14)

for all subsets A, of T, and A, of T,. (Again, Bel is uniquely determined for all subsets of
T, X T, if T, and T, are finite and Bel, and Bel, are defined for all subsets, and in general
Bel is uniquely determined on the product of the algebras on which the two belief functions
are defined.) This belief function is called the product of Bel, and Bel,. It can be constructed
as follows. For i = [ and 2, let S; be a frame and let P, be a probability measure on S,
and suppose there is a compatibility relation between S; and T, such that Bel, is the extension
of P, to T,. Define a compatibility relation between the Cartesian products S, XS, and T, x T,
by saying that

(5,,5,)C(t,,t,) if and only if both s,Ct, and s,Ct, (13)

Bel is the extension of P, X P, to T, X T, using this compatibility relation.'°
What judgments are involved when we adopt the product belief function Bel? In addition
to (a) and (b), listed in Section IV.C above, we appear to need the following:

(c) A judgment that T, and T, are independent, so that T, X T, is a frame.

(d) A judgment that T, mediates the interaction between S, and T, X T,, fori = 1,2.

(e) A judgment that T, X T, discerns the relevant interaction between S, and S..

() A judgment that S, X S, mediates the interaction between the evidence on which P, X P,
is based and the frame T, X T,.

Judgments (d) and (e) assure that Equation 15 is the compatibility relation between $, X S,
and T, XT,. Judgment (f) then authorizes the extension of P, XP, to T, X T, using this
compatibility relation.

It is instructive to run through these judgments for the construction of product belief
functions in the context of each of our three stories, or canonical examples, for belief
functions. In the first story, we would be willing to make these judgments if s, and s, were
independently selected at random and partially but independently determined t, and t.. In
the second story, we would make them if we had independent measurements of independent
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quantities. In the third story, we would make them if we had independent and independently
coded messages about independent questions. The judgments make sense for all three stories.
Thus, both causal and purely epistemic conceptions can serve as a basis for forming product
belief functions.

It should be mentioned that the rule for forming product belietf functions can be described
easily in terms of multivalued mappings. If Bel, is represented by the multivalued mapping
G,:S, — 2™ and Bel, is represented by the multivalued mapping G.:S, — 2™, then their
product can be represented by the multivalued mapping G:S, XS, — 2™ X 2™ given by
G(s,,5:) = Gi(5,) X Gy(s).

C. Dempster’s Rules of Conditioning and Combination

Up to this point, our stories about constructing Bel on 27 from P on 2% have included, at
least implicitly, the idea that we have no evidence bearing on T except for the evidence on
which P is based. This is not realistic in general, but often whatever other evidence we do
have is conceptually distinct, and it may be possible to represent it separately, either by a
separate belief function or by some other means. This raises the problem of combining
representations of different bodies of evidence to obtain probability judgments based on the
total evidence.

The simplest case is one in which one body of evidence about T is well represented by
a compatibility relation between T and a probability space (S,P) and by the resulting belief
function Bel, while another body of evidence bears on T only inasmuch as it tells us with
certainty that the correct answer is in a proper subset T, of T. In this case, the second body
of evidence is adequately taken into account by reducing T to T,. However, this change has
repercussions for the compatibility relation with (S,P) and possibly for (S,P) itself. Indeed,
by telling us that the correct answer to the question considered by T is in T, this second
body of evidence also tells us that the correct answer to the question considered by S is in

So = {s in S|sCt for some t in T}

This suggests that we should change our degrees of belief for the answer to the question
considered by S by conditioning P on S,, thus obtaining a probability measure, say P,, over
S,. If the reduction of T and S to T, and S, does not affect the compatibility of the elements
of T and S that remain, then the compatibility relation between S, and T, is (S, X T)NC(S,T).
So we can form a new belief function Bel’ over T, by extending P, from S, to T,. This
belief function is related to Bel by

Bel(BU(T — Ty)) — Bel(T — T,)
I — Bel(T — Ty).

Bel'(B) = (16)

and the associated plausibility function. say PI', is related to the plausibility function Pl
associated with Bel by

PI(BNT,)

PIB) = 51Ty,

(17)

The belief function Bel’ is called the result of conditioning Bel on T,, and the process by
which Bel’ is defined is called Dempster's rule of conditioning. It is clear from Equation
17 that this rule is a generalization of the Bayesian rule of conditioning for probability
measures.
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The conditional belief function Bel’ can be regarded either as a belief function over the
reduced frame T, or as a belief function over the original frame T. In the latter case. we
have, of course, some possibilities in the frame that are declared impossible by the belief
function (see Section III.B above). In either case, Equations 16 and 17 give the values of
Bel’ and PI” for all subsets of the frame.

Conditioning is readily understood in terms of the purely epistemic stories for belief
functions. Indeed, conditioning to reduce T° to T is already built into those stories, and so
further conditioning introduces no novelty. Conditioning does introduce a new element into
the causal story, however. This new element is significant because it eliminates the possibility
of a hypothetical frequency or betting interpretation of the degrees of belief given by the
belief function.

Another important case arises when two bodies of evidence are both represented by belief
functions, say Bel, and Bel,, over a frame T. Suppose Bel, is the extension to T of a
probability measure P, over a frame S, and Bel, is the extension to T of a probability measure
P, over a frame S.. Then we can construct a single belief function from these two by the
following device. First, we think of Bel, and Bel, as being defined over distinct copies of
T, and we form their product, which is a belief function over the Cartesian product T X T.
Then we remember, as it were, that the two copies of T consider the same question, and
we take this into account by conditioning the product belief function on the diagonal of
T X T, which can be identified with T itself. The resulting belief function is called the
orthogonal sum of Bel, and Bel, and the rule for forming it is called Dempster's rule of
combination.

Dempster’s rule can also be described in terms of the multivalued mappings, say G,:S,
— 27 and G.:S, — 27, representing Bel, and Bel,. We form a third multivalued mapping
G from S, X S, to 27 by setting

G(s,,s:) = G,(s)) N Gsls,);

we restrict this multivalued mapping to the subset of S, XS, consisting of all elements that
it does not map to the empty set; and we condition the product probability measure
P, X P, on this subset.

It is evident from this description in terms of multivalued mappings that Dempster’s rule
does not make any sense if we use the causal story as our canonical example for belief
functions. The problem is that the interpretation of G, and G, both involve the partial
determination of t, and it does not make sense, in general. to partially determine t twice.
At least we cannot determine that t is in G,(s,) and then determine that it is in Ga(s,) if
these two sets are disjoint. The rule directs us to eliminate such pairs (s,,s,) by conditioning.
Such conditioning could be interpreted as a direction to repeat the joint selection of s, and
s, if such an incompatible pair is obtained, but it is difficult to make sense of this repetition
in the context of the combination of evidence.

Dempster’s rule does make sense, however, in the context of the purely epistemic canonical
examples. In the story of the randomly coded messages, for example, we are simply dealing
with two independent and independently coded messages that deal with the same question.
Dempster’s rule amounts simply to treating the two messages as a joint message. '

What judgments are involved when we adopt the degrees of belief given by the orthogonal
sum of Bel, and Bel,? We can answer this question by looking at the six judgments that
are involved in forming a product belief function. Of these six, we can drop (c) and (d)
when we drop the temporary pretence that the two copies of T are concerned with distinct
questions. And we must change (e) and (f) to refer to T instead T, X T,. This resuits in the
following list:

(a') A judgment that S, and S, are initially independent, so that S, xS, is a frame.
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(b’) A judgment that the evidence on which the probability measure P, is based is inde-
pendent of the evidence on which the probability measure P, is based. so that the
probabilities given by P, X P, may be used as degrees of belief on the frame S, X S,.

() A judgment that T discerns the relevant interaction between S, and S,.

(d’) A judgment that S, X S, mediates the interaction between the evidence on which P, x P,
is based and the frame T.

For a simple concrete example of Dempster’s rule, let us consider the situation where
two independent witnesses both testify to the same fact. Suppose, indeed. that they both
testify that the answer to the question considered by T is in the subset T,, and suppose, for
simplicity, that our experience tells us that witnesses like these two are never deceitful;
witnesses like the first are reliable 80% of the time and do not know what they are talking
about 20% of the time, while witnesses like the second are reliable 90% of the time and do
not know what they are talking about 10% of the time.

We may set S, = {a,,c,} and S, = {a,,c,}, where a, is the possibility that witness i is
reliable, and c; is the possibility that witness i does not know what he is talking about. We
have P,({a,})=0.8, P,({c,})=0.2, P,({a,})=0.9, and P,({c.})=0.1. Both a, and a, are com-
patible only with t in T,, while ¢, and ¢, are compatible with all t in T. So Bel,(T,)=0.8,
while Bel,(T,)=0.9.

Judgments (a’) to (d’) are straightforward. Judgments (a’) and (b’) say that the two
witnesses are independent; they were selected independently from their respective populations
of similar witnesses, and, if they behave differently from case to case, then they are making
their choices independently. It is this assumption of independence that is most likely to be
questioned. Judgment (c') says that the concurrence of the witnesses does not rule out any
of the elements of T besides the ones in T,. the ones that can be ruled out by considering
the testimony of the two witnesses separately. Judgment (d’) says that the experience upon
which we based our assessment of the witnesses' reliability does not tell us anything more
directly about T.

The calculations for Dempster’s rule are also straightforward. The element (c,.c,) of
S, XS, is compatible with all t in T, while the other three elements are compatible only
with t in T,. So

Bel(T,) P({(ana:)‘ (a,.c2), (C|-a:)})

0.72 + 0.08 + 0.18
0.98.

Thus, the concurrence of the two witnesses warrants a much higher degree of belief in T,
than was warranted by the testimony of either witness alone.

This simple rule for the combination of testimony is actually quite old. [t was formulated
by Hooper* in his 1689 tract against the infallibility of the Pope. It was rediscovered in the
1960s by Ekelof.*” There are now many other numerical examples of Dempster’s rule in
the literature.*-'+-19-48-51

D. Conditioning and Products as Special Cases

We have just described Dempster’s rule of combination as a composition of the rule for
forming product belief functions and Dempster’s rule of conditioning. It is also true, however,
that these latter rules can be thought of as special cases of the rule of combination.

It is natural to think of Dempster’s rule ot conditioning as a special case of the rule of
combination, because evidence that affects a frame T only by telling us that the correct
answer to the question it considers is in a subset T, is naturally represented by a binary
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belief function focused on T,, and combining this binary belief function with the belief
function Bel over T results in the belief function Bel” over T whose values are given by
Equation 16, our formula for conditioning (see page 67 of Shafer®). The rule for product
belief functions can also be described in terms of Dempster’s rule of combination: given
Bel, over T, and Bel, over T,, extend them both to belief functions over T, X T, and then
form their orthogonal sum.'®

E. Marginals and Conditionals

As we recalled in Section [V.D, a probability measure over S X T is uniquely determined
by its marginal over S and its conditionals over T given the various values of s. This is not
true in general for belief functions. Thus, we cannot expect to reconstruct a belief function
from knowledge of a marginal and corresponding conditionals. We can, however, construct
a belief function on a frame S X T by combining two belief functions, one of which represents
evidence about S and the other of which represents evidence that relates T to S.

Let us call a belief function Bel over a joint frame S X T relational if its marginals for
both S and T are vacuous. The evidence represented by such a belief function does not tell
us anything directly about S or about T, but it may create some relation between the two.
(Indeed, if the relational belief function is binary, then it amounts to a compatibility relation.)
Suppose that in addition to a relational belief function Bel over S X T, we also have a belief
function Bel, over S, and suppose these two belief functions are based on distinct bodies
of evidence. The belief function Bel, can be extended to a belief function over SXT, so
we actually have two belief functions over S X T. We can combine these by Dempster’s rule
provided we accept the judgments listed in Section V.C above.

This idea of combining a relational belief function with a marginal belief function does
generalize the idea of constructing a joint probability measure from a marginal and condi-
tionals. This is because for any set of conditionals over T given the various values of s,
there exists a (nonunique) relational belief function over S X T that has these conditionals,
and combining this belief function with the marginal probability measure over S produces
the joint probability measure over S X T. For details and examples of relational belief func-
tions, see Shafer.'®

F. Condensability .

The condition of continuity can be applied directly to belief functions in the form in which
it is stated for probability measures in Section IV.B above (Equation 7). It turns out, however,
that a much stronger condition is of interest in the language of belief functions — the
condition that

Bel(N{AJA in R}) = inf{Bel(A)|A in R}

for every collection R of subsets of S that has the property that if A and B are in R, then
there is an element of R that is contained in ANB. If Bel satisfies this condition, we say
that Bel is condensable.” "' **

It is easy to show that a belief function Bel is condensable if and only if the plausibility
it assigns to a subset A is always the supremum of the plausibilities it assigns to finite subsets
of A. This is a very strong condition; it cannot be satisfied, for example, by a probability
measure that is not discrete. It is satisfied, however, by all belief functions over infinite
frames that were studied by Dempster.2-*¢ Dempster’s rule of combination can be defined
in such a way that it preserves condensability.'®

G. Consonant Belief Functions
Consider again a belief function Bel that is the extension to a frame T of a probability
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measure P over a frame S. And suppose the multivalued mapping G from S to 27 is such
that the subsets G(s) of T are nested — for each pair s, and s, of elements of S, G(s,) either
is contained in or else contains G(s.). Then the belief function Bel is called consonant. A
belief function Bel is consonant if and only if

Bel(ANB) = min{Bel(A), Bel(B)} (18)

for every pair of subsets A and B of T (see page 220 of Shafer®).

A consonant belief function represents evidence that points in a single direction, but leaves
us uncertain about how far to go in that direction. Such evidence may mean that the correct
answer is in one fairly broad subset of T. or it may mean that the correct answer is in a
more specific (smaller) subset, etc.

Condition 18 is equivalent to the condition that the plausibility function Pl associated with
Bel satisfy

PI(AUB) = max{PI(A). PI(B)}.

If the belief function Bel is condensable, then this condition is in turn equivalent to the
condition that

Pl(A) = sup{PI({th|t in A}. (19)

In the following, I will assume that the consonant belief functions we are studying are
condensable, and [ will take Equation 19 as the working definition of consonance.

Given a consonant belief function Bel over a frame T, [ will write f(t) for Pl({t}), and I
will call f the contour function for Bel (see page 221 of Shafer*). Since PKT) = 1. the
contour function must satisfy

sup{f(ti}jt in T} = 1. (20)

This is the only restriction on contour functions; any function f that maps T to the interval
[0,1] and satisfies Equation 20 is the contour function for some consonant belief function.

Consonant belief functions are much simpler than many other belief functions. One way
to see this is to note that all the information in a consonant belief function is actually
contained in its contour function, which is a point function rather than a set function and
hence much less complicated than a set function might be.

A consonant belief function is stronger than any other belief function that assigns the
same plausibilities to singletons: if Bel, is consonant, and Pl,({t}) = PL,({t}) for all t, then

Pl,(A) = sup{PL({th|t in A} < PI,(A)

for all A, and hence Bel,(A) = Bel,(A) for all A. One consonant belief function is stronger
than another if and only if its contour function is smaller; if Bel, and Bel, are consonant,
then Bel,(A) = Bel,(A) for all A if and only if f(t) < f,(t) for all t.

Any extension of a consonant belief function is itself consonant. To see this, we need
only note that the G(s) given by Equation 2 are nested whenever the G (s) are.

Extension can be expressed in terms of contour functions. If Bely, is a belief function over
U and Bel, is its extension to V, then

fy(v) = sup{fy(u)uCv}. 2D
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We may note two special cases of Equation 21. First, if f is the contour function for a
consonant belief function over S X T, then the contour function for the marginal over S is
given by

fy(s) = sup{f(s.0)|t in T}. (22)
Second, if f is the contour function for a consonant belief function over S, then the contour
function for the extension to S X T is given by

fs.(s.t) = f(s). (23)

Conditioning preserves consonance; conditioning on T, amounts to intersecting all the
sets G(s) with T,,, and nested sets remain nested when they are all intersected with a fixed
set. In terms of the contour function, conditioning on T, means replacing f by the contour
function ' on T,, where

f'(t)y = ftt

sup{f(t')t" in Te}. 24
(If we wish to think of the conditional belief function Bel’ as a belief function defined over
the original frame T, then Equation 24 should be used only for t in T; f'(t) = O for t not
in T,.)

When f is the contour function for a consonant belief function over a product frame S X T
and we condition on an element s of S, we obtain the consonant belief function over T with
contour function

f(s,1) <
Fn(0) = sup{f(s,t')|t" in T}. (25)

From Equations 22 and 25, we obtain
f(s.t) = fs(s)fp.(0). (26)

This formula tells us that there is one and only one consonant belief function over SX T
having fs as its marginal over S and the f, as its conditionals over T given s. (Compare
Section [V.D above.)

The product of two consonant belief functions is not usually consonant. This can easily
be seen by considering multivalued mappings for the two belief functions. If these are
denoted by G, and G,, and if G,(s,) C G, (s',) and G,(s.) C G,(s',), but these sets are all
nonempty and the inclusions are proper, then neither G,(s,) X G,(s',) nor G,(s',) X G,(s.)
contains the other.

Though the belief-function product does not preserve consonance, there are simple methods
of constructing a consonant belief function over a product frame from consonant belief
functions over the separate frames. There are, that is to say, simple methods of constructing
a consonant belief function Bel over S X T that has given consonant belief functions Belg
and Bel; as marginals. Here are two such methods.

l. We can ask for a consonant belief function Bel over S X T that satisfies

PI(A X B) = min{Pls(A), Ply(B)} v4))
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for all subsets A of S and B of T. If we substitute {s} for A and {t} for B in Equation
27. we obtain

f(s.t) = min{fy(s). f (0}, (28)

which is u contour function. It is easily seen that the consonunt beliet tunction with
this contour tunction does satisty Equation 27 for all A and B. So there is a unique
consonant belief function satistying Equation 27. It is clear from Equation 27 that this
beliet function has Belg and Bel, as its marginals. Since the contour function f for
any consonant belief function over S X T that does have these marginals must satisfy
f(s.t) = fy(s) and f(s.t) = f (1), or

f(s.t) < min{fy(s). f(D}.

we see that the consonant belief function with the contour function given by Equation
28 is the weakest consonant belief function having these marginals.
2. We can ask for a consonant belief function Bel on S X T that satisfies

PI(A x B) = PIJ(A)PIL(B) )

for all subsets A of S and B of T. (This is the same as Condition |4 above — one of
the two conditions that characterize the belief function product.) If we substitute {s}
for A and {t} for B in Equation 29, we obtain

f(s.t) = fg(s)f(1), (30)

which is a contour function. It is easily seen that the consonant belief function with
this contour function does satisfy Equation 29 for all A and B. So there is a unique
consonant belief function satisfying Equation 29. It is clear from Equation 29 that this
belief function has Belg and Bely as its marginals. We also see, from Equations 16
and 29, that the marginal degrees of belief for S are preserved when this belief function
is conditioned on any subset of T. and viceversa. Finally, by comparing Equations 26
and 30, we see that this belief function can be characterized as the unique consonant
belief function that has Bely as its marginal over S and Bel; as its conditional over T
given any s.

In order to use either of these methods in constructive probability judgment. we must first
of all make the judgment that our evidence is consonant with respect to the frame S X T. If
we are then able to construct marginals Belg and Bely., but feel that we can make no probability
judgments beyond these, then we can argue for completing our job by the first method.
(The idea of adopting the weakest belief function consistent with given judgments is already
familiar to us, after all, from the idea of extension. When we extend a belief function from
one frame to another, we are adopting on the second frame the weakest degrees of belief
that are consistent with our degrees of belief on the first frame.) If on the other hand, we
can make the additional judgment that Bel; should also give conditional degrees of belief
given any value of s, then no further argument is needed; we obtain our consonant belief
function by the second method.

Since these two ways of constructing belief functions over a product frame can be thought
of as alternatives to the rule for forming product belief functions, we might ask whether
they can be used to formulate alternatives to Dempster’s rule for combining belief functions.
We arrived at Dempster’s rule by treating two belief functions over a frame S as if they
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were over independent frames, forming their product over S X S, and then conditioning on
the diagonal to obtain a new belief function over S. Given two consonant belief functions
over a frame S. we might similarly use Equations 28 or 30 to construct a consonant belief
function over S XS and then condition on the diagonal to obtain a new consonant belief
function over S. If the two consonant belief functions being combined in this way have
contour functions f, and f,. respectively, then the contour function for the new consonant
belief function will be given by

min{f,(s), f:(s)}
sup{min{f,(s"). f»(s")}{s" in S}

f(s) = (30

in the case of Equation 28 and by

f(s)f:(s)
sup{f,(s") fy(s")|s’ in S}

f(s) = (32)

in the Equation case of 31. Let us call Equation 31 Zadeh's rule of combination, and let us
call Equation 32 the likelihood rule of combination. (I will explain the motivation for these
names below.)

What interpretation can be given to these rules of combination? Can they be interpretéd
as rules for pooling evidence? What kind of canonical examples might provide an interpre-
tation for them?

It should be said first of all that neither rule seems to be interpretable in terms of the
canonical examples for belief functions given in section A above. Thus, we can expect that
any interpretation we can provide for them will lead us out of the language of belief functions.

It should also be noted that Zadeh's rule does not pool evidence in the sense in which
Dempster’s rule pools evidence. We can see this by comparing the behavior of the rules
when they are used to combine a pair of identical belief functions. When we use Dempster’s
rule to combine a belief function Bel with itself, we obtain, in general, a different belief
function. one that favors even more strongly the subsets of the frame most favored by Bel.
This fits the idea of pooling independent bodies of evidence: if two independent bodies of
evidence both support A, then they together give more support to A than either alone does.
Zadeh’s rule, on the other hand, is idempotent; when it is used to combine a consonant
belief function with itself, it yields that same consonant belief function.

The likelihood rule, on the other hand, is more closely related to Dempster’s rule. In fact,
it gives the same answer as Dempster’s rule when it is used to combine a consonant belief
function with itself. One way to provide a basis for the likelihood rule, and the reason for
its name, can be seen if we imagine that the frame S is the parameter space for a statistical
model and that the belief functions being combined are derived from independent statistical
observations in the way suggested in Chapter 11 of Shafer.® In this case. the contour functions
are normalized likelihood functions, in the sense in which this term is used in statistics, and
Equation 32 is simply the usual rule for combining independent statistical observations. If
we use Equation 32 as a general rule for combining consonant belief functions, then we
may say that we are comparing ordinary sorts of evidence with parametric statistical models:
these are our canonical examples. For related ideas about using statistical examples as
canonical examples for belief functions, see Krantz and Miyamoto.™

VI. POSSIBILITY MEASURES

The idea of a possibility measure was introduced by Zadeh,™ who developed the idea
from his earlier work on fuzzy sets. Several authors®**® have pointed out that formally, at
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least. a possibility measure is very nearly the same as a consonant plausibility function.
Moreover, many of the rules Zadeh has formulated for possibility measures agree with the
rules for consonant plausibility functions. Since the extent of this agreement can be obscured
by differences in vocabulary and notation, I will review Zadeh's definitions using the
vocabulary of frames and the notation of Section V.G above. After this review I will discuss
the problem of finding canonical examples for possibility measures; | have not been able to
formulate canonical examples to explain the rules for possibility measures that differ from
those for consonant plausibility functions. Then I will turn to two examples that Zadeh has
presented to criticize the language of belief functions.

It should be mentioned. for the sake of perspective. that mathematical structures for
probability judgment that are similar to possibility measures have also been studied by
Shackle.’” Cohen,*#-® and Levi.®®®' [ will not discuss the work of these authors in this
article, but it is possible that some of this work might suggest canonical examples for a
language for probability judgment.

A. Formalism

Instead of writing about a frame that lists possible answers to a certain question, Zadeh
writes about a universe of discourse that lists possible values for a certain variable. However,
if we translate his formulation into the terminology of frames, we may say that he begins
with a frame S and a function f:S — [0,1] that he calls a possibility distribution function.
- The number f(s) is supposed to indicate the extent to which it is possible that s is the answer
to the question considered by S. If f(s} = 1. then s is a fully possible answer; if f(s) = 0,
then s is an impossible answer. Zadeh calls the function Pl on 25 defined by

PI(A) = sup{f(s)s in A}

the possibility measure based on f. The number PI(A) is supposed to indicate the extent to
which it is possible that the answer to the question considered by S is in A. (Note: A function
f that maps a set S into the interval [0.1] is also sometimes called a fuzzy subset of S; it
generalizes the idea of the characteristic function of a subset of S. Zadeh was led to his
interest in possibility measures through his interest in fuzzy sets.)

These definitions seem to agree with those in Section V.G: a possibility distribution
function seems to be the same as a contour function, and a possibility measure seems to be
the same as a consonant plausibility function. There is, however, one difference. In Section
V.G. I required that the supremum of the values of f should be one, so that PI(S) = 1.
Zadeh does not insist on this requirement: he allows PI(S) < 1.

Given a possibility measure Pl over a product frame S X T, with possibility distribution
function f, Zadeh™° calls the possibility measure over S that has the contour function

fs(s) = sup{f(s,0|t in T} (33)

the marginal of P1 for S. Given a possibility measure Pl over S, with possibility distribution
function f, he calls the possibility measure over S X T that has the contour function

fsur(s,t) = f(s) (34)

the cylindrical extension of Pl. These definitions are again familiar from our study of belief
functions; Equation 33 is the same as Equation 21, and Equation 34 is the same as Equation
23. Both are special cases of the general rule for extending belief functions.

As we saw in Section V.G, the specification of a possibility measure Pl over S and a
possibility measure Pl over T, together with the condition that

PI(A X B) = min{PI4(A), Pl(B)}
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for all subsets A of S and B of T. completely determine a possibility measure P! over SX T.
This possibility measure has Plg and Pl as its marginals, and it can also be defined by the
relation

f(s.,t) = min{fy(s), fr(t)}

forall sin S and all t in T. When Pl is determined by its marginals in this way, Zadeh calls
S and T noninteractive with respect to Pl. He also calls Pl the Cartesian product of Plg and
Pl,. In order to avoid confusion with the belief-function product, let us instead call it the
noninteractive product. As we saw in Section V.G, the noninteractive product Pl of Pl and
Pl is the weakest consonant plausibility function with the marginals Plg and Pl.

Zadeh formulates a rule for conditioning possibility measures that differs from the rule
of conditioning for consonant plausibility functions only in not requiring normalization. His
rule says simply that the result of conditioning a possibility measure Pl on a subset S, of
its frame S is the possibility measure Pl given by

(We can think of PI' as a possibility measure over S or over the reduced frame S,: in either
case Equation 35 holds for all subsets A of the frame.) In terms of the possibility distribution
functions, Equation 35 may be written

f'(s) = f(s) (36)

for all s in S,. (If we wish to regard Pl as a possibility measure over S, then we must add
that f'(s) = O for all s not in S.) If Pl is a possibility measure over a product frame S X T,
then conditioning on an element s of S results in the possibility measure Ply over T given

by
Pl; (B) = Pl({s} x B).
In terms of the possibility distribution functions, this may be written
fr.(0 = fs,0. 3N

Notice that Equations 36 and 37 are the same as Equations 24 and 25, except that they omit
the denominators that appear on the right-hand sides of Equations 24 and 25. One way to
explain these denominators is to say that they normalize the new contour functions so that
they have suprema equal to one. Since Zadeh does not insist that the suprema of possibility
distribution functions should equal one, he does not hold that such normalization is always
appropriate. ‘‘In some applications,”" he writes, **it may be appropriate to normalize . . . ™
{(Zadeh,*page 18).

Suppose we have two possibility measures Pl, and Pl, over the same frame S. Then we
may define another possibility measure Pl over S by

f(s) = min{f,(s), f-(s)} (38)

Zadeh calls Pl the result of particularizing P1, by Pl,, and he regards particularization as a

kind of pooling of information.
Particularization is a generalization of conditioning. To see this, note that the information
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that the answer to the question considered by S is in the subset S, can be represented by
the possibility measure Pl, over S that has the possibility distribution function

I ifsisin§,
f:(s) =
0 ifsisnotin§,

(This representation accords with the representation of such information in the theory of
belief functions, for this possibility measure is the plausibility function associated with the
binary Sugeno measure focused on S,.) If we particularize another possibility measure Pl
by P1,, then according to Equation 38 we will obtain a possibility measure with the possibility
distribution function

fts) ifsisins§,
fi(s) = ]
0 if s is not in S,

where f is the possibility distribution function for Pl. And f' is the same as the conditional
possibility distribution function given by Equation 36.

Comparison of Equation 38 with Equation 31 shows that the rule of combination that [
called **Zadeh’s rule’’ in the preceding section can be thought of as particularization followed
by normalization. Since Zadeh is wary ot normalization, it may be somewhat misleading
to put his name on this rule of combination. Doing so acknowledges, however, the importance 1
of Zadeh’s work in drawing attention to the minimum operation.

Not all the authors who have taken up Zadeh's ideas about possibility measures have been
as wary of normalization as Zadeh. Dubois and Prade.** for example, have added to Zadeh's 1
definition of possibility measure the requirement that the possibility for the whole frame
should be one. By insisting on normalization, these authors have brought Zadeh's theory of
possibility closer to the language of belief functions. At the same time, however, they have
been interested in Zadeh’s rule of combination and other rules of composition and combi-
nation that seem to lie outside of the language of belief functions.

I mentioned in Section V.G that the rules given there for constructing a consonant belief
function over a product frame from given marginals (Equations 28 and 30) are just two of
many possibilities. In fact, there is a distinct rule for every triangular norm. A triangular
norm**°* is a real-valued function T on the unit square [0,1] X [0,1] that satisfies

(i) T(0,0) = 0 and T(a.l) = T(l.,a) = a,
(i) T(a.b) < T(c.d) whenever a < c and b < d,
(ii1) T(a,b) = T(b.a),

(iv) T(a.T(b.c) = T(T(a,b),c).
Any such function T maps the unit square to [0,1] and gives, through the formula
fis.t) = T(fs(s), f(t)) (39
a way of constructing a consonant belief function on S X T with given marginals on S and

T.
Dubois, Smets, and Yager have all pointed out, in conversation, that any triangular norm
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also leads to a commutative and associative rule for combining possibility measures over a
given frame. We simply apply to Equation 39 the device we have already applied to the
special cases in Equations 28 and 30; given two possibility measures Pl, and Fl, over S, we
form a possibility measure over S X § by

f(s,. s2) = T(f,(s,). fisa)).

and then we condition on the diagonal to obtain a possibility measure over S. Other rules
for possibility measures have been proposed by Nguyen,®* Hisdal,* and others. For a review,
see Dubois and Prade.®

B. Interpretation

What is the meaning of a particular numerical value, say one third, for the ‘‘degree of
possibility™ PI(A)? How might we assign such a value to a particular subset A of a frame
of discernment? Also, how can we justify rules for manipulating such quantities?

We can begin to answer these questions only after we have specified a scale of canonical
examples for possibility measures. Once we have such a scale, we can say that the assignment
of a given numerical degree of possibility to a proposition means that our knowledge and
evidence about the proposition is like the knowledge and evidence about an analogous
proposition in one of the canonical examples, and the presence of such a scale transforms
the problem of assigning numerical judgments into the richer and more concrete problem
of matching our knowledge and evidence to a point on the scale. Finally, the canonical
examples should elucidate the rules for manipulating the numbers; these rules should be
intuitively reasonable, at least, in the context of these examples.

What, then, are the canonical examples for possibility measures? As we have seen, many
of the rules that have been proposed for possibility measures can be accounted for by the
canonical examples we proposed for belief functions in Section V. A, and the likelihood rule
of combination can be accounted for by using statistical models as canonical examples.
However, neither of these scales of canonical examples provide a basis for nonnormalized
possibility measures, for the plethora of rules of combination resulting from different tri-
angular norms, or for many of the other rules that various authors have proposed for possibility
measures.

Zadeh has emphasized that possibility measures should take into account imprecision of
the kind we find in natural language as well as uncertainty of the kind we can have about
precisely posed questions. Can we find canonical examples for possibility measures by
looking at the imprecision of natural languages? Can we, that is to say, tell stories in which
this imprecision is guaged by a natural numerical scale?

One approach, of course, would be to bring in the usual scale of frequency or probability.
We can imagine, that is to say, that a natural-language expression might have a sequence
of progressively less precise possible meanings, each with a given known chance. **Bob is
very tall””, for example, might have a chance 0.1 of meaning that he is at least 6 ft. 6 in.
tall. a chance 0.3 of meaning only that he is at least 6 ft. 3 in. tall, and a chance 0.6 of
meaning only that he is at least 6 ft. tall. However, here we are back in the domain of belief
functions: canonical examples where a message has different meanings with known chances.

Zadeh has suggested that ‘‘degree of possibility’’ should sometimes be interpreted as
‘‘degree of ease'’, either physical or figurative. The possibility that Hans ate a certain
number of eggs may be interpreted. for example, as the degree of ease with which he can
eat that many eggs.?® This suggestion is a step towards a canonical example; it invokes a
picture of ‘‘elastic’’ physical constraints. However, it does not tell us how to fill in this
picture so as to give a meaning to the numerical scale, and without this. **degree of ease’”
remains a vague concept, not yet differentiated from the ‘‘probability’” of the Bayesian
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language or the “‘degree of belief’" of the language of belief functions. After all, James
Bernoulli, who was the first to base a theory of subjective probability judgment on the
mathematical picture of chance. described the probability of something as the degree of ease
with which it happens.***’

I have not been able to formulate canonical examples for possibility measures that lead
to a language for probability judgment that diverges from the language of belief functions.
I believe, however. that the formulation of such examples is necessary. This, rather than
greater mathematical elegance or yet more alternative rules, is what is needed to make the
idea of a possibility measure prosper.

C. Zadeh’s Criticism of Normalization

Zadeh® has given two examples to illustrate why he thinks the normalization used in the
language of belief functions is misguided. Here is one of the examples (it is also discussed
more abstractly in Zadeh.®®

Suppose that a patient, P, is examined by two doctors. A and B. A’s diagnosis is that P has either meningitis.
with probability 0.99, or brain tumor, with probability 0.01. B agrees with A that the probability of brain tumor
is 0.01, but believes that it is the probability of concussion rather than meningitis that is 0.99. Applying the
Dempster rule to this situation leads to the conclusion that the belief that P has brain tumor is 1.0 — a conclusion
that is clearly counterintuitive because both A and B agree that it is highly unlikely that P has a brain tumor. What
is even more disconcerting is that the same conclusion, (i.e., Bel(brain tumor) = 1) would obtain regardless of
the probabilities associated with the other possible diagnoses.

Abstractly. this example involves two belief functions Bel, and Bel, over a frame of
discernment S with three elements:

S = {meningitis, tumor, concussion}

The belief functions Bel, and Bel, both happen to be probability measures. but this is not
essential to the example. The essential point is that Bel,({meningitis,tumor}) = | and
Bel,({tumor,concussion}) = 1. The first belief function rules out a concussion, and the
second rules out meningitis, so taken together they leave a tumor as the only possibility.

I am puzzled by Zadeh's rejection of this reasoning. If the evidence on which the first
belief function is based does rule out a concussion, and the evidence on which the second
is based does rule out meningitis, and if we accept the initial assumption, embodied in our
frame S, that meningitis, tumor, and concussion are the only possibilities. then it is a matter
of logic, not merely probability, that the patient must have a tumor. As Sherlock Holmes
put it, when you have eliminated the impossible, whatever remains. however improbable,
must be the truth.

In practice, evidence seldom rules out anything with absolute certainty, and it may not
be appropriate to take Bel, and Bel, at face value. Instead, we may want to adjust them to
allow every element of S some plausibility, however small. One way to do this is to discount.
Discounting a belief function means just what one might guess; when Bel is discounted at
the rate a, the degree of belief Bel(A) is reduced to (1 — a)Bel(A) for every proper subset
A of Bel's frame (Shafer,® page 252). The degree of belief we will obtain for a tumor if
we combine Bel, and Bel, after discounting will depend, of course, on the discount rates
— i.e., on our judgment of the reliabilities of the two doctors. For a study of the interaction
between discounting and combination, see Shafer.'

It is also true that combination by Dempster’s rule is probably not appropriate in this
example. The two doctors are probably not looking at independent items of evidence. There
is even a hint that what one takes as evidence for meningitis the other takes as evidence for
a concussion. A better analysis of the problem would take a closer look at the structure of
the evidence and would attempt to sort out just where the uncertainties lie, which are
independent of which, and which are best assessed by which doctor.
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Finally, I would like to raise a question about a verbal detail. Zadeh writes, *‘B agrees
with A that the probability of brain tumor is 0.01, but believes that it is the probability of
concussion rather than meningitis that is 0.99'". What is meant by the reference to a belief
about a probability? Such language is appropriate in the context of statistical models that
posit objective probabilities, but it can be misleading in the context of subjective probability
judgment. A degree of belief Bel(A) based on given evidence is a judgment in which we
may have more or less confidence, but it is not a belief about the probability of A. Degrees
of beliet Bel (A) and Bel,(A) that are based on independent bodies of evidence are answering
different questions. One is telling about the support given to A by the one body of evidence;
the other is telling about the support given by the other. They are not, just because they
happen to be numerically equal, agreeing about a single well-defined number called the
probability of A.

Here is Zadeh's second example.

Country X believes that a submarine, S, belonging to Country Y is hiding in X's territorial waters. The Minister
of Defense of X summons a group of experts. E,, . . . E,, and asks each one to indicate the possible locations of
S. Assume that the possible locations specified by the experts E,, . . . E,, m <n,are L, . . . L, respectively,
where L,, i = 1 ... .m, is a subset of the territorial waters: the remaining expents, E,,_, . . . ,E,. assert that
there is no submarine in the territorial waters. or. equivalently, that L ., = ... = L, = 0, where @ is the empty
set.

Zadeh asserts that the basic idea of the ‘‘Dempster-Shafer theory™ is that we should
construct a belief function from this information by setting the degree of belief that the
submarine is in any given subset A of the territorial waters equal to

E{W'IElgA,E'?éo}
2{WilE'i;’éﬂ}

Bel(A) = (40)

where w,, . . . ,w, are positive weights adding to one. The presence of the denominator
that normalizes Equation 40 means. according to Zadeh, that we are disregarding the opinion
of those experts who believe there is no submarine in the territorial waters.

Mathematically, the set function defined by Equation 40 is indeed a belief function, but
its use to give degrees of belief about the location of the submarine would make sense in
the language of belief functions only if:

1.  We somehow knew that exactly one of the experts is reliable.

2. We assessed our evidence about which is reliable by assigning the probability w, to
E, being reliable.

3.  We took at face value the initial assumption that there is a submarine in territorial
waters.

It is Assumption 3 that tells us to disregard the opinion of those experts who disagree. If
we do not want to disregard these opinions, presumably we will not make Assumption 3;
instead we will formulate a frame that allows for the possibility that no submarine is present
and use the contrary evidence to justify a mere probability judgment.

Here, as in the story about medical diagnosis, a better analysis would take account of the
details of the evidence the experts are using. It seems unlikely that we would have any a
priori reason to think that one of the experts is completely reliable while all the others are
unreliable. However, we might learn something by studying the evidence and pooling the
expertise of the experts in order to assess the various uncertainties in that evidence.
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