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Abstract. Historically, the study of artificial intelligence has emphasized
symbolic rather than numerical computation. In recent years, however, the
practical needs of expert systems have led to an interest in the use of
numbers to encode partial confidence. There has been some effort to square
the use of these numbers with Bayesian probability ideas, but in most
applications not all the inputs required by Bayesian probability analyses
are available. This difficulty has led to widespread interest in belief func-
tions, which use probability in a looser way. It must be recognized, however,
that even belief functions require more structure than is provided by pure
production systems. The need for such structure is inherent in the nature
of probability argument and cannot be evaded. Probability argument re-
quires design as well as numerical inputs. The real challenge probability
poses to artificial intelligence is to build systems that can design probability
arguments. The real challenge artificial intelligence poses to statistics is to
explain how statisticians design probability arguments.
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I have been asked to speak on the use of belief
functions in artificial intelligence and expert systems.
For the sake of perspective, | propose to address the
broader topic indicated by my title. The theory of
belief functions is part of the theory of probability
judgment, and a general understanding of the role of
probability judgment in artificial intelligence can help
us understand the particular role of belief functions.

I will not attempt to evaluate all the ways in which
probability has been used in artificial intelligence, nor
even all the ways in which belief functions have been
used. Instead. I will aim for some general insights into
the interaction between probability ideas and artificial
intelligence ideas. Many of my comments will be his-
torical. I hope readers will forgive me for those cases
where I belabor the obvious or repeat the well known;
my excuse is that | hope to reach a dual audience—
students of probability who may not know very much
about artificial intelligence, and students of artificial
intelligence who may not know very much about
probability.

The first two sections of the paper are introductory
in nature. Section 1 considers the reasons for the
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artificial intelligence community’s initial disinterest
in probability and its recent change of heart and
outlines the paper’s conclusions about how current
expert systems fall short of putting probability judg-
ment into artificial intelligence. Section 2 deals with
probability judgment without reference to artificial
intelligence; here I discuss the split between Bayesian
and non-Bayesian methods and place the theory of
belief functions in this historical context.

Section 3 reviews some strands of the development
within artificial intelligence of ideas about using prob-
ability judgment in expert systems. Here we see how
the general issues that separate the Bayesian and
belief-function theories appear in the context of expert
systems, and we gain some insight into why flexibility
is harder to achieve with probability judgment than
with other kinds of reasoning. Section 4 discusses the
problem of giving an artificial intelligence a genuine
capacity for probability judgment.

1. THE EMERGENCE OF PROBABILITY
IN ARTIFICIAL INTELLIGENCE

Until recently. the artificial intelligence commu-
nity showed relatively little interest in probability.
There is little probability, for example, in the three-
volume Handbook of Artificial Intelligence (Barr and
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Feigenbaum, 1981, 1982: Cohen and Feigenbaum,
1982). During the past 4 or 5 years, however, probabil-
ity and the management of uncertainty in intelligent
systems has become a widely discussed topic. Why
the initial disinterest, and why the change?

The reasons for the initial disinterest are clear.
Probabilities are numbers, and number crunching is
just what artificial intelligence was supposed not to
be. When the artificial intelligence community was
founded, computers were used mainly for number
crunching. They were impressively good at this, but
they were not intelligent. Intelligence seems to require
more general kinds of symbol manipulation.

Moreover, when we begin to think about computer
programs that will match the achievements of human
intelligence, we find that we are thinking about pro-
grams with non-numerical inputs and outputs. What
place is there for talk about numbers in the case of
these programs? They are merely sets of rules for
going from the inputs to the outputs, and while it
might be possible to identify some intermediate steps
that are analogous to operations on numerical proba-
bilities, it seems pointless to do so. It seems better to
tell what is really going on.

The prejudice against numbers in general and
probabilities in particular has not entirely disap-
peared from artificial intelligence, and the argument
sketched in the preceding paragraph is still made.
This argument is part of the motivation for the con-
tinuing development within artificial intelligence of
non-numerical methods for handling uncertainty.
These include nonmonotonic logic (McCarthy, 1980:
McDermott and Doyle, 1980; Reiter, 1980) and Paul
Cohen's theory of endorsements (Cohen, 1985).

But the factors that caused this prejudice have
substantially changed. The vague idea that artificial
intelligence can be defined largely through the con-
trast with number crunching has been replaced by the
equally vague but equally powerful idea that intelli-
gence is produced by complexity and by access to large
amounts of knowledge. Two specific openings have
appeared for probability.

1. The ban on non-numerical inputs has been
dropped in some cases. In addition to programs that
try to match aspects of human intelligence, artificial
intelligence is now also concerned with expert sys-
tems and other intelligent systems that interact with
human users and can use numerical inputs supplied
by these users.

2. The artificial intelligence community has ab-
sorbed David Marr's views on levels of explanation.
In his work on vision, Marr convincingly made the
point that full understanding of an intelligent system
involves explanation at various levels. In addition to
explanation at the level of implementation (what is
really going on) we also need explanation at more

abstract levels. “It's no use, for example, trying to
understand the fast Fourier transform in terms of
resistors as it runs on an IBM 370” (Marr, 1982, page
337). Understanding of this point takes the rhetorical
force out of the argument that there is no place for
probability ideas when inputs and outputs are non-
numerical.

Most of the current interest in probability in arti-
ficial intelligence is the result of (1). In many cases it
is impossible to build expert systems without the use
of probability. But in the long run, (2) may be more
important. Because of (2), we can now recognize the
value to an artificial intelligence of an ability to design
probability arguments and generate the numerical
judgments they require.

The ban on numerical inputs in artificial intelli-
gence was dropped because the artificial intelligence
community became interested in expert systems. Why
did this happen? The answer is that the community
discovered ways of building expert systems that incor-
porated ideas that seemed to reflect important aspects
of human intelligence. As I explain in Section 3, most
of the expert systems developed within artificial in-
telligence have been production systems, relatively
unstructured programs that have some of the flex-
ibility in acquiring and using knowledge that is
characteristic of intelligence.

[ argue in this paper that the expert systems we can
now build to use probability judgments do not have
this kind of flexibility and hence fit awkwardly under
the heading of artificial intelligence. The problem is
that probability judgment requires an overall design
and hence cannot be achieved by relatively unstruc-
tured methods of programming applied to individual
numerical probabilities. I will argue in Section 4 that
both the overall design of probability judgment and
the determination of individual numerical probabili-
ties can be achieved by an artificial intelligence only
if it is equipped with a genuine associative memory.

As a result of the explosion of interest in expert
systems, the field of artificial intelligence is now strug-
gling to maintain its sense of identity. The idea of an
expert system began in artificial intelligence, but any
system with expert capabilities can justifiably claim
the name, whether it is written in LISP or FORTRAN,
and many systems developed outside of artificial in-
telligence have more impressive expert capabilities
than those developed inside it. It is clear, therefore,
that artificial intelligence must withdraw from its
embrace of the whole field of expert systems in order
to maintain intellectual coherence. But it is unclear
just what parts of the field of expert systems will
remain in the embrace. My suggestion here is that
artificial intelligence will retain its newfound interest
in probability but will look beyond the current expert
systems to deeper uses of probability ideas.
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2. BAYESIAN AND BELIEF-FUNCTION
ARGUMENTS

In this section I review some general ideas about
probability judgment. without reference to the partic-
ular problems of artificial intelligence. I begin by
sketching a way of looking at the frequentist vs.
Bayesian controversy, a controversy that has domi-
nated discussions of probability judgment for more
than a century. After developing a constructive
understanding of the Bayesian theory, I introduce
another constructive theory, the theory of belief
functions. I argue that both theories should be
thought of as languages for expressing probability
judgments and constructing probability arguments.

2.1 Two Strategies for Probability Judgment

What we now call the mathematical theory of prob-
ability was originally called the theory of games of
chance. Probability was an entirely different topic;
something was probable when there was a good argu-
ment or good authority for it. When James Bernoulli
and others began to use the word probability in con-
nection with the theory of games of chance, they were
expressing the ambition that this theory might provide
a general framework for evaluating evidence and
weighing arguments. But just how might this work?
How can the theory of games of chance help us eval-
uate evidence?

In the nineteenth century. it became clear that there
are two distinct strategies for relating evidence to the
picture of chance. Today. these two strategies might
be called the frequentist and Bayesian strategies, but
in order to avoid some of the connotations of these
names, let me call them, for the moment, the direct
probability and conditional probability strategies.

The direct probability strategy relies on direct ap-
plication of the idea that in life, as in games of chance,
what happens most often is most likely to happen in
a particular case under consideration. The ideal kind
of evidence for this strategy is knowledge of the fre-
quency of outcomes in similar cases. | assign a 98%
probability to the prediction that a student who first
appears 3 weeks after the beginning of my elementary
statistics course will not be able to pass the course,
because it has almost always turned out that way in
the past.

The conditional probability strategy uses the pic-
ture of chance in a deeper way. It observes that games
of chance unfold step by step, with the probabilities
for different possible final outcomes changing at each
step, and it suggests that the accumulation of evidence
should change probabilities in a similar step by step
way. Thus, my probability for whether the late-
appearing student will pass my course should change
when I learn more about his history and circum-

stances. just as my probability for whether two suc-
cessive rolls of a die will add up to nine will change
when I learn the result of the first roll. The conditional
probability strategy usually leads to a more compli-
cated argument than the direct probability strategy,
since it involves construction of a probability measure
over a more complicated frame and then the reduction
of this measure and frame by conditioning.

In general. there is not, I believe. any a priori reason
to prefer one of these two strategies to the other. We
cannot say that it is normative to use one and irra-
tional to use the other. They are both strategies for
producing arguments, and it is the cogency of the
arguments that must be evaluated. It may be most
cogent to lump my new late-appearing student with
all my past late-appearing students, on the grounds
that particulars have not made much difference in the
past. Or I may have had enough experience with late-
appearing students like this one on some particulars
that I can make a better direct probability argument
by looking at the past frequency of success just for
these late-appearing students. Or I may have the
experience and insight needed to construct a proba-
bility measure that I can condition on the particulars.
The issue cannot be settled in the abstract, without
reference to the experience I bring to bear on the
problem.

Moreover, neither of the two strategies is inherently
more objective or subjective than the other. It is true
that the direct probability strategy, since it tends to
consider broader classes, is more likely to result in
probability judgments based on actual frequency
counts. But the objectivity of these frequencies must
always be coupled with a subjective judgment of their
relevance. And even with broad classes we most often
have hunches and impressions rather than actual
counts.

Historically, however. the direct probability strategy
has come to be associated with claims to objectivity.
whereas the conditional probability approach has
come to be associated with claims to rationality. This
fact seems to be a result of efforts to square the
interpretation of probability with the empiricist and
positivist philosophical trends of the late nineteenth
and early twentieth centuries.

2.2 The Frequentist vs. Bayesian Deadlock

Laplace, writing at the beginning of the nineteenth
century. was able to define numerical probability as
the measure of the “reason we have to believe.” But
by the middie of the nineteenth century. many stu-
dents of probability were looking for a more empirical
definition. They found this definition in the idea of
frequency, and they proceeded to reject those appli-
cations of probability theory that could not be based
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on observed frequencies. In particular, they rejected
Laplace's method of calculating the probability of
causes, which is a special case of the conditional
probability strategy.

The frequentist philosophy severely restricted the
domain of application of numerical probability, and
those who wanted to use numerical probability more
generally were forced to search for a philosophical
foundation for the conditional probability strategy
that would fit the positivist mind-set. Such a philo-
sophical foundation was finally established in the
twentieth century by Ramsey, de Finetti, and espe-
cially Savage. These authors conceived the idea that
subjective probability should be given a behavioral
and hence positivist interpretation—a person's prob-
akilities should be derivable from his choices. They
formulated postulates for what they called rational
behavior. postulates that assure that a person’s
choices do determine numerical probabilities. And
they argued that it is normative to follow these pos-
tulates and hence normative to have subjective
probabilities.

During the past two decades, the philosophical foun-
dation provided by Savage's postulates has led to a
remarkable resurgence, both mathematical and prac-
tical, of the conditional probability strategy. The re-
sulting body of theory has been called “Bayesian,”
because the conditional probability strategy often uses
Bayes’ theorem.

Although the new Bayesian philosophy has played
a historically valuable role in rescuing the conditional
probability strategy from its frequentist opponents, it
has its own obvious shortcomings. Most important,
perhaps, is its inability to explain how the quality of
a probability analysis depends on the availability and
quality of relevant evidence. Whereas the frequentist
philosophy tries to limit applications of probability to
models for which we have clearly relevant and objec-
tive frequency counts. there is nothing in the Bayesian
philosophy to make our choice of a model depend in
any way on the availability of relevant evidence. The
postulates apply equally to any model.

We have, then, a deadlock between two inadequate
philosophies of probability. On the one side, the fre-
quentist philosophy, which recognizes the relevance
of evidence but tries to justify claims to objectivity by
limiting numerical probability judgment to cases
where the evidence is of an ideal form: on the other
side, the Bayesian philosophy, which recognizes the
subjectivity of all probability judgment but ignores the
quality of evidence and claims it is normative to force
all probability judgment into one particular mold.

We have been caught in this deadlock for three
decades. We have tired of it, and we are inclined to
ask the two sides to compromise (see, e.g.. Box, 1980).
But we have not been able to find a philosophical

foundation for probability judgment that can resolve
the deadlock.

[ believe that the way out of the deadlock is to back
up and recognize that a positivist philosophical ac-
count of probability is no longer needed. Our intellec-
tual culture has moved away from positivism and
toward various sorts of pragmatism, and once we
recognize this we will be free to discard both the
frequentists’ claims to objectivity and the Bayesians’
claims to normativeness.

2.3 Constructive Probability

In several recent papers (especially Shafer, 1981;
Shafer and Tversky, 1985) | have proposed the name
“constructive probability” for the pragmatic, postpos-
itivist foundation that I think we need for probability
judgment. The idea is that numerical probability judg-
ment involves fitting an actual problem to a scale of
canonical examples. The canonical examples usually
involve the picture of chance in some way, but differ-
ent choices of canonical examples are possible, and
these different choices provide different theories of
subjective probability, or, if you will, different lan-
guages in which to express probability judgments. No
matter what language is used, the judgments expressed
are subjective; the subjectivity enters when we judge
that the evidence in our actual problem matches in
strength and significance the evidence in the canonical
example,

Within a given language of probability judgment,
there can be different strategies for fitting the actual
problem to the scale of canonical examples. The direct
and conditional probability strategies described above
live, I think, in the same probability language, the
language in which evidence about actual questions is
fit to canonical examples where answers are deter-
mined by known chances. We may call this language
the Bayesian language. (For a more detailed account
of different strategies that are available within the
Bayesian language, see Shafer and Tversky (1985).
The distinction between the direct and conditional
probability strategies corresponds to the distinction
that is made there between total-evidence and condi-
tioning designs.)

The constructive viewpoint tells us that when we
work within the Bayesian language we must make a
judgment about how far to take the conditional prob-
ability strategy in each particular problem. We make
this judgment on the basis of the availability of evi-
dence to support the conditional and unconditional
probability judgments that are required.

It may be useful to elaborate on this point. Suppose
we want to make probability judgments about a frame
of discernment S. (A frame of discernment is a list of
possible answers to a question: we want to make
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probability judgments about which answer is correct.)
We reflect on our evidence, and we produce a list
E,, .... E, of facts that seem to summarize this
evidence adequately. The conditional probability
strategy amounts to standing back from our knowl-
edge of these n facts, pretending that we did not yet
know them, and constructing a probability measure
over a frame that considers not only the question
considered by S but also the question whether E,, . . .,
E, are or are not true: typically we construct this
measure by making probability judgments P(s) and
P(E, & ... & E,|s) for each s in S. The problem with
this strategy is that we now need to look for further
evidence on which to base all these probability judg-
ments. We have used our best evidence up, as it were,
but now we have an even larger judgmental task than
before. According to the behaviorist Bayesian theory,
there is no problem—it is normative to have the
requisite probabilities, whether we can identify rele-
vant evidence or not. But according to the constructive
viewpoint, there is a problem, a problem that limits
how far we want to go. We may want to apply the
conditional probability strategy to some of the E;, but
we may want to reserve the others to help us make
the probability judgments (see Shafer and Tversky,
1985).

2.4 The Language of Belief Functions

Whereas the Bayesian probability language uses
canonical examples in which known chances are at-
tached directly to the possible answers to the question
asked, the language of belief functions uses canonical
examples in which known chances may be attached
only to the possible answers to a related question.

Suppose S and T denote the sets of possible answers
to two distinct but related questions. When we say
that these questions are related, we mean that a given
answer to one of the questions may fail to be compat-
ible with some of the possible answers to the other.
Let us write “sCt” when s is an element of S, ¢ is an
element of T, and s and t are compatible. Given a
probability measure P over S (assume for simplicity
that P is defined for all subsets of S), we may define
a function Bel on subsets of T by setting

(1) Bel{(B) = Pls| if sCt, then ¢ is in B}

for each subset B of T. The right-hand side of (1) is
the total probability that P gives to those answers to
the question considered by S that require the answer
to the question considered by T to be in B: the idea
behind (1) is that this probability should be counted
as reason to believe that the latter answer is in B. We
might, of course, have more direct evidence about the
question considered by T, but if we do not, or if we
want to leave other evidence aside for the moment,

then we may call Bel(B) a measure of the reason we
have to believe B based just on P.

The function Bel given by (1) is the belief function
obtained by extending P from S to T. A probability
measure P is a special kind of belief function: this is
just the case where (i) S = T and (ii) sCt if and only
if s = ¢t. Thus the language of belief functions is a
generalization of the Bayesian language.

All the usual devices of probability are available to
the language of belief functions, but in general we use
them in the background, at the level of S. before we
move to degrees of belief on T, the frame of interest.

Like other non-Bayesian approaches to probability
judgment. the language of belief functions counte-
nances the use of probability models that are less
complete than Bayesian models. In order to obtain a
belief function over T, we begin with a probability
measure over S alone, and we use observed facts to
create a compatibility relation C between S and 7. A
Bayesian conditional probability argument that used
the frames S and T would extend the probability
measure over S to a complete probability measure over
S X T. and it would then use the compatibility relation
to condition this measure.

I have studied the language of belief functions in
detail in earlier work—see especially Shafer (1976,
1986a). Here 1 will use some examples of (1) to illus-
trate the language and to contrast it with the Bayesian
language.

Example 1. Is Fred. who is about to speak to me,
going to speak truthfully. or is he, as he sometimes
does, going to speak carelessly. saying whatever comes
into his mind? Let S denote the possible answers to
this question; S = {truthful. careless]. Suppose I know
from experience that Fred's announcements are truth-
ful reports on what he knows 80% of the time and are
careless statements the other 20% of the time. Then
I have a probability measure P over S: P{truthful} =
.8, Pjcareless} = .2,

Are the streets outside slippery? Let T denote the
possible answers to this question; T = {yes, no}. And
suppose Fred's announcement turns out to be. “The
streets outside are slippery.” Taking account of this, I
have a compatibility relation between S and T truth-
ful is compatible with yes but not with no, while
careless is compatible with both yes and no. Applying
(1), I find

(2) Bel({yes}) = .8 and Bel({no}) = 0:

Fred's announcement gives me an 80% reason to
believe the streets are slippery, and no reason to
believe they are not.

How might a Bayesian argument using this evidence
go? A Bayesian direct probability argument would use
all my evidence, Fred's announcement included, to
make a direct probability judgment about whether the
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streets are slippery. The judgment that Fred is 80%
reliable need not appear explicitly in such an argu-
ment. On the other hand, I can construct a Bayesian
conditional probability argument using this judgment
as one ingredient. I need two other judgments as well:
(i) A prior probability, say p, for the proposition that
the streets are slippery; this will be a judgment based
on evidence other than Fred's announcement. (ii) A
conditional probability, say ¢, that Fred's announce-
ment will be accurate even though it is careless. I can
construct a probability measure from these judgments,
and I can condition this measure on the content of
Fred’s announcement.

The probability measure constructed in this condi-
tional argument is formally a measure over S X T,
where T is still the set of answers to the question
whether the streets are slippery,

T = {yes, noj,

but where S now tells us not only whether Fred is
truthful or careless but also whether he is accidentally
telling the truth in case he is careless,

S = {truthful, careless but accurate,
careless and inaccurate}.

My probabilities for T are p for yes and 1 — p for no.
My probabilities for S are .8 for truthful, .2g for
careless but accurate, and .2(1 — g) for careless and
inaccurate. Assuming probabilistic independence be-
tween the state of the streets and Fred's behavior, [
multiply these numbers to obtain the product proba-
bility measure on S X T, given in the second column
of Table 1. Conditioning this measure on the content
of Fred's announcement means eliminating the three
possibilities marked with an x in the table; since Fred
said the streets are slippery, he cannot be truthful or
accurate if the answer to T is no, and he cannot be
inaccurate if the answer to T is yes. Having eliminated
these three possibilities, I renormalize the probabili-
ties for the other three so that they add to one: this
means multiplying each probability by K, where K =
1/(.8p + .2gp + .2(1 — ¢)(1 — p)). This results in the
posterior probabilities given in the third column in

Table 1. Adding the first two nonzero probabilities in
this column, I obtain my total posterior probability
that Fred's announcement that the streets are slippery
is true:

.8p + 2gp
8p+ .2gp+ 21 —g)(1—p)°

(3)

Is the Bayesian argument (3) better than the belief-
function argument (2)? This depends on whether I
have the evidence required. If I do have evidence to
support the judgments p and ¢—if, that is to say, my
situation really is quite like a situation where the
streets and Fred are governed by these known chances,
then (3) is a cogent argument, and it is better than (2)
because it takes more evidence into account. But if
the evidence on which I base p and ¢ is of much lower
quality than the evidence on which I base the number
80%, then (2) will be the better argument.

The traditional debate between the frequentist and
Bayesian views has centered on the quality of the
evidence for prior probabilities. It is worth remarking,
therefore, that q. rather than p, may well be the weak
point in the argument (3). I probably will have some
other evidence about whether it is slippery outside,
but I may have no idea about how likely it is that
Fred’s careless remarks will accidentally be true.

A critic of the belief-function argument (2) might
be tempted to claim that the Bayesian argument (3)
shows (2) to be wrong even if I do lack the evidence
needed to supply p and q. Formula (3) gives the correct
probability for whether the street is slippery, the critic
might contend. even if I cannot say what this proba-
bility is, and it is almost certain to differ from (2).
This criticism is fundamentally misguided. In order to
say that (3) gives the “correct” probability, I must be
able to convincingly compare my situation to the
picture of chance. And my inability to model Fred
when he is being careless is not just a matter of not
knowing the chances—it is a matter of not being able
to fit him into a chance picture at all.

Example 2. Suppose I do have some other evi-
dence about whether the streets are slippery: my
trusty indoor-outdoor thermometer says that the

TaBLE 1
Probability of (s, t)
(s, t)
Initial Posterior

(Truthful, yes) 8p 8pK
x (Truthful, no) 8(1 — p) 0

(Careless but accurate, yes) 2gp 2gpK
x (Careless hut accurate, no) 29(1 — p) 0
x (Careless and inaccurate, yes) 21 -qp 0

(Careless and inaccurate, no)

2(1-¢q)1-p)

2(1 - @1 - pK
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TABLE 2

Probability of s Elements of T

Initial Posterior compatible with s

(Truthful, working)  .792 0

(Truthful, not) .008 .04 Yes
{Careless, working) .198 .95 No
(Careless, not) .002 .01 Yes, no

temperature is 31° Fahrenheit, and | know that be-
cause of the traffic ice could not form on the streets
at this temperature.

My thermometer could be wrong. It has been very
accurate in the past, but such devices do not last
forever. Suppose 1 judge that there is a 99% chance
that the thermometer is working properly, and [ also
judge that Fred's behavior is independent of whether
it is working properly or not. (For one thing, he has
not been close enough to my desk this morning to see
it.) Then I have determined probabilities for the four
possible answers to the question, “Is Fred being truth-
ful or careless, and is the thermometer working
properly or not?” For example, | have determined the
probability .8 X .99 = ,792 for the answer “Fred is
being truthful. and the thermometer is working
properly.” All four possible answers, together with
their probabilities, are shown in the first two columns
of Table 2. I will now construct a belief function over
T by using these four answers as my frame S.

Taking into account what Fred and the thermome-
ter have said, I obtain the compatibility relation be-
tween S and T given in the last column of the
Table 2. (Recall that T considers whether the streets
are slippery; T = {yes, no}.) The element (truthful,
working) of S is ruled out by this compatibility relation
(since Fred and the thermometer are contradicting
each other, they cannot both be on the level); hence,
I condition the initial probabilities by eliminating the
probability for (truthful, working) and renormalizing
the three others. The resulting posterior probabilities
on S are given in the third column of the Table 2.

Finally, applying (1) with these posterior probabil-
ities on S, [ obtain the degrees of belief

(4) Bel({yes}) = .04 and Bel({no}) = .95.

This result reflects that fact that I put much more
trust in the thermometer than in Fred.

The preceding calculation is an example of
Dempster’s rule of combination for belief func-
tions. Dempster’s rule combines two or more belief
functions defined on the same frame but based on
independent arguments or items of evidence; the result
is a belief function based on the pooled evidence. In
this case the belief function given by (2), which is
based on Fred’s testimony alone, is being combined

with the belief function given by
(5) Bel({yes}) = 0 and Bel({no}) = .99,

which is based on the evidence of the thermometer
alone. In general, as in this example, Dempster’s rule
corresponds to the formation and subsequent condi-
tioning of a product measure in the background. See
Shafer (1986a) for a precise account of the independ-
ence conditions needed for Dempster’s rule.

Example 3. Dempster’s rule applies only when two
items of evidence are independent. but belief func-

“tions can also be derived from models for dependent

evidence.

Suppose. for example, that I do not judge Fred's
testimony to be independent of the evidence provided
by the thermometer. | exclude the possibility that
Fred has tampered with the thermometer and also the
possibility that there are common factors affecting
both Fred's truthfulness and the thermometer's ac-
curacy. But suppose now that Fred does have regular
access to the thermometer, and I think that he would
likely know if it were not working. And I know from
experience that it is in situations where something is
awry that Fred tends to let his fancy run free.

In this case. I would not assign the elements of S
the probabilities given in the second column of
Table 2. Instead. I might assign the probabilities given
in the second column of Table 3. These probabilities
follow from my judgment that Fred is truthful 80% of
the time and that the thermometer has a 99% chance
of working, together with the further judgment that
Fred has a 90% chance of being careless if the ther-
mometer is not working.

When I apply (1) with the posterior probabilities
given in Table 3, I obtain the degrees of belief

Bel(}yes}) = .005 and Bel(}no}) = .95.

These differ from (4), even though the belief functions
based on the separate items of evidence will still be
given by (2) and (5).

In this example. the combination of two belief func-
tions (2) and (5) departed from Dempster's rule in
that the probability measure constructed over the joint
probability space in the background was not a product
measure. This is just one of the ways the language of
belief functions can take dependence into account.

TABLE 3

Probability of s Elements of T

g compatible with s

Initial  Posterior

(Truthful, working)  .799 0

(Truthful, not) 001 005 Yes
(Careless, working) 191 950 No
(Careless, not) 009 045 Yes, no
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Another way is to modify the compatibility relation
between the joint probability space and the frame T
(Shafer. 1986a). Another is to rework the way the
evidence is broken up, so that different items of evi-
dence better correspond to independent uncertainties
(Shafer, 1984).

2.5 Conclusion

I would like to emphasize that nothing in the phi-
losophy of constructive probability or the language of
belief functions requires us to deny the fact that
Bayesian arguments are often valuable and convine-
ing. The examples I have just discussed were designed
to convince the reader that belief-function arguments
are sometimes more convincing than Bayesian argu-
ments. but I am not claiming that this is always or
even usually the case. What the language of belief
functions does require us to reject is the philosophy
according to which use of the Bayesian language is
normative.

From a technical point of view, the language of
belief functions is a generalization of the Bayesian
language. But as our examples illustrate, the spirit of
the language of belief functions can be distinguished
from the spirit of the Bayesian language by saying
that a belief-function argument involves a probability
model for the evidence bearing on a question, whereas
a Bayesian argument involves a probability model for
the answer to the question.

Of course. the Bayesian language can also model
evidence. The probability judgments made in a belief-
function argument can usually be extended to a
Bayesian argument that models both the answer to
the question and the evidence for it by assessing prior
probabilities for the answer and conditional probabil-
ities for the evidence given the answer. The only
problem is that we may lack the evidence needed to
make all the judgments required by this Bayesian
argument convincing. The advantage gained by the
belief-function generalization of the Bayesian lan-
guage is the ability to use certain kinds of incomplete
probability models.

3. THE ATTEMPT TO USE PROBABILITY
IN PRODUCTION SYSTEMS

The field of expert systems developed within arti-
ficial intelligence from efforts to apply systems of
production rules to practical problems. The current
interest in probability judgment in artificial intelli-
gence began with efforts to incorporate probability
Judgments into production rules. In this section |
review these efforts and relate them to what we
learned in the preceding section about the Bayesian
and belief-function languages.

A production rule is simply an if-then statement,
interpreted as an instruction for modifying the con-
tents of a data base. When the rule is applied, the
action specified by its right-hand side is taken if the
condition on its left-hand side is found in the data
base. A production system is a collection of production
rules, which are repeatedly applied to the data base
either in the same predetermined order or else in an
order determined by some relatively simple principle.
Production systems were used in programming lan-
guages in the early 1960s, and they were advanced as
cognitive models by Newell and Simon in the late
1960s and early 1970s (Newell and Simon. 1965;
Newell, 1973). These systems are attractive models
for intelligence because their knowledge is represented
in a modular way and is readily available for use. Each
rule represents a discrete chunk of knowledge that can
be added to or removed from the system without
disrupting its ability to use the other chunks, and the
system regularly checks all the chunks for their rele-
vance to the problem at hand (Davis and King, 1984).

When artificial intelligence workers undertook,
in the 1970s, to cast various bodies of practical
knowledge in the form of production rules. they
found that in many fields knowledge cannot be
encoded in the form of unqualified if-then statements.
Instead, probability statements seem to be required:
“If E,, E,, ... E,, then probably (or usually or almost
certainly) H.” So these workers found themselves
trying to use production systems to manipulate prob-
ability judgments.

Many tacks were taken in the effort to use proba-
bility in production systems, but I would like to em-
phasize two lines of development. One of these begins
with PROSPECTOR and leads to Pearl and Kim’s
elegant work on the propagation of Bayesian proba-
bility judgments in causal trees, while the other begins
with the certainty factors of MYCIN and leads to the
use of belief functions in diagnostic trees. I will review
these two lines of development in turn.

As it turns out, the results of both lines of devel-
opment can be unified in a general scheme for propa-
gating belief functions in trees (Shenoy and Shafer,
1986). I will briefly describe this general scheme.

3.1 Bayesian Networks

The artificial intelligence workers at SRI who de-
veloped the PROSPECTOR system for geological ex-
ploration in the middle 1970s thought of production
rules as a means for propagating probabilities through
a network going from evidence to hypotheses. Figure
1. taken from Duda, Hart and Nilsson (1976), gives
an example of such a network; here. E; denotes an
item of evidence, and H; denotes a hypothesis. The
idea is that the user of the system should specify that
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Fic. 1. PROSPECTOR's inference network.

some of the E, at the bottom of the network are true
and some are false, or should make probability judg-
ments about them, and the production rules, corre-
sponding to conditional probabilities for the links in
the network, should propagate these probability judg-
ments through the network to produce judgments of
the probabilities of the hypotheses.

Unfortunately, the introduction of probabilities
into production rules does not square well with the
modularity we want these rules to have. The
PROSPECTOR workers wanted to be able to elicit
from a geologist statements of the form, “If E; and E;
and..., then E,. with probability p,” and they wanted
to allow the geologist to make each of these statements
independently. But this led to problems in putting the
statements together into a calculation of the proba-
bilities of the hypotheses. For example: (1) The con-
ditional probabilities elicited may not be sufficient to
determine a joint probability measure over all the
E’s and H's. The geologist might give rules corre-
sponding to P(E;| Es) and P(E;| E,) in Figure 1 but
neglect or feel unable to give a rule corresponding to
P(E; | Es & Eq). (2) The conditional probabilities that
are given may be inconsistent. (3) The network may
have cycles, which will cause trouble when propaga-
tion is attempted.

These problems were handled in PROSPECTOR
in relatively ad hoc ways. Problem (1) was handled
partly by independence assumptions and partly by
maximum-minimum rules reminiscent of the theory
of fuzzy sets. Problem (2) was handled by formulating
rules of propagation which did not always accord with
the rules of probability but which were insensitive to
some kinds of inconsistencies. Problem (3) was han-
dled by arbitrarily rejecting new production rules when
they would introduce cycles into the network already
constructed.

PROSPECTOR was only modestly successful, but
it was very influential in the questions it raised. The
PROSPECTOR workers subscribed to Bayesian prin-

ciples, and they were conscious of their failure to
follow those principles completely. Is it possible to do
better? Can probability judgments be treated modu-
larly within the Bayesian language? To what extent
is the propagation of probabilities possible within this
language?

The best work that has been done in response to
these questions is that of Judea Pearl and his students
at UCLA (Pearl. 1982, 1986; Kim, 1983; Kim and
Pearl, 1983). Pearl has shown that we can make sense
of the independence assumptions needed to construct
a probability measure over a network from simple
conditional probabilities and we can propagate up-
dated probabilities through the network in a simple
and elegant way provided that the network has a
causal interpretation and a relatively simple form: it
must be a simple directed tree or else a more general
type of directed tree that we may call a Kim tree.

Recall that a tree is a graph in which there are no
cycles. A simple directed tree is a tree in which the
links are assigned directions that all run outward (or
downward, if we want) from a single initial node, as
in Figure 2a. A Kim tree is a tree in which the links
are assigned arbitrary directions. Such a tree can
always be laid out so that the directions are downward,
as in Figure 2b. In Pearl's work, the nodes of a tree
correspond to random variables, and the directions of
the links are interpreted as directions of causation.
Thus each variable is influenced by the variables above
it in the graph and influences the variables below it.
An observation of the value of one variable is diag-
nostic evidence about the value of a higher variable
and causal evidence about the value of a lower
variable.

Once a Kim tree is constructed for a problem. the
construction of a probability measure over it and the
updating of the measure are straightforward. Given
the independence conditions of Pearl and Kim. which
are reasonable in the causal context, a measure over
the tree can be constructed from prior probabilities
for the topmost nodes and conditional probabilities
for all the links. Moreover, this construction is
straightforward; there are no complicated consistency
conditions that the conditional probabilities must
meet. Once construction is completed. the measure
can be stored and updated locally. At each node we
store information about the conditional probabilities
corresponding to incoming and outgoing links, the
current probability measures for the variable at the
node and the variables at neighboring higher nodes,
and likelihood-type information from neighboring
lower nodes. When the value of a variable is then
observed, this information can be propagated through
the network to update the entire probability measure
in one pass. All computations are made locally, with
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(a)

(b}

F16. 2. Pearls causal tree.

each node communicating only updated local infor-
mation to its neighbors.

An obvious shortcoming of this elegant scheme is
its restriction to Kim trees. In few problems will the
causal relations that we think important take so sim-
ple a form. Kim (1983) and Pearl (1986) have shown
how such trees might be used to approximate more
realistic models; they propose first using a more gen-
eral graph to elicit a probability measure from an
expert, and then approximating this measure with a
Kim tree. This solution does not seem very satisfac-
tory, however. It is not clear that the approximation
will be satisfactory, and more importantly, the con-
structive nature of the initial probability measure is
put into question. In a Kim tree the initial probability
measure can be constructed from probability and con-
ditional probability judgments without concerns ahout
consistency, but in a more general graph consistency
conditions will be so complicated that it will be im-
possible for us to hope they will be met unless we
pretend that we are indeed eliciting a measure instead
of constructing one.

Another obvious shortcoming is the restriction to
thoroughly causal models. In a sense, of course, all
evidence is causal. With sufficient complication, we
can always construct a model that relates the facts we
observe to deeper causes and also relates these causes
to the questions that interest us. But we may lack the
evidence needed to make good probability judgments
relative to such a model.

3.2 Certainty Factors and Belief Functions

The work on the MYCIN system for medical diag-
nosis began earlier and has been more extensive than
the work on PROSPECTOR. It has also had more
effect on subsequent expert systems; various versions
of EMYCIN, the expert system shell that was ab-
stracted from MYCIN, are now being widely used.
The story of the MYCIN effort has been told in a
recent book (Buchanan and Shortliffe, 1984), which
includes extensive discussion of the certainty factors

that were used by MYCIN and the similarities of these
certainty factors to the values of belief functions.

MYCIN departed from the pure production system
picture by using a backward-chaining strategy to select
production rules to apply. This means that it selected
rules by comparing their right-hand sides to goals
instead of comparing their left-hand sides to state-
ments already accepted. If the right-hand side of a
rule matched a goal, its left-hand side was then estab-
lished as a goal, so that there was a step by step
process backward from conclusions to the knowledge
needed to establish them.

MYCIN also differed from PROSPECTOR in that
the MYCIN workers rejected at the outset the idea
that the numerical probability judgments associated
with the rules could or should be understood in Baye-
sian terms. They emphasized this point by calling
these numbers “certainty factors” rather than proba-
bilities. And they formulated their own rules for com-
bining these certainty factors.

In spirit, and to a considerable extent in form, these
rules agree with Dempster’s rule for combining inde-
pendent belief functions. I would explain this coinci-
dence by saying that in developing their calculus for
certainty factors, Shortliffe and Buchanan were trying
to model the probabilistic nature of evidence while
avoiding the complete probability models needed for
Bayesian arguments.

In recent work (Gordon and Shortliffe, 1984, 1985),
some of the MYCIN workers have taken a close look
at the similarity between the calculus of certainty
factors and the language of belief functions and have
asked how belief functions can contribute further to
the MYCIN project. They have drawn two main con-
clusions. First, it is sensible to modify some of the
rules for certainty factors to put these rules into more
exact agreement with the rules for belief functions.
Second, the diagnosis problem that was central to
MYCIN can be understood more clearly in terms of
belief functions if it is explicitly expressed as a prob-
lem involving hierarchical hypotheses.
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The term “hierarchical hypotheses” refers to the
fact that the items of evidence in a diagnostic problem
tend to support directly only certain subsets of the
frame of discernment, subsets which can be arranged
in a tree. Figure 3, taken from Gordon and Shortliffe
(1984), illustrates the point. The four nodes at the
bottom of this tree represent four distinct causes of
cholestatic jaundice; they form the frame of discern-
ment for the diagnostic problem. Some items of evi-
dence may directly support (or directly refute) one of
these causes for a particular patient’s jaundice. Other
evidence may be less specific. There may, for example,
be evidence that the jaundice is due to an intrinsic
liver problem, either hepatitis or cirrhosis. On the
other hand, it is hard to imagine a single item of
medical evidence supporting the subset {cirrhosis,
gallstone] without supporting one of these more di-
rectly: this is reflected by the fact that this subset does
not correspond to an intermediate node of the tree.

This picture suggests that a belief-function argu-
ment based on such medical evidence may involve
combining many belief functions by Dempster’s rule,
where each belief function is a simple support function
focused on a subset in the tree or its complement. (A
simple support function is a belief function obtained
from (1) when S has only two elements and one of
these is compatible with all the elements of T.)

Two concerns can be raised about this use of
Dempster’s rule. First, there is the issue of computa-
tional complexity. Since the computational complex-
ity of Dempster's rule increases exponentially with
the size of the frame, it might not be feasible to
implement the rule for a large diagnostic tree. Second,
there is the issue of dependence. Will the items of
evidence bearing on different nodes of the tree all be
independent?

As it turns out, computational complexity is not
a problem. By taking advantage of the tree struc-
ture, we can devise remarkably efficient algorithms
for implementing Dempster's rule (Shafer and Logan,
1985).

Violations of the independence assumptions needed
for Dempster’s rule pose a more worrisome problem.
It seems unlikely that the uncertainties involved in a
very large number of items of medical evidence will
all be independent. This does not mean that a belief-
function analysis will be impossible or unsatisfactory,
but it does mean that a satisfactory belief-function
analysis may require modeling dependencies in the
evidence.

3.3 Propagating Belief Functions in Trees

It turns out that Pearl’'s method of propagating
Bayesian probabilities in causal trees and Shafer and
Logan's method of combining simple support func-
tions in diagnostic trees are both speeial cases of a
general scheme for propagating belief functions in
qualitative Markov trees. The following comments on
this general scheme are relatively technical but may
be of interest to some readers. For more detail, see
Shenoy and Shafer (1986).

The idea of a qualitative Markov tree is based on
the idea of qualitative conditional independence. We
say that two partitions P, and P, of a frame S
are conditionally independent given a third partition
Pif PN P, N P, # @ whenever P, € P,, P, € P,,
PN P,#3, and PN P, # @. This means that once
we know which element of P contains the truth,
knowledge of which element of P, contains the truth
tells us nothing more about which element of P»
contains the truth. Qualitative conditional independ-
ence is important for belief functions, because it is
legitimate. when P, and P, are conditionally inde-
pendent given P, and we want to combine a belief
function on P, with a belief function on P, to first
simplify both to belief functions on P. This can be
helpful if P is a relatively coarse partition, for then
the combination is easier to think about and compu-
tationally more feasible.

A qualitative Markov tree is a tree of partitions with
the property that the disconnected branches that

cholestatic
jaundice

PN

intrahepatic extrahepatic

cholestasis cholestasis
hepatitis cirrhosis galistone pancreatic cancer

F1G. 3. A diagnostic tree.
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(a)
Fi1G. 4. The tree of partitions. (b) derived from a diagnostic tree (a).

result from the removal of a partition P are always
conditionally independent given P. We obtain a qual-
itative Markov tree if we replace each random variable
in a Bayesian causal tree with the partition of the
sample space it induces. We can also construct a
qualitative Markov tree from a diagnostic tree; for
each mother node in the diagnostic tree, we form a
partition whose elements are the daughters of the
mother and the complement of the mother. Figure 4b
shows the qualitative Markov tree obtained in this
way from the diagnostic tree of Figure 4a.

Suppose we wish to combine belief functions defined
on various partitions in a qualitative Markov tree. It
is legitimate to do so in a stepwise way, simplifying
the belief function on one partition to a belief function
on its neighbor, combining all the belief functions
projected to the neighbor in this way, and then pro-
jecting to the next neighbor. The schemes of Pearl
and Shafer and Logan both turn out to be special cases
of this simple general idea.

In addition to generalizing Pearl and Shafer and
Logan, this scheme for propagating belief functions in
trees promises to be useful as a general framework for
designing probability arguments. Independent items
of evidence often bear on different but related parti-
tions (or questions, or variables), and a qualitative
Markov tree provides a way of keeping track of the
relations.

3.4 Conclusion

The preceding look at attempts to use probability
judgment in expert systems justifies at least one
general conclusion: probability judgment in expert
systems is very much like probability judgment
everywhere else. The general issues about probability
judgment that we identified in Section 2 all reappear
in the expert systems work. In expert systems, as
elsewhere, probability judgment is constructive and
requires an overall design. It is sometimes possible to
provide such a design within the Bayesian language,

(b)

but Bayesian designs often demand judgments for
which we do not have adequate evidence. And belief-
function analyses often require models for dependent
evidence.

Production systems were attractive to the artificial
intelligence community because these systems seemed
to have the flexibility in acquiring and using knowl-
edge that seems characteristic of intelligence. But it
seems fair to say that the attempt to incorporate
probability judgment into production systems has
failed. The most successful production systems are
still those, like R1 and DART. that do not attempt to
use numerical measures of uncertainty. Many expert
systems have recently been built using the EMYCIN
shells, but more often than not the builders of these
systems ignore the “certainty factor” capacities of the
shells.

It appears that probability judgment simply does
not have the extremely modular character that made
production systems so attractive. Almost always, prob-
ability judgment involves not only individual numer-
ical judgments but also judgments about how these
can be put together. This is because probability judg-
ment consists, in the final analysis, of a comparison
of an actual problem to a scale of canonical examples.

I believe that progress will be made over the next
few years in using probability in expert systems. But
these systems will be intensely interactive. They will
depend on the human user to design the probability
argument for the particular evidence at hand: they
will be able at most to help the user construct his or
her causal, diagnostic, or qualitative Markov tree. And
they will also depend on the human user to supply
individual numerical probability judgments.

4. THE CONSTRUCTION OF ARGUMENTS

A genuine capacity for probability judgment in an
artificial intelligence would involve both the ability to
generate numerical probability judgments and the
ability to design probability arguments. How might
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these abilities be programmed? We do not have an
answer, but we should start thinking about the
question.

As the result of the work by psychologists during
the past decade. especially the work of Kahneman and
Tversky (see Kahneman, Slovic, and Tversky, 1982),
we do have some ideas about how people generate
numerical probability judgments. They conduct inter-
nal sampling experiments, they make similarity judg-
ments, they construct causal models and perform
mental simulations with these models, they consider
typical values and discount or adjust these, and so on.
An obvious and appropriate strategy for artificial in-
telligence is to try to implement these heuristics,

The heuristics sometimes lead to systematic mis-
takes or biases, and it is by demonstrating these biases
that the psychologists have convinced us that people
use them. There is a tendency, therefore, to think that
people are doing something suboptimal or unnorma-
tive when they use them. Indeed, proponents of the
Bayesian philosophy frequently assert that the psy-
chological work only demonstrates what people do and
is irrelevant to what people should do. When we face
up to the artificial intelligence problem, however, we
see that the heuristics are really all we have. People
have to use such heuristics if they are to make quick
probability judgments about questions they have not
previously considered, and our programs will also have
to use them if they are going to be equally flexible.
The challenge is to figure out how to use the heuristics
well enough that using them will not usually cause
mistakes.

It is more difficult to say anything about how we
might build the ability to design probability argu-
ments. The lesson from Section 3 is clear. though: the
chunks that we try to fit together when we search for
a convincing argument must be larger than the chunks
represented by production rules. It is also clear that
the ability to construct cogent probability arguments
must include an ability to evaluate whether a proba-
bility argument is cogent.

[ believe that our ability to build systems with
human-like capabilities in designing probability ar-
guments and generating numerical probability judg-
ments will ultimately depend on our ability to build
associative memories., With a genuine associative
memory, we could retrieve stored experiences that
approximately match any arbitrary new situation, not
just those that match a relatively few situations we
might specify in advance. The retrieval of such stored
experiences on a fine scale would permit us to calculate
frequencies that could serve as numerical probability
judgments, and the comparison to other problems on
a coarser scale could give hints for the design of a
probability argument. Associative memory is currently
an active and exciting field of research in artificial

intelligence (Hinton and Anderson, 1981; Hopfield,
1982: Kohonen, 1984). It is a field where statisticians
should be making a greater contribution than they
are.

The entire field of artificial intelligence poses a
challenge to students of probability. I believe that
probability judgment will turn out to be possible and
important in artificial intelligence, but the extent of
its ultimate usefulness cannot be taken for granted; it
must be demonstrated.
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The Probability Approach to the Treatment
of Uncertainty in Artificial Intelligence and

Expert Systems

Dennis V. Lindley

Abstract. Arguments are adduced to support the claim that the only satis-
factory description of uncertainty is probability. Probability is described
both mathematically and interpretatively as a degree of belief. The axio-
matic basis and the use of scoring rules in developing coherence are
discussed. A challenge is made that anything that can be done by alternative
methods for handling uncertainty can be done better by probability. This
is demonstrated by some examples using fuzzy logic and belief functions.
The paper concludes with a forensic example illustrating the power of

probability ideas.
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scoring rules, coherence, decision-making, Bayes theorem, fuzzy logic, belief

functions, forensic evidence.

1. INTRODUCTION

Our concern in this paper is not with a general
discussion of artificial intelligence (AI) and expert
systems (ES) but with one particular aspect of them,
namely the occurrence of uncertainty statements
within Al or ES. We discuss how they should be made,
what they mean, and how they combine together.

Uncertainty is obviously present in most ES algo-
rithms because experts can rarely be totally sure of
the statements they make. Thus, in medical ES, the
presence of a symptom array does not invariably imply
the presence of one disease, so that diagnosis is in-
herently uncertain. Even the symptom may exhibit
uncertainty for doctors may differ in their interpre-
tations (see Section 10). Prognosis is clearly even more
uncertain. When discussing purely deterministic pro-
cedures there may be some merit in introducing un-
certainty. For example, chess is a game with perfect
information yet Al programs sometimes incorporate
uncertainty as a way of avoiding the terrible complex-
ity of the game. So uncertainty, while perhaps not
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College, London. He states that “The present paper was
written because of a strong conviction that probability
is the only satisfactory description of uncertainty.” His
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ubiquitous, frequently occurs. Qur task is to study
approaches to dealing with it within Al and ES.

2. THE INEVITABILITY OF PROBABILITY

QOur thesis is simply stated: the only satisfactory
description of uncertainty is probability. By this is
meant that every uncertainty statement must be in
the form of a probability; that several uncertainties
must be combined using the rules of probability; and
that the calculus of probabilities is adequate to handle
all situations involving uncertainty. In particular, al-
ternative descriptions of uncertainty are unnecessary.
These include the procedures of classical statistics;
rules of combination such as Jeffrey’s (1965); possi-
bility statements in fuzzy logic, Zadeh (1983); use of
upper and lower probabilities, Smith (1961), Fine
(1973); and belief functions, Shafer (1976). We speak
of “the inevitability of probability.”

3. MATHEMATICAL AND PHYSICAL MEANINGS
FOR PROBABILITY

Before defending the thesis, it had better be made
clear what we mean by probability. Most emphatically,
we do not just mean numbers lying between 0 and 1:
it is more interesting than that. There are two ways
of responding to a question about the meaning of
probability. One is to describe the concept mathemat-
ically. The other is to consider its interpretation in
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the physical world. We consider both of these re-
sponses.

Mathematically, probability is a function of two
arguments: the event A about which you are uncertain,
and your knowledge H when you make the uncertainty
statement. We write p(A | H): read, the probability of
A, given H. The function obeys the three rules:

Convexity0<p(A|H)=landp(A|H)=1ifHis
known by you logically to imply A.

Addition p(A, U A;|H) =p(A,|H) + p(A,|H) —
plA,NA | H).

Multiplication p(A, N As | H) = p(A,| H)
-p(A2l Ay N H).

We could elaborate on these rules, for example, by
discussing whether the events have to form a o-field,
whether the addition law holds for an enumerable
infinity of events, whether p(A|H) = 1l only if H is
known by you logically to imply A, and in other ways.
But these would merely add mathematical glosses to
the key ideas that probability lies between 0 and 1 and
obeys two distinct rules of combination. From these
three rules, perhaps modified slightly. all of the many.
rich and wonderful results of the probability calculus
follow. They may be described as the axioms of prob-
ability. We prefer not to describe them this way be-
cause, as will be seen below, they can be derived from
other, more basic, axioms and consequently appear as
theorems.

The interpretation of p(A|H) is that it is your
subjective belief in the truth of A were you to know
that H was true. It is often referred to as subjective
probability because it is ascribable to a subject, you;
and also to distinguish it from another use of proba-
bility called frequentist or objective. This latter we
shall call chance, thus avoiding the adjective for prob-
ability. It is convenient to think of p(A|H) as a
measurement: like a measurement of length or tem-
perature. It measures belief. not temperature. Like
all measurements it has a standard. We may take
the simple example of balls in an urn. For you,
p(A | H) = a if you are indifferent between receiving
a prize contingent on A, knowing H, and receiving the
same prize contingent on a black ball being drawn at
random from an urn containing a proportion a of
black balls. Of course, other ways are possible. It is a
defect of many other approaches to the measurement
of uncertainty that they do not have a standard by
which to judge their statements.

4. THE USE OF SCORING RULES

Having interpreted probability in two, important
ways, let us turn to the defense of the thesis of the
inevitability of probability. The task is to study un-
certainty, particularly in the context of Al and ES. As

scientists and engineers we would expect to measure
our object of study. to describe the uncertainty nu-
merically. If we agree to do this, we have to decide
what rules the numbers obey: for example, can we add
them, like lengths? One way is to think of possible
rules and choose some that seem reasonable. This is
the method of classical statistics, fuzzy logic, and belief
functions. There is another method.

Suppose that in expressing your belief in A, given
H, you provide a numerical value a. In what sense is
a a “good” measurement of your belief? De Finetti
(1974/5) had the idea of introducing a score function,
which scores your measurement or, as we usually
prefer, your assessment of your uncertainty of A, given
H. For the two functions, f, and f;, the score. when a
is announced as the assessment, is defined to be:

fila) if both A and H are true.
fola) if H is true, but A false, and
zero if H is false.

De Finetti used the quadratic or Brier score: fo(a) =
a2, fi(a) = (1 — a)®>. With the quadratic. a near 1(0)
will give a low score when A is true (false) and H true.
If H is false the statement about A is irrelevant since
it was made on the supposition of H.

Suppose now that you, or the expert in ES, does
this with several event pairs; (4;, H;) is scored on each
and the scores added. Then de Finetti showed for the
quadratic rule, that the values a; must obey the rules
of probability. Lindley (1982) generalized the result
and showed that virtually any score leads to probabil-
ity: some scores are eccentric and result in only two
possible values for a whatever be A and H. A conse-
quence of de Finetti’'s result is that someone using
rules for the combination of the a; that are not prob-
abilistic—for example, those of belief functions—will
have a worse score, whatever be the truth or falsity of
the A's and H's, than the probabilist. Notice how
eminently practical this approach is. The “expertise”
of an expert could be assessed by keeping a check on
his scores. Of two probabilists, either one may do
better than the other, but both will do better than
someone not using the probability calculus.

5. AXIOMATIC APPROACH

In an alternative approach we think about the con-
cept of uncertainty and try to latch onto simple, basic
principles that ought to be present in any study of
uncertainty; such that any violation of a principle
would, when exposed, make the argument look ridic-
ulous. The principles, self-evident truths, are called
axioms and from these we would hope to deduce, by
mathematical reasoning. the rules that the numbers
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obey. Euclidean geometry is the famous example of
this procedure when applied to the measurement of
length. This program was first carried out for beliefs
in 1926 by Ramsey (1931). The best of the known
examples is Savage (1954). DeGroot (1970) presents
what is perhaps the most readable version. All of these
approaches lead to the result that the numbers must
obey exactly the three rules of probability above. In
other words, the “axioms” of probability have been
deduced from other, simpler ideas that more legiti-
mately can, because of their self-evidentiary nature,
be called axioms.

Let the converse be emphasized: any violation of
the rules must correspond to some violation of the
basic axioms, of those rules whose violation would
look ridiculous. We really have no choice about the
rules governing our measurement of uncertainty: they
are dictated to us by the inexorable laws of logic. Of
course, they are entirely dependent on the chosen
axioms and the history of mathematics warns us not
to be too complacent about the “sacred” rightness of
axioms. But at the moment, the axioms are unassailed
and all variants produce minor variants in probability.

6. COHERENCE

At this point we should perhaps digress to discuss
an important aspect of the Ramsey/Savage/de Finetti
approaches that is often over-looked. The discussion
will also help to explain why nonprobabilistic views
have had some success in Al or ES even though the
ideas are unsound. The rules of probability show how
different uncertainty statements have to fit together.
Thus. the multiplication rule above refers to three
assessments and says that one of them must be the
product of the other two. Instead of “fitting together”
we talk of coherence. The results just described can
be stated as showing that coherence can only be
achieved by means of probability, We may say belief
functions are incoherent (they do not obey the addi-
tion rule).

Coherence is not peculiar to the measurement of
belief. It applies to all measurement: for example, of
length. If ABC is a triangle with a right angle at B, it
makes perfectly good sense to say AB = 2 or AC = 4
or BC = 3, or even to make two of these statements
together. But make all three together and you are
incoherent. for Pythagoras demands that AC® =
AB? + BC*, which is not true of the numbers given.
Similarly one can say that p(4,|H) = Y% or
p(As|Ay N H) =% or p(A; N Ay | H) = Y4, but one
cannot make all three statements simultaneously. The
multiplication law replaces Pythagoras. It is curious
that coherence is strictly adhered to with lengths but
often ignored with beliefs, reflecting the immaturity
of belief measurement.

And that explains why nonprobabilistic procedures
can sometimes appear sensible. The adherents never
make enough statements for coherence to be tested.
They only tell us the equivalent of AB = 2 and
AC = 4. never discussing BC., for to do so would reveal
the unsound nature of the argument.

7. BAYES THEOREM

One example of coherence is so important in Al and
ES that we should perhaps consider it now. Inter-
changing A; and A, in the above statement of the
multiplication law and recognizing that A; N A; =
As N A,, we immediately have that

p(A | H)p(Ax| Ay N H) = p(A:| H)p(A: | A2 N H).

By using the equivalent result but with A,, replacing
A;, we have

p4:[A, N H) _plAi|A. N H) pl4:|H)
p(A:|A NH) p(Al4ANH)pA:|H)'

This is Bayes theorem in odds form. (The odds (on)
A are simply the ratio t of p(A) to p(A): the odds
against are the inverse of this. In practice they are
usually quoted as ¢ to 1 on or f to 1 against with
t = 1.) To appreciate what it says, temporarily omit
H from the notation and language, recognizing that it
is present in every conditioning event in the statement
of the theorem. Then the result is that the odds,
p(A2)/p(As), of A, are changed. due to the additional
knowledge of A;. into p(A2]A;)/p(As| A,) by multi-
plying by p(A, | A2)/p(A, | A2). The multiplier is called
the likelihood ratio. It is the ratio of the probabilities
of the additional knowledge A;, given A, and then
given A,. Thus an Al system faced with uncertainty
about A, and experiencing A; has to update its uncer-
tainty by considering how probable what it has expe-
rienced is. both on the supposition that A, is true, and
that A, is false. Any other procedure is incoherent.
Most intelligent behavior is simply obeying Bayes
theorem. A high level of intelligence consists in rec-
ognizing a new pattern. This is not allowed for in
Bayes theorem, nor in any other paradigm known
to me. The simple Al systems that we have at the
moment must be Bayesian.

8. A CHALLENGE

Let us summarize where we have got to in the
argument. On the basis of simple. intuitive rules (or
using a technique of scoring statements of uncer-
tainty), it follows that probability is the only way of
handling uncertainty. In particular other ways are
unsound and essentially ad hoc in that they lack an
axiomatic basis.
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There is however more than just the inevitability of
probability. There is the consideration that probabil-
ity is totally adequate for all uncertain situations
encountered so far. This is often denied. The following
statements are taken from Zadeh (1983):

“A serious shortcoming of [probability-based]
methods is that they are not capable of coming to
grips with the pervasive fuzziness of information
in the knowledge base, and, as a result, are mostly
ad hoc in nature.”

“The validity of [Bayes rule] is open to question
since most of the information in the knowledge
base of a typical expert system consists of a
collection of fuzzy rather than nonfuzzy proposi-
tions.”

Shafer (1982) says, in comparing belief functions
and Bayesian methods, “The theory of belief functions
offers an approach that better respects the realities
and limitations of our knowledge and evidence.”

I offer a challenge to these writers and to all who
espouse nonprobabilistic methods for the study of
uncertainty. The challenge is that anything that can
be done by these methods can be better done with
probability. I think this is a fair challenge. It is a
requirement that the method has been used and is not
just a topic for theorizing, which rules out some spec-
ulations in the alternative paradigms. If the challenge
fails then we shall really have advanced: for an inad-
equacy in probability will have been exposed and the
need for an alternative justified. The challenge is in
the spirit of Popper who partly judges the merit of a
theory on its capability of being destroyed; for the rich
calculus of probability leads to many testable conclu-
sions. It is also relevant to Popperian ideas because
he has discussed certain inadequacies in probability.
These have been disposed of by Jeffreys (1961).

As these words are being written it is impossible to
know what challenges might arise. All that can be
done is to take material already in the literature and
examine that. I begin with fuzzy ideas.

9. PROBABILITY IN PLACE OF FUZZINESS

As an example of a fuzzy proposition Zadeh (1983)
cites “Berkeley's population is over 100,000.” He says
it is fuzzy because “of an implicit understanding that
over 100,000 means over 100,000 but not much over
100,000” (his italics). (He might also have added that
Berkeley is fuzzy, Does it refer to the town in Glou-
cestershire or that in California? And population: does
it merely refer to permanent residents or are students
included? These are not jibes: my point is that nearly
all statements are imprecise.)

The probabilistic approach would be to give a prob-
abilistic statement about a quantity that can be eval-
uated. The qualification is important, de Finetti has
emphasized. As far as possible all probabilities should

refer to propositions or events that can realistically be
tested for truth or falsity. This is because we want to
use them. It may be necessary to introduce other
propositions but only as aids to the calculation of
testable ones. (In statistics parameters are used for
this purpose. An example in Section 14 will use guilt
of a suspect.) A possible quantity to discuss in the
fuzzy statement is the answer the relevant city official
in Berkeley would give when asked for the population
of Berkeley. If this is denoted X, then the probabilistic
statement corresponding to that quoted is p(X | H),
where H is the knowledge possessed by the maker of
the statement. It would have a mode a little over
100.000 if the statement is in H.

It is important to notice that in applications it may
not be necessary to specify the full probability distri-
bution p(X| H). For example, it may be enough to
quote its mean, the expectation of X given H; what de
Finetti calls the prevision of X given H. More sophis-
tication may require the variance of X, or equivalently,
the prevision of X? given H. Fractiles of X are another
possibility.

All fuzzy propositions of this type can be interpreted
probabilistically in a manner similar to our treatment
of Berkeley. “Henry is young” needs a little care. It
clearly refers to Henry (whom I take to be a well
defined person) and an uncertain quantity X, his age.
But the description is very vague. Made on campus,
Henry might be only 19; made at a faculty dinner
Henry might be 30; made in a home for senior citizens,
he might be 65. Consequently, H is very relevant to
this result. Without context p(X | H) will need to be
appreciable even for X = 65.

10. NUMERICAL EXPRESSION OF FUZZINESS

Another example is both more serious and more
elaborate. “John has duodenal ulcer (CF = 0.3)” (CF
is an abbreviation for certainty factor). It is a well
known feature of medical studies that many concepts
are imprecisely defined and that a difficulty in using
medical records resides in the varied use different
doctors make of the same term. Nevertheless doctors
find it useful to identify features like “duodenal ulcer.”
The situation can be described probabilistically by
introducing A, an ill-defined but supposedly real ail-
ment, duodenal ulcer, and also D); the appreciation of
duodenal ulcer by doctor i. The fuzziness of the con-
cept can be captured by considering p(D;| A) and
p(D;| B), the probability that doctor { will say John
has duodenal ulcer both when John has, and does not
have, true duodenal ulcer. (Useful comparison can be
made with Bayes theorem above: A replaces A;, D;
replaces A,, and H is omitted from the present nota-
tion.) Notice that A may not be a testable quantity. It
is introduced as a parameter to facilitate the calcula-
tion of quantities that are testable. For example, if the
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above statement is made by a first doctor, what is the
probability that a second will agree? p(D, | D,) can be
evaluated by extending the conversation to include A,
For example, the D; might be independent. given A.

This second fuzzy statement introduces a numerical
measure in the form of a certainty factor, here 0.3.
This contrasts with the apparently similar numerical
assertion that the probability (on an undefined H)
that John has a duodenal ulcer is 0.3 in at least two
ways. First, certainty factors combine by rules that
are different from those of the probability calculus, s0
that they would inevitability produce worse scores in
an adequate test than would probabilities. Further-
more, these rules have no axiomatic basis and are
merely inventions of fertile, unconstrained minds. The
second difference between certainty factors and prob-
abilities is that the operational meaning of the latter
is clear whereas that of the former is not. We may say
that probabilities have standards, possibilities do not.
One standard for probability was mentioned above:
balls in an urn. But expectation of benefit or a uniform
distribution may replace these. All measurement re-
quires a standard and certainty factors are dubious
because they do not have them. What does CF = 0.3
mean?

The literature on fuzzy logic is vast, complicated,
and somewhat obscure. I have surely missed some
examples that it would be useful to test against the
challenge which remains: anything fuzzy logic can do,
probability can do better.

11. INCOHERENCE AND BELIEF FUNCTIONS

We next turn from fuzzy logic to belief functions. I
have already considered a good example of Shafer’s
(1982) in the discussion to that paper. It is repeated
here partly because to do so is simpler for me than to
take another one; and also because it is then possible
to respond to Shafer’s reaction to my probabilistic
argument. Before giving this it might be useful to
exhibit incoherence in the use of belief functions. (The
argument also applies to fuzzy methods.)

We follow Shafer and write Bel(A) for the belief in
A, omitting reference to the conditioning event. Now
it is possible that

Bel(A) + Bel(4) < 1

(similarly for certainty factors). Write Bel(4) = a.
Bel(A) = b so that a + b < 1. (Necessarily a. b = 0.)
Let us score such a belief using the quadratic rule.
The possible scores are:

A true (a — 1)* + b°

A true a’*+ (b— 1>~
Now replace a by a’, b by b where a° = a + &,
b =b+e ande= Yol —a — b). It easily follows that

a’ + b’ =1 and that both

@ -1 +b2<(a—12+8
and

a?+ (b -1’ <a+ (b-1)>2

Consequently it is certain (irrespective of whether A
or A is true) that beliefs a and b will score worse than
probabilities @’ and b’, adding to one. The result
generalizes with any score.

12. PROBABILITY IN PLACE OF BELIEF
FUNCTIONS

Now for Shafer’'s example. Imagine a disorder called
“ploxoma,” which comprises two distinct “diseases”:
6, = “virulent ploxoma,” which is invariably fatal, and
#, = “ordinary ploxoma,” which varies in severity and
can be treated. Virulent ploxoma can be identified
unequivocally at the time of a victim’s death, but the
only way to distinguish between the two diseases in
their early stages seems to be a blood test with three
possible outcomes, labeled x;, x2, and x;3. The following
evidence is available: (i) Blood tests of a large number
of patients dying of virulent ploxoma showed the
outcomes x;, x2. and xs occurring 20, 20. and 60% of
the time, respectively. (ii) A study of patients whose
ploxoma had continued so long as to be almost cer-
tainly ordinary ploxoma showed outcome x; to occur
85% of the time and outcomes x, and x3 to occur 15%
of the time. (The study was made before methods for
distinguishing between x; and x; were perfected.)
There is some question whether the patients in the
study represent a fair sample of the population of
ordinary ploxoma victims. but experts feel fairly con-
fident (say 75%) that the criteria by which patients
were selected for the study should not affect the dis-
tribution of test outcomes. (iii) It seems that most
people who seek medical help for ploxoma are suffer-
ing from ordinary ploxoma. There have been no care-
ful statistical studies. but physicians are convinced
that only 5-15% of ploxoma patients suffer from
virulent ploxoma.

My reply was as follows. The first piece of evidence
(i) establishes in the usual way that the chances for a
person with virulent ploxoma to have blood test results
of types x;. x». and x; are 0.2, 0.2, and 0.6. The
second (ii) is subtler for two reasons: x, and x; are not
distinguished in the data, and the patients in the study
are not judged exchangeable with other patients so
that the chances 8 in the study and v for the new
patients are not necessarily equal. The first presents
no difficulty since the likelihood for the data is
85(8s + B3)™ . where r = 0.85n and n is the number of
patients in the study. The distribution of 8 given
the data can therefore be found. Let p(y|8) be the
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conditional distribution of <y, given 8. This concept
replaces the single figure of 75% quoted by Shafer and
which yields a discount rate of « = 0.25. It would be
possible to suppose ¥ = 8 with probability 0.75 and is
otherwise uniform in the unit interval in imitation of
belief functions: but this may be an unrealistic descrip-
tion of the situation. The third piece of evidence (iii)
says the distribution of the chance 0 that a patient
has virulent ploxoma, p(#), is essentially confined to
the range (0.05 to 0.15). We are now ready to perform
the requisite probability calculations.

Let G be the event that a new patient, George, has
virulent ploxoma and let g; be the result of his blood
test. We require p(G | g;, E) where E is the evidence.
From (iii) p(G) = f0p(9) d6. From (i) p(g:|G, E) =
0.2 fori =1, 2 and 0.6 for i = 3. From (ii)

plg|G, E)=ff7.p(7lﬂ)p(6lE) dB dv

- [ Ecvimpis1 B a8

and the calculations can be completed in the usual
way using Bayes' theorem. If E(f) = 0.10, E(xy;| ) =
B:;. and E(B8.|8:) = '~(1 — 8,) then the probabilities
of G given g are, respectively. 0.025, 0.229, and
0.471.

It may be objected that this analysis virtually ig-
nores the uncertainty about the study and about 4. It
does so because they are irrelevant. The interested
reader may like to consider the case of George and
Henry and their blood tests. Then the uncertainties
will matter: for example, E(y?|8). involving the
conditional variance of v;. will arise.

Shafer in response says that “Lindley insists that
the uncertainties affecting this study are irrelevant
and should be ignored. Is this reasonable? Suppose
that instead of having only 75% confidence in the
study we have much less confidence. Is there not some
point where even Lindley would chuck out the study
and revert to the prior 5-15%?" My reply is that
Shafer is correct and that the uncertainty does matter
a little, for it affects E(vy|pB). Were we to have no
confidence at all in the study then E(vy | 8) would not
depend on 8. and p(g;|G. E) would be simply E(y))
about which no information is given. (The prior on 8
seems irrelevant.)

Consequently I feel that the challenge has been well
met with the example and, by a Popperian argument.
the credibility of probability theory is increased.

13. COMPLEXITY, COVERAGE, DECISIONS
AND RICHNESS

Here are four miscellaneous remarks.
1. It should be noted that fuzzy logic and belief
functions are considerably more complicated concepts

than those of probability. With belief functions we
start effectively with probabilities over the power set
of the original events, itself much more complicated
than the original set, and then have to elaborate on
that. Dempster’s rule of combination is vastly more
involved than Bayes and then only applies in certain
cases. Fuzzy logic leads to nonlinear programming and
contains great complexities of language and ideas. Yet
probability is extremely simple, using only three rules
and containing rich concepts like independence and
expectation.

Certainly if my challenge fails it will be necessary
to introduce some change into probability ideas, which
will almost surely increase the complexity. yet be
necessary and rewarding. But until that happens is it
not best to accept the advice of William of Ockham
and not multiply entities beyond necessity?

2. It is not implied in the challenge that probability
can handle every problem involving uncertainty: the
claim is merely that probability can do better than the
alternatives. | believe that it has the potentiality to
solve every uncertain situation but there are some for
which the available techniques are inadequate. It is
absurd to think that any paradigm can quickly resolve
every relevant puzzle: some may resist solution for
decades. For example, the medical problem of han-
dling large numbers of indicants in diagnosis is cur-
rently unresolved because we do not have adequate
techniques for handling the complicated dependencies
that exist. (And certainly belief functions do not.) We
need more research into applied probability and less
into fancy alternatives.

3. Why do we want to study uncertainty? Aside
from the intellectual pleasure it can provide. there is
only one answer: to he able to make decisions in the
face of uncertainty. Studies that do not have the
potentiality for practical use in decision making are
seriously inadequate. An axiomatic treatment of de-
cision making shows (Savage, 1954; DeGroot, 1970)
that maximization of expected utility is the only
satisfactory procedure. This uses, in the expectation
calculation, the probabilities and these, and only
these, are the quantities needed for coherent decision
making by a single decision maker. Only the utilities,
dependent on the consequences, not on the uncertain-
ties, need to be added to make a rational choice of
action. How can one use fuzzy logic or belief functions
to decide? Indeed. consider a case where Bel(4) +
Bel(A) < 1. Because you have so little belief in either
outcome do you, like Buradin’s ass, starve to death in
your indecision between A and its negation? Reality
demands probability.

4. It is sometimes said. as in the quotes from Zadeh
above, that probability is inadequate. This sense of
inadequacy sometimes arises because people only
think of probability as a value between 0 and 1,
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forgetting the whole concept of coherence and, in
particular, ignoring the addition and multiplication
laws. In fact probability is a rich and subtle concept
capable of dealing with beautifully delicate and im-
portant problems. This richness is hard to convey
without deep immersion in the topic. In order to
display this. and also to try to avoid the impression
that this paper is entirely concerned with bashing
other ideas. I conclude by discussing a situation that
arises in forensic science or criminalistics. It has been
much discussed in the literature; a convenient refer-
ence is Eggleston (1983). An almost identical problem
has been considered by Diaconis and Zabell (1982)
using Jeffrey’s rule. For reasons given below, I think
their treatment is unsatisfactory.

14. A PROBABILITY EXAMPLE

A crime has been committed by a person who is to
be found among a population of (n + 1) people. One
of these is referred to as the suspect, the others are
labeled in a noninformative way from 1 to n. Let G,
be the event that the suspect is guilty, G; that person
tis (1 =i < n). Initially, p(G,) = =, p(G)) = (1 — 7)/n
for all i. (Some forms of the problem have = =
(n + 1)7!, which probabilistically does not distinguish
the suspect from the other n.)

An investigator studying the crime says “the evi-
dence suggests the criminal is left-handed.” This is a
fuzzy statement and its probabilistic interpretation
requires care. After discussion the investigator says
that the probability that the criminal is left-handed is
P. This is still ambiguous. Diaconis and Zabell appear
to interpret it to mean that the probability that the
criminal will be found among the left-handers in the
group of (n + 1) is P. | think a British forensic scientist
would mean that if he had the criminal in front of
him, the probability that he would be found to be left-
handed is P. The former is the chance of guilt among
left-handers; the latter of left-handedness among
the guilty. Also the former requires reference to the
population, and the latter does not. Typical forensic
evidence makes no mention of a population, only of
the criminal, and so the latter interpretation is appro-
priate. There is a confusion between p(A|B) and
p(B|A).

Working with the forensic interpretation, the for-
mal statement is p(};| G)) = P, where I; denotes the
event that person ! is left-handed (1 = /| < n and
i = §). It was emphasized in the discussion of Bayes
theorem that it is essential to consider the evidence
A, both on A- and on A,. So here we need, in addition
to p(l;| G), p(:|G). The latter is the chance that
anyone is left-handed and may ordinarily be equated
to the frequency of left-handedness in the population,
psay. Sop(l;| G) = p for alli. including S. Presumably

P > p. (In some forms of the problem P = 1 and the
forensic evidence is firm. This can realistically arise
when dealing with blood types that can be identified
without error.) Diaconis and Zabell do not consider p.
This seems strange because the presence of an unusual
trait intuitively carries more weight than a common
one. The formal analysis below will confirm this.

15. THE ROLE OF ADDITIONAL EVIDENCE

Now consider various forms of additional evidence.

Evidence E,. The suspect is found to be left-
handed. In the notation this is the event /. Simple
use of Bayes theorem

PG| L) = p(l.| GIp(Gy)/p (L)
yields

(1) p(G;|L) = Px/{Pr + p(1 — )}

which clearly exceeds w. E, is indicative of the sus-
pect’s guilt.

Evidence E,. Person no. 1 is left-handed. This is
l,. Now with both E, and E,

p(G.|Lh) = p(LL,| G)p(G) = Ppm.
Similarly,
p(Gi L) < Pp(1 — =)/n

and

p(Gi| L) < p*(1 — x)/n for 2<i=<n.
Thus,

p(G,| L) = Px/iPr + P(1 — =)/n

+ p(1 — 7)(n — 1)/n}.

Rearranging the denominator as Px + p(1 — =) +
(P — p)(1 — 7)/n we see that (2) is less than (1): the
knowledge of another left-handed person in the pop-
ulation has slightly decreased the probability that S
is guilty. Notice that when n = 1, p(G;| Ll;) = =: the
evidence that all the population is left-handed has not
changed the suspect’s probability for guilt at all.

Evidence E;. There are no left-handers among the
n people.

Combined with E, this means that the suspect is
the only left-hander. Denoting E; by l, a use of Bayes
theorem similar to that employed with E, and E, gives

p(G | Lly) = p(ll | G)p(Gy) = P(1 — p)'x
and
p(Gi]Lb) = p(l.dy| G)p(G)
=p(l - p)"'(1 — P)1 — =)/n.
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Hence,
p(G, | L)
= Px/{Pm + p(1 — m)(1 — P)/(1 — p)}.

This clearly exceeds p(G,| L), equation (1), if P > p,
showing that Ej; increases the probability that the
suspect is guilty. Indeed, if P = 1, (3) gives 1 as it
should.

Evidence E,. There is at least one left-hander
among the n people.

E, is the negation of E; and may be written [,. It
differs from E, in that the latter names a specific left-
hander, person no. 1. We have

p( 1| G) = pl.|G) - plkl]G,) = P - P(1 - p)"

and

(3)

pL.To1G) = p(l,|G) - pll| G)
=p-p(l—-p)"'1-P).
A further use of Bayes theorem gives
(4) p(G| L1y = [Px — P(1 — p)"x]/C
where
C=Pzr+pl -7
- (1 = p)*{Pr + p(1 — =)(1 — P)/(1 — p)}.

If n = 1 this gives = in agreement with p(G,| L),
equation (2). It is easy to see that p(G,|L1,) <
p(G. | L), equation (1), so that E, slightly decreases the
probability of the suspect’s guilt.

Now for a subtlety: compare (2) and (4), that is the
probability that the suspect is guilty given, in (2), the
name of a left-hander and in (4) the mere presence of
a left-hander. These are different. It is not too hard
to verify by induction on n that

p(Gl l l:ll) < P(G: l lsl—O)

for n > 1, so that the definitive knowledge of the left-
handedness of person no. 1 reduces the suspect’s guilt
probability by more than does the mere evidence of
someone's left-handedness.

I leave the reader to think out whether the following
argument is correct. Knowing there is a left-hander in
the n (E,), no information about the suspect’s guilt
can possibly be provided by telling me the number of
one of them. Accepting this, you are told it is person
no. 1. Since (2) and (4) differ (and calling person no.
1 Smith for dramatic effect) the evidence “Smith is

left-handed” and “There are left-handers, one of
whom is called Smith” have different evidential value.

16. CONCLUSION

Our argument may be summarized by saying that
probability is the only sensible description of uncer-
tainty and is adequate for all problems involving
uncertainty. All other methods are inadequate. The
justification for the position rests on the formal, axi-
omatic argument that leads to the inevitability of
probability as a theorem and also on the pragmatic
verification that probability does work. My challenge
that anything that can be done with fuzzy logic, belief
functions, upper and lower probabilities, or any other
alternative to probability, can better be done with
probability, remains.
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Probabilistic Expert Systems in Medicine:
Practical Issues in Handling Uncertainty

David J. Spiegelhalter

Abstract. The development of expert systems in medicine has generally
been accompanied by a rejection of formal probabilistic methods for han-
dling uncertainty. We argue that a coherent probabilistic approach can, if
carefully applied, meet many of the practical demands being made, and
briefly illustrate our claim with three current projects.

Key words and phrases: Evidence propagation, knowledge representation,
graphical models, imprecise probabilities.

1. INTRODUCTION

The first problem in discussing “uncertainty in ex-
pert systems” comes in defining our terms. We shall
view “expert systems” as being programs intended to
provide judgments or advice to users in a reasonably
convincing manner. in which knowledge, whether rep-
resented as rules, networks, or frames, is generally
characterized by local relationships between proposi-
tions of varying generality; data is obtained on a new
case, upon which the “knowledge” is brought to bear
by means of a controlling mechanism. Characteristics
which are often said to distinguish such programs
from standard statistical or mathematical models
include the frequent use of subjective judgments for
both the qualitative structure and any accompanying
quantification. the emphasis on explanation. and the
incorporation of both knowledge and data that is
fragmentary. Systems are also often intended to en-
able “learning,” in which knowledge is adjusted in the
light of data on past cases.

Within this context the term “uncertainty” is used
in a very wide sense and this has led to considerable
argument about the role appropriate to formal prob-
abilistic reasoning (Cheeseman, 1985; Spiegelhalter,
1986a, 1986b: and papers in Kanal and Lemmer, 1986).
Some misunderstanding may have arisen from the
common use of expressions of the form

[F conditions X hold, THEN Y with certainty P.

If Y is a random event which is currently unknown,
the statistical view is that P represents a kind of
“predictive” uncertainty expressed as a probability
(see Lindley, page 18). However, in many expert sys-
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tem applications, precisely the same representation is
used when Y signifies some action or choice, and P
essentially corresponds to “procedural” uncertainty,
in that doubt is being expressed about the reasonable-
ness of., or the support for, performing an act or
making an assumption. Thus, Cohen (1985, page 52)
states that “one's certainty in a result should depend
on what the result is wanted for,” and Van Melle
et al. (1981, page 5) say that “certainty factors” in
EMYCIN combine subjective probabilities and utili-
ties to measure “importance.”

Thus, there is clearly great potential for confusion
between the fairly restricted. statistical sense of un-
certainty as applied to facts and the use of the term in
a broader, linguistic sense in describing uncertainty
about acts. To try to avoid this confusion in this short
paper, we shall explicitly restrict dttention to uncer-
tainty concerning potentially verifiable, but currently
unknown, events.

We shall concentrate on practical, rather than phil-
osophical, issues concerning the way uncertainty is
handled in existing programs. We shall not consider
in detail either the representation of knowledge or the
control of the program. Published examples motivate
the search for a methodology that satisfies a number
of demands, and three current projects will then be
used to illustrate some specific aspects of the attempt
to use probabilistic methods in as effective a way
as possible. Finally, an attempt is made to bring
the argument together into a prospect for future
developments.

2. DEMANDS MADE OF A CALCULUS

The particular complexity of many medical prob-
lems has challenged the notion of a rigorous unified
treatment of uncertainty and. in general, ad hoc
quantifications have been used to measure evidence
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for various possible underlying hypotheses (Szolovits
and Pauker, 1978). The complex interrelationships
between disease processes and manifestations have
led to various systems for propagating degrees of cer-
tainty arising from fragmentary data and combining
evidence from different sources. PIP (Pauker et al.,
1976) and INTERNIST/CADUCEUS (Miller, Pople,
and Myers, 1982) both essentially score hypotheses
using evidence from current symptoms that support
a hypothesis, which is discounted by a score express-
ing absent symptoms that would be expected, and a
score expressing present symptoms that would not
be expected. MYCIN/EMYCIN use a more modular
structure in which certainty factors are attached
to propositions, although CASNET/EXPERT
(Kulikowski and Weiss, 1982) propagates weights
through a causal network. A statistical system such
as that of de Dombal et al. (1972) begins with knowl-
edge derived from a data base, but the simplistic inde-
pendence assumptions made in combining evidence
(although effective in discrimination) ensure that
the certainty propagated is not expected to be inter-
pretable as a probability—the same holds for the
Bayesian updating technique in PROSPECTOR
(Duda, Hart, and Nilsson, 1976). Fuzzy reasoning
(Adlassnig, 1980; Fieschi et al., 1983) has also been
used as a means of capturing the ill-defined nature
of many clinical terms.

We can identify a number of considerations that
have led to the procedures that have been adopted and
that are currently being researched. The strongest has
been the claim that a single probability of a hypothe-
sis, even if it were based on extensive data, is not
sufficient to convince a clinician: the evidence on
which to base a conclusion must be retrievable, to
enable conflicts and doubtful contributions to be iden-
tified. A particular case of this demand for justification
is the situation where little relevant data is available
and there is essentially ignorance concerning the pos-
sibility of a hypothesis. This arises particularly in
medicine due to the hierarchical, taxonomic structure
of disease descriptions in which evidence may be avail-
able which supports a general disease category but
gives no indication of the relative plausibility of the
subcategories of disease. Thus, the hierarchical hy-
pothesis structure is viewed as a natural justification
for ranges of uncertainty, for which a number of
schemes exist (see, for example, Quinlan. 1983), al-
though as we shall emphasize later it is not generally
made clear whether such ranges are due to inadequate
knowledge or inadequate data. The demand that in-
dividual contributions of pieces of evidence should be
identified, and that evidence should be able to focus
on groups of diseases without distinguishing within
that group, has led naturally to the study of the
possible role of belief functions in medicine (Gordon

and Shortliffe, 1984). Much attention is now being
paid to solving the accompanying computational prob-
lems and making some allowance for dependencies
between sources of evidence. The concept of discount-
ing in belief functions could also be seen as a means
of allowing for doubt about the precise numbers to be
placed on evidential statements.

To summarize: current interest is focussed on
schemes that can propagate measures of uncertainty
through complex relationships often defined on a
hierarchical structure, that can identify conflicting
evidence and lack of evidence, and can cope with
incoming data that do not follow a predefined order.
The reasoning process should be justifiable and fairly
intuitive, and allowance for imprecise specification of
numerical relationships would be an advantage.

Although the above desiderata appear admirable, we
feel there is an important item that has been largely
ignored in practice. This concerns the operational
meaning of the quantities which express uncertainty
and which allows a reasonable basis for both assess-
ment of inputs and criticism of outputs of a system,
In the following examples we describe attempts to
retain meaning while responding to demands and con-
straints made by the real practical problems of inter-
est. Refer to Pearl (1986a, b) for further discussion on
how probabilistic reasoning can be adapted to meet
the demands of expert systems.

3. EXAMPLES OF PROBABILISTIC ANALYSIS

GLADYS—the GLAsgow DYSpepsia System

GLLADYS is a program designed to interview
patients presenting to a clinic with dyspepsia, and
provide a reasoned probabilistic diagnosis based on
the symptoms alone. It was developed at the Diagnos-
tic Methodology Research Unit at Glasgow. and runs
on a microcomputer with a special keyboard to record
patient responses. The control of the interview is
strictly algorithmic, in that branches to more detailed
interrogation are taken depending on the results to
trigger questions. The interview has been found to be
accurate and acceptable (Lucas et al., 1976). The
responses are analyzed according to a scoring system
derived from a modified logistic regression technique,
described in detail in Spiegelhalter and Knill-Jones
(1984), of which certain aspects are relevant to the
issues raised in the previous section.

Firstly, there is a real need to deal with hierarchical
disease structures, in which for example. certain fea-
tures may discriminate the generic class peptic ulcer
(PU) from other diseases, although other items of
information are relevant to discriminating duodenal
from gastric ulcer (GU) within the peptic ulcer class.
This is accomplished by calculating probabilities
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conditional on the branch in the hierarchy and then
multiplying downward to obtain the overall probabil-
ity: for example, we calculate p(GU | PU) and p(PU)
from which p(GU) = p(GU | PU)p(PU).

Secondly, the scoring system allows explanation of

the final probability in terms of the contributing
pieces of evidence. For example, a patient described
in Spiegelhalter and Knill-Jones (1984) provided
the following evidence relevant to a diagnosis of
gallstones:

Evidence FOR gallstones

Evidence AGAINST gallstones

History less than 6 months 77
Pain comes in “attacks” 177
Can enumerate attacks 63
Attacks produce restlessness 31
Pain in right hypochondrium 71
Total 425

Balance of evidence

Initial score

Final score

Pain not severe enough to warrant —43

emergency call to doctor
Pain does not radiate —-38
-81

+344 (Total evidence = 425 + 81 = 506;
conflict ratio = 506/344 = 1.5)

=300 (Corresponding to prevalence of 4.7%)
44 = 61% chance of gallstones

Some explanation of the above “explanation” is
necessary. The scores given to findings are
100 log.(likelihood ratios) adjusted, roughly speaking,
for correlations between items of information. Thus,
the initial score of S = —300 is transformed to a prior
probability p = 1/{1 + exp(—S/100)} = .047, which is
simply the inverse of S = 100 log.{p/(1 — p)}. The
“conflict ratio” (= total evidence/|balance of evi-
dence|) is a rough measure of how much the total
evidence obtained contradicts itself: a high ratio, say
above around 2.5, suggests the clinician should check
some of the important questions. The initial score is
based on a prevalence in an urban clinic and could be
altered depending on circumstances. The scores come
from analysis of a data base of 1200 cases and the
statistical modelling means the final probabilities are
reasonably well calibrated, in that of patients present-
ing as above, around 60% should turn out to have
gallstones as a major cause of their symptoms. This is
a very popular characteristic of the system. There is,
however, no reason why the scores should not be
subjectively assessed provided one monitors whether
the predictions have similar properties of calibration.

Thirdly, imprecision of the quantification could be
incorporated by placing standard errors on the predic-
tions. The above example has a standard error of 42
on the final score corresponding to a rough 95% inter-
val of (.40. .78) on the predictive probability. Finally,
ignorance may be viewed retrospectively in terms of
the total evidence received either for or against a
proposition, However, as suggested in Spiegelhalter
and Knill-Jones (1984), we may also quantify pro-
spective ignorance in terms of the results that may
occur when the data of which we are currently igno-
rant becomes available. This concept translates into
calculating the predictive distribution of the possible
final probabilities that may be ascribed to a disease.

Tukey (1984) recommended that such distributions
should be included as part of the explanation facilities.
Thus before an interview, a patient has a fairly precise
probability of gallstones (95% interval .03, .07), but
one based on an ignorance reflected in the wide dis-
tribution of feasible probabilities that could be taken
on when data become available; whereas at the end of
the interview, there is a relatively imprecise probabil-
ity with a 95% interval of (.40, .78), but no remaining
ignorance within the bounded context of the system.

We would not normally consider GLADYS as an
expert system since it does not use knowledge repre-
sentation techniques derived from Al, it is not based
on expert opinion and it does not operate interactively.
However, many of our aims match those of classic
expert systems, except that we are determined to
remain, as far as possible, within a probabilistic
framework.

A Diagnostic System for Chest Diseases

A group at the Chest Clinic at Westminster Hos-
pital are developing a system for probabilistic diag-
nosis of patients presenting with a normal chest
x-ray. The system uses simple independent Bayes
updating assuming mutually exclusive disease cate-
gories, and our only concern here is with the subjective
probability assessments on which the system is ini-
tially based. The consultant physician has been re-
quired to assess prior probabilities for each of the
diseases conditional on the age group of the patient
and the main presenting symptoms, as well as the
probabilities of the secondary symptoms conditional
on each of the diseases. Around each probability he
was required to place an interval reflecting his confi-
dence in the point. probability. By viewing this range
as an approximate 90% interval around a binomial
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probability one can derive a rough implicit sample size
on which his judgment of each probability has been
based. These measures of imprecision are currently
not propagated through the consultation, aithough
Rauch (1984) suggests ad hoc methods of doing this
while allowing for correlated judgments. However, the
implicit sample sizes allow the probabilities to be
stored as a fraction r/n, and where a confirmed case
with the relevant symptom is found the probability
may be updated to (r + 1)/(n + 1). This emphasises
that probabilistic systems may be based on subjective
opinion, and yet a rational means of allowing that
opinion to learn from experience is easily available.

IMMEDIATE—A System for General Practice

In contrast to GLADYS, IMMEDIATE is a rule-
based Al system written in PROLOG which is being
developed by a group centered at the Medical Com-
putation Unit at the University of Manchester. It
is designed to support certain activities of general
practitioners and its control philosophy is described
elsewhere (Dodson and Rector, 1985).

Two aspects of its development are of interest here.
Firstly, although the knowledge structure and uncer-
tainty propagation bears some resemblance to that of
PROSPECTOR., a deliberate aim is that the probabil-
ities should be made to cohere: thus initial probability
judgments should form a valid joint distribution, and,
as data arrives, uncertainty be propagated in a way
that retains its interpretation as subjective probabil-
ity. Secondly. part of the control mechanism is based
on a range of ignorance or evidence availability that
is an explicit calculation of the maximum and mini-
mum probabilities of a proposition that could be
achieved when further information becomes available.
This may be seen as a summary measure of the pre-
dictive distributions of final probabilities described
under GLADYS. Explicitly calculating the range of
potential probabilities of a proposition helps toward
an assessment of the importance of establishing rele-
vant patient characteristics, which in turn ensures
that the clinician is informed as to the most telling
questions to ask.

4. DISCUSSION

The preceding section is an inadequate glimpse of
some work currently being carried out in probabilistic
systems, and we have only been able to mention
aspects according to their capacity to illustrate the
practical implementation of important issues in the
handling of uncertainty. In this section, we attempt
to summarize these issues with the aid of examples
drawn from the systems introduced above.

Status of Propositions

It is clearly preferable that all propositions in a
system are crisply defined and, at least theoretically,
verifiable at some point in the future. as required by
Smith (1961) or de Finetti (1974). Nevertheless. the
inevitable imprecision of statements (e.g., “the pain is
relieved by food”) makes it tempting to allow degrees
of truth of propositions and adapt a fuzzy calculus. It
should, however, be emphasized that it is not the true
state of the world to which the system has access, but
the assertion of the state of the world (The patient
has replied YES to the question “Is the pain relieved
by food?”), and this is necessarily made crisp by the
restricted means one has to put information into the
system (e.g.. just a YES/NO button). An expert
system can therefore force the user to be categorical
in his assertions, although we acknowledge that user
demand for qualifications of degree may create the
need for an alternate calculus to deal with partly true
propositions.

A statistician may tend to view a knowledge base as
a set of related nodes, each corresponding to a random
variable which may take on a number of mutually
exclusive and exhaustive values. The rules attempt to
define a distribution on the variables. For control
purposes, however, it may be necessary to have action
nodes which correspond to conclusions on which fur-
ther analysis is conditioned. These may well not be
strictly verifiable propositions; for example, in a sys-
tem designed for statistical analysis, there may be
assertions of normal errors or linear relationship.
Strictly speaking a decision-theoretic argument
should be used for any interim decision made in the
control of a consultation, but this is not usually prac-
ticable. As suggested in the “Introduction,” the justi-
fication for probability is not so clear in these cases,
instead it could be reasonable to adopt a calculus of
compatibility or degree of support for a hypothesis or
conclusion for which a probability is not well defined.

Knowledge Representation and Explanation

We feel that probabilistic methods can handle hi-
erarchical taxonomic structures without extending
into belief function methodology (Pearl, 1986b). There
is, however, a great need for further work in coherent
assessment and propagation_of probabilities through
the network structures arising from rule-based sys-
tems. The graphical representations of certain log
linear models deseribed by, for example, Wermuth
and Lauritzen (1983) are crucial, with propagation
schemes extended from those of Kim and Pearl (1983);
Spiegelhalter (1986b) describes efficient propaga-
tion schemes allowing for imprecise probabilities
and automatic tuning of the subjective assessments.
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Subjective judgments may be deliberately overspecified
to allow for identification of incoherence due to poor
assessments or weak modelling, or underspecified and
padded out using, for example, the maximum entropy
methods of Cheeseman (1983). By using such a struc-
ture and explanation facilities similar to GLADYS,
one should be able to fulfill the aim, described by
Dempster (1985), of justifying quantified judgment
explicitly in terms of the sources of evidence.

Intervals and Probabilities

As we emphasised in discussing GLADYS. two types
of range of probability must be distinguished. The
first, due to inadequacies in the knowledge base, con-
cerns the imprecision in the quantifications. This may
be represented by a standard error or even a fuzzy
qualifier, but in either case the range represents a type
of automatic sensitivity analysis conditional on the
data already obtained. This interval will generally
tend to widen as more data come in.

This should be contrasted with an interval based on
ignorance concering the current case. and one way in
which this can be defined is in terms of the probabil-
ities that could be taken on when the unknown data.
denoted X. becomes available. If D represents a dis-
ease with current probability p(D)), then the predictive
distribution of the eventual probability p(D | X) may
either be fully calculated as in GLADYS or summa-
rized by its range as in IMMEDIATE. We note that
by conditional expectation, Elp(D|X) = p(D).
Hence our current probability may simply be thought
of as the mean of the distribution of possible final
probabilities. This distribution narrows as the consul-
tation proceeds.

In this way ignorance is explicitly defined in terms
of the X that we do not yet know. In real life. X is
unbounded and so such a calculation is unreasonable.
but it is important to note that an expert system is
bounded and so can always explicitly state what infor-
mation is missing. provided a suitably efficient search
routine is available.

Operational Meaning

Our practical experience has strongly influenced us
toward establishing operational meaning to our
expression of uncertainty. This has three stages:
firstly. the inputs. based on either real or imaginary
past data. must have sufficient interpretation to allow
informed argument. Clinicians often disagree strongly
about subjective probabilities, but we have found the
resulting discussions illuminating and constructive.
The problems of agreeing on numbers with no verifi-
able interpretation is vividly illustrated in the fasci-
nating transeript of an argument concerning certainty

factors contained in the book on the MYCIN projects
{Buchanan and Shortliffe. 1984). Secondly. preserving
operational meaning in the propagation of uncertainty
requires attention to the coherence of the assessments
when placed in a large. complex knowledge base. Fi-
nally. the outputs need to have an externally verifiable
interpretation in terms of their calibration against
experience. Such calibration is not part of the axioms
of subjective probability, but we have found an enthu-
siastic response from clinical colleagues when they
find the predictions provide reasonable betting odds.
Of course, a system may process information solely
with the aim of providing a. possibly ranked. set of
alternatives with some attached measure of evidential
support. However. if a system is to be used to guide
the choice of an option. or its outputs are to be used
as inputs to another system. this seems to be inade-
quate. In fact, a subjectivist statistician may view a
diagnostic expert system as a coherence machine,
which takes in relevant information, and throws out
acceptable betting odds on future events.

Finally, perhaps the most important reason for in-
terpretable quantification is the need for learning. As
we have illustrated with the chest disease system.
updating of subjective probabilities is feasible and
should provide a convergence of opinion that may
overcome local biases which may otherwise render a
system unacceptable.
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Comment

Stephen R. Watson

1. COMMENTS ON SHAFER’S PAPER

One of the things that makes Shafer’s theory inter-
esting is that it can be seen as an alternative to the
traditional probability theory. Is this really so, how-
ever? Firstly. note that one of the strengths of subjec-
tive probability theory is the clear cut nature of the
axiomatic support for the theory. Indeed. as Lindley’s
contribution shows, it is possible to claim that prob-
ability theory is the only theory one could possibly use
to represent uncertainty. Shafer's theory does not as
yet have such a clear cut support. For example, al-
though Shafer recognizes the importance of canonical
examples, as yet belief function theory is not provided
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with as strong an axiomatic support as that which is
available for probability theory.

It can be claimed. however, that belief functions are
indeed rooted in probability theory. It is just that the
probability is associated with a power set rather than
a simple set. If this interpretation of belief function
theory is accepted, then indeed there is no problem,
since the philosophical support for probability theory
clearly also will support belief function theory. How-
ever. Shafer seems in some of his writings not to be
very happy with this interpretation of his theory. And
if he rejects this interpretation then the problem of a
philosophical foundation for belief function theory
remains.

The second point I make here concerns concepts of
independence. Shafer touches on this point in his
paper, but it is worth saying again that concepts of
independence in belief function theory are not yet
clear. In the application of Dempster’s rule to deter-
mine the support for a hypothesis on the basis of two
pieces of evidence, there is a rather vague notion that
the two pieces of evidence should be independent in



UNCERTAINTY IN EXPERT SYSTEMS 31

some way. The detailed meaning of this concept of
independence is far from clear. Shafer recognizes this
difficulty and in his discussion of frames is attempting
to overcome it. It is sufficient to say at this point,
however, that we do not yet know how to handle
dependence concepts in belief function theory in a way
which is intuitively understandable.

2. COMMENTS ON LINDLEY’'S PAPER

The conviction with which Professor Lindley
speaks, and the sheer power of his argument impel
users of alternatives to probability theory to respond
to his arguments. If we do not accept the inevitability
of probability, why not?

Users of Shafer’s theory or Zadeh's theory can, and
in fact have in the past, respond that they do indeed
accept the inevitability of probability. As Dempster
has commented. belief function theory is founded on
probability, and so there is no contradiction in using
belief function theory at the same time as using prob-
ability theory. Moreover, one can think of fuzzy set
theory as being a heuristic approach in situations
where a full probabilistic analysis is far too compli-
cated to be undertaken.

It is, however, also possible to take issue with
Lindley’'s argument. In other words, it is possible to
question some of the premises in his argument and
thereby avoid the full power of his conclusions. [f one
investigates the development of subjective probability
theory exemplified by Savage's approach. it is possible
to ask whether we are prepared to accept the axioms.
It is a commonplace now that people do not behave as
though they accept Savage's axioms, reasonable as
they undoubtedly are. Of course, these axioms are
normative and it can be argued, as indeed Lindley
does argue, that the fact that we fail to abide by the
axioms does not mean that we should not attempt to
do so. Indeed he would say that the first act of a
rational man is to agree to the axioms, and then
attempt to construct his behavior in accordance with
these axioms. If. however, we are not prepared to do
this, then what happens to us is a matter of practice.
It could be argued that if we are consistent in our
failure to abide by the axioms, then our opponents
can turn us into a money pump or construct a Dutch
Book of gambles against us. Of course, we do not do
this in practice. We just recognize when we are about
to get cornered in this way, and change one of our
judgments. possibly in a yet more inconsistent way
with our past judgments. There is, therefore, nothing
mandatory about accepting Savage’s axioms, and we
can therefore escape Lindley's conclusions if we wish
to.

In his contribution. Lindley gave a very clear

account of an alternative way of showing the inevita-
bility of the probability. This was based on the notion
of scoring systems. It is indeed quite remarkable that
no matter what kind of scoring system one adopts. the
numbers that one employs to describe uncertainty
must (after an appropriate transformation) satisfy the
rules of probability theory. Compelling as this argu-
ment is, we have to point out that in practice no Great
Scorer exists. There is nobody hovering about us being
prepared to dock our pay should we use numbers which
fail to conform to the rules of probability theory in
our descriptions of uncertainty. Thus while the argu-
ment is elegant and powerful. there is nothing inher-
ently irrational in not accepting it. because in practice
scoring systems do not exist.

Of course the proof of the pudding is in the eating.
If it can be shown that in the long run any person who
fails in his assessment of uncertainty to combine his
numbers as though they were probabilities will lose
out inexorably, then indeed we have a problem in
refusing to accept probability theory. But to my
understanding practical proofs of this kind are not yet
available.

Thus. it is possible to escape the inevitability of
probability: it has to be admitted, however, that there
is no alternative theory which has the strength of
support, and elegant support at that. which is available
for probability theory.

The chief drawback with using probability theory is
the complexity that sometimes results, and the need
to assess an often surprisingly large number of con-
ditional probabilities. In legal work. for example, great
difficulty can arise; some interesting work by Schum
(1981) shows how problematic probabilistic inference
can get. In one simple murder case, with five pieces of
evidence, he needed to make 27 probability assess-
ments. Lindley suggests the principle of Occam’s razor
should be applied to our topic: simplify where possible.
Sometimes probabilistic analysis is far from simple.

3. COMMENTS ON SPIEGELHALTER’S PAPER

Spiegelhalter’s paper is a most interesting account
of the construction of an expert system for medical
diagnosis. He gives us some important insights into
the practical problems of constructing an expert sys-
tem, which is both computable and also useful. This
raises the general question of how one determines
whether a particular expert system, as represented on
some computer. is actually a good one or not. The
issues involved are very similar to those involved in
validating a model. Firstly, one needs the system to
be faithful to some normative principle. In my view
one should start with probability theory since it has
the strongest theoretical base, but be prepared to
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adopt other approaches as heuristics or as richer rep-
resentations of the issues involved. It seems that
Spiegelhalter's approach has been similar.

Secondly, one could validate an expert system by
its comparison with expert performance. One can ask
whether the diagnosis achieved by Spiegelhalter’s sys-
tem was better or worse than that achieved by com-
petent diagnosticians. There is of course a debate over
whether an expert system should be appraised in this
way. Is the goal to reproduce the abilities of an expert,
or to improve on the abilities of available human
judges? If it is the former. then indeed it is sensible to
compare performance with experts, but in this case
one wonders why one should not use the experts
themselves. This could be answered by observing that
very often experts are in short supply. If, on the other
hand, our goal is to improve on human inference
behavior, then the criterion of conformity with some
expert performance is not appropriate. A final meas-
ure of the appropriatness of an expert system is user
satisfaction. To what extent do the people who inter-
act with the expert system feel that the system is of
use to them? In Spiegelhalter's case there are two
kinds of people involved. namely the patients and the
doctors. As Spiegelhalter observes, it is very important
that the doctors are supportive of the endeavor and
that they do not feel that their professional compe-
tence is in any way being threatened. It is perhaps
more important, however, that the patients feel that
they are being properly attended to. Spiegelhalter
seems to have achieved success on both fronts.

4, SUMMARY

Although the purpose of the conference was to dis-
cuss the use of the different theories for the represen-
tation of uncertainty in expert systems. the principal

Comment

A. P. Dempster and Augustine Kong

The papers by Shafer and Spiegelhalter are valuable
summaries by acknowledged leaders in active research
fields. There is much food for thought in both papers.
and many of the techniques and issues raised by these
authors will gradually become better understood as
the field of uncertainty assessment in expert systems
advances. Our research on models and techniques for
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speakers, perhaps wisely, devoted their discussion
mainly to arguing the cases for the use of their differ-
ent theories in general. On the basis of the discussions
we had at this conference. it seems to me that one can
summarize as follows. Probability theory has a strong
intellectual support and in principle there is no reason
why one should not be satisfied with this theory. Its
use does. however, lead to enormous problems of com-
plexity. and as a matter of practice it is necessary to
seek for approximations. Fuzzy set theory can be
viewed as a heuristic for handling those situations
where imprecise inputs and imprecise inferences are
required without the need to resort to the greater
complexity of probability theory. Belief function
theory can be thought of as a way of representing
inferences from evidence within the probabilistic
framework.

There are yet other alternative approaches to han-
dling uncertain inferences which were not mentioned
at the conference, and notable among these is the
nonmonotonic logic of Doyle. Recently Cohen (Cohen,
Watson and Barrett, 1985) has suggested a combina-
tion of Doyle’s theory with both Shafer's and
Zadeh's which he has referred to as the nonmono-
tonic probabilist. This seems an exciting possibility
for approaching the problem at the heart of this
conference.
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belief function analysis (Kong, 1986; Dempster and
Kong, 1986) is complementary to that of Shafer and
Spiegelhalter. We all seek to provide tools for real
applications. based on carefully constructed analyses
expressed through mathematically well-articulated
principles of uncertain reasoning.

Lindley is on a different track. He rehearses familiar
normative arguments for the Bayesian paradigm, evi-
dently seeking to persuade less committed colleagues
to abandon their fallacious ways. Unfortunately,
he shows no interest in understanding how his
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competitors really think, and hence, does not address
the issues on which, in our opinion, credible contem-
porary debate should focus. As illustrated by Shafer’s
hypothetical “ploxoma” example, his “challenge” is
unconvincing, for he casts himself first in the role of
challenger, then of umpire, and finally reverts to chal-
lenger, proclaiming himself well satisfied with the
result.

Lindley oversimplifies by identifying Bayes with the
use of probability. In fact, numerical probabilities
which are both syntactically and semantically very
close to Lindley's probabilities are essential to three
alternative approaches (“classical statistics,” “upper
and lower probabilities,” and “belief functions”) which
he criticizes. But surely it is first necessarv to under-
stand the various styles of reasoning with probability
implied by each of these systems, before either choos-
ing among them or judging which circumstances are
appropriate for each. In our view, moreover. the belief
function syvstem is very close to Bayes. and indeed
includes Bavesian models as special cases, so it is not
easily rejected in favor of Bayes except by arguments
whose artificiality is painfully obvious from the belief
function standpoint.

We make no attempt here to defend classical statis-
tics. upper and lower probability systems. or fuzzy
logic. where the last seems fundamentally different
from the others, but we can accept that each may have
an appropriate place in valid and useful formal anal-
yses. Instead. we comment briefly on the flexibility
which belief function theory adds to Bayesian theory
in its ability to incorporate evidence. Then we discuss
at greater lengih the connection between belief func-
tions and decision theory.

Lindlev repeats verbatim his discussion of the
Shafer (1982) “ploxoma” example, as he says, to pro-
voke further discussion. As matters stand, Shafer has
not modified his original representation, which con-
tains three belief function components: (a) a range .05
to .15 to describe the prior probability of “virulent
ploxoma,” (b) a vacuous belief function to describe the
inability of the “ordinary ploxoma™ experiment to
distinguish between x. and x3, and (¢) a 25% discount-
ing applied to the experimental data about ordinary
ploxoma. Evidently, these features were introduced to
illustrate the flexible forms of uncertainty represen-
tation encompassed by the belief function paradigm.
Lindley’s response is to suggest converting Shafer’s
analysis to Bayesian form by altering (a) to a single
prior probability .1, (b) to the indifference prior
assigning .5 to each of x, and x; given that one or
the other has occurred, and (¢) to E(«, ] 8.) = 8. where
(y1, ¥2. 7va) refers to valid chances of (x;, x.. xy)
given ordinary ploxoma for the new patient George,
although (3,, 3., 8s) refers to the questionable
experimental results.

So far. neither side has explicitly addressed their
differences over (a) or (b). But Lindley does now
respond to the Shafer (1982) rebuttal of his altered
(c). by allowing that we might have “no confidence at
all” in the ordinary ploxoma study, in which case
“E(y]8) would not depend on B8.” That is, 100%
discounting means that the Bayesian constructs E(vy,)
from wherever Bayesians construct such priors. thus
implicitly introducing other sources of information
processed together in the Bayesian's head to produce
the prior. Presumably, if the Bayesian were, more
realistically, to adopt less drastic discounting. the
same prior about (y;. y2. ¥3) would still be assessed
and combined with information from the data via
another assessed prior f(y | 8). Thus, Bayesian analy-
sis is not at all simple in execution, if one takes it
seriously.

Belief function methodology does introduce more
complexity into the class of available representations
of uncertainty, although not typically into the task of
assessing specific representations. Lindley criticizes
the mathematical generalization as lacking “neces-
sity” in the sense of William of Ockham. The impor-
tant question is whether the added flexibility is
necessary in practice to permit satisfactory represen-
tation of an analyst’s state of uncertainty about the
real world. We believe that it is literally impossible to
answer the question outside the context of real ex-
amples based on attempts to construct formal repre-
sentations of uncertainty reflecting actual uncertain
knowledge of the real world. Because their example is
purely hypothetical, neither Shafer nor Lindley is able
to discuss in any specific way the construction of their
specific models.

Important points about Lindley's “challenge™ are.
first. that a meaningful test must deal with real ex-
amples. and, second, that the umpire must rely on
some assessment of help given to third party clients.
Bayvesian decision analvsis has been out in the field
for about 30 years. and in our (subjective) assessment
has achieved only limited penetration into what might
seem to be its natural markets. If this failure to
penetrate were simply due to ignorance of the tech-
niques on the part of practitioners. then Lindley's
proselytizing might have a point. A more plausible
explanation is that practical construction of realistic
Bavesian models is tvpically very difficult. Because
belief function analysis does not pretend to the vague
and difficult goal of integrating all evidence available
to the analyst. but instead attempts only to represent
explicit and limited packets of independent evidence,
the process of constructing belief function models is
inherently simpler, and on this score belief function
methods have excellent prospects for success in prac-
tice. Of course, computational difficulties are another
matter, and here the tradeoffs are less clear, because
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computationally neither approach has advanced be-
yond its infancy. All in all, there would seem to be
sound practical reasons for seeking to relax Bayesian
constraints to obtain more flexible, explicit, and real-
istic representations of uncertainty.

Since the 1950s. both Bayesian and frequentist de-
cision theorists have agreed that Bayesian expected
loss is the appropriate numerical criterion for com-
paring possible acts. Such a Bayesian analysis intro-
duces a precise ordering among acts, in the sense that
the set of all acts is partitioned into subsets where the
analyst is indifferent within a subset but has a com-
plete preference order between subsets. Since general
belief functions replace expected loss by upper and
lower expected losses, moving to a belief function
framework implies a tradeoff. On one hand the analyst
simplifies inputs to specific sources of evidence, while
paying on the other hand by having only partial
orderings among acts. The partial orderings arise
because the single numerical Bayesian expectation is
replaced by numerical upper and lower expectations.

Lindley evidently does not wish to allow partial
ordering, but do the standard normative arguments
which he presents really prohibit it? For example, the
scoring rule argument posits an artificial decision
problem, where the acts are possible choices of a
numerical measure of uncertainty about some un-
known binary state, and the losses are heuristic qual-
ity assessments of the numerical measure of uncer-
tainty. The conclusion for this decision problem, as
for decision problems generally. is that Bayesian de-
cision rules are the only admissible decision rules.
More precisely, the conclusion is that, if there is a rule
that selects a single act from the available set of acts,
the rule must minimize expected loss under some
probability distribution. Note. however, that the con-
dition “if there is a rule” tacitly prejudges the question
at issue. For if we choose to report only a partial
ordering. we are, in effect. opting to specify no rule,
so the admissibility result becomes irrelevant.

Lindley abuses the theory of helief functions by
substituting belief into a scoring measure as though it
were a simple probability. It may therefore be helpful
to sketch what we see as the right way to think about
belief functions in a decision-theoretic framework. To
illustrate, consider a decision problem with decision
space D = (d,, ds. da}, outcome space W = [w,. w.}
and loss function given in Table 1. Let D* =
{d(p1, D2, Pa)Ip1y P2. s = 0. 3% p, = 1}, where

TABLE 1
Loss function

dy ds d,
wy 0 10 20
us 45 20 10

d(p), p2. pa) denotes the randomized decision that
selects decision d;, { = 1. 2. 3, with probability p..
Following DeGroot (1970),

(1.1) L(w,, d(p;. p2, ps)) = 10p: + 20p;
and

L(ws, d(p,. ps. pa)) = 45p; + 20p. + 10ps
where L(w, d) denotes loss. From Figure 1 it is clear
that a decision d(p,. ps. pa) is admissible in the ordi-
nary decision theory sense if either p, = 0 or p; = 0,
thus including the pure decisions d,, d», and ds. The

minimax decision is easily computed to be d(0, Y, )
where

Liw,. d(0. 4. '4)) = L(w.. d(0. 4. 4)) = 15.

Suppose our knowledge about the outcome is rep-
resented by the belief function Bel over W. Let {u}p.
be the collection of probability measures u over W
that satisfy

Bel(A) = u(A) < Pi(A)

forall A C W. Ford, d’' € D* we say d is uniformly
dominated by d ' with respect to Bel if

E{L(w. d)|u} = E{L{w. d’") | u
for all u € {uira and there exists p* € {u)na such that
EiL(w. d) | p*} > E{L(w.d") | u*}.

where E|-|u} denotes expectation computed based

on u. We call a decision permissible against Bel if it is

not uniformly dominated by another decision in D*

with respect to Bel. Hence. a decision is admissible if

it is permissible against the vacuous belief function.
Suppose Bel is

m”wl” = .6,
(1.2) m(lw.}) = .2,
m(lw,., ws) = .2

It follows that {ulpg = {u,|.6 = t = .8}. where g,
denotes the probability measure that assigns prob-
ability ¢ to w, and probability 1 — ¢ to w,. For the
pure decisions.

KiLtw, dy) | pd = 45(1 = t),
EtL(w, do) | u} = 10t + 20(1 — ) = 20 — 10¢,
EiLGw. d3) | et = 20t + 10(1 — ¢) = 10 — 20¢.

Figure 2 plots E{L(w, d\)|u}. E{L(w. d2) | x}. and
E{L(w. d3) | pd for .6 < t < .8. It shows that d; is
uniformly dominated by d. with respect to Bel. Since
E\L(w, d(py. p:. p3)) | u} = }_‘.i{=| pE{L(w. d) | pl. 1t is
straightforward to prove that d(p,, ps. ps). pa > 0, is
uniformly dominated by d(p,, p» + ps. 0) with respect
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to Bel. The permissible decisions against Bel are
dip.1—p.0).0<p=1.

For a decision d € D* define lower and upper
expected loss with respect to Bel to be (cf. Dempster,
1967)

E {L(w, d)} = El'nlf [E{L(w, d) | ul]
and
E*{L{w.d)} = sup [E{L(w. d)|u}].

HE LIl

Figure 3 plots the upper and lower expected loss of
the permissible decisions d(p. 1 — p, 0) as functions
of p. Since d(0, 1, 0) = d. has the minimum upper
expected loss. we call d, the miniupper decision against
Bel.

Notice that the miniupper decision against a vac-
uous belief function is the minimax decision and
the miniupper decision against a Bayesian belief func-
tion is the corresponding Bayes decision. Hence, the
miniupper method is a generalization of minimax and
Bayes. Under more general settings where there can
be more than two outcomes. it can be shown that the

task of finding the miniupper decision can be refor-
mulated as a linear programming problem. Details will
be given in a coming technical report.

We are not necessarily endorsing the miniupper
decision here. Indeed, in the above example, we have
no reason to fault someone who chooses d, over ds.
The point is that some guidance toward rational de-
cisions can be made even if uncertainty is represented
by belief functions instead of distribution functions.
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Comment

Glenn Shafer

I found it a pleasure to read the articles by Dennis
V. Lindley and David Spiegelhalter. They present an
elegant case for the use of Bayesian (i.e., conditional
probability) methods in expert systems. Lindley pro-
vides a concise summary of arguments he and others
have developed over the last several decades in support
of the claim that rationality demands the use of con-
ditional probability. Spiegelhalter supplements this
with an account of what is actually being accomplished
using conditional probability in diagnostic systems,
and he also contributes some interesting new argu-
ments.

In response, let me first express my admiration for
the practical work Spiegelhalter reports on. The
GLADYS system is especially attractive, because it
brings close to reality the kind of probability calcula-
tion philosophers have always considered ideal—the
calculation of conditional probabilities on the basis of
massive and directly relevant frequency data. 1 share
Spiegelhalter’'s excitement with the prospect that wi-
despread use of microcomputers will enable us to
attain this ideal much more often than we have in the
past.

WHY GENERALIZE PROBABILITY?

Spiegelhalter emphasizes capabilities of the
Bayesian language that are often overlooked. Weights
of conflict can be used to monitor Bayesian analyses.
and weights of evidence can be used to explain the
results. There are Bayesian definitions of imprecision
and ignorance. We do not need to generalize from
Bayes to belief functions in order to formalize these
concepts.

The desire to generalize Bayes does not spring,
however, from dissatisfaction with the ideal of condi-
tional probability. It springs from the realization that
this ideal is sometimes unattainable. Directly relevant
frequencies are often unattainable. Sometimes we can
make decent conditional probability arguments even
without such frequencies, but sometimes we cannot.
Sometimes we simply lack evidence for some of the
probability judgments that a given conditional prob-
ability analysis requires.

The only satisfactory description of uncertainty,
Lindley tells us, is probability. He is no less correct
than the man who helieves that the only satisfactory
household is one with a dozen servants. It's wonderful
if you can afford it.

STANDARDS OF RATIONALITY

What should we say about the claim that rationality
demands we make Bayesian analyses regardless of the
availability of the ingredients? For my own part, I
find that every argument for this claim boils down to
another appreciation of the beauty of the Bayesian
ideal.

Lindley believes that Savage’s axioms are so self-
evident that their violation would look ridiculous.
But in fact these axioms derive their appeal from
the Bayesian ideal rather than vice versa. If we did
not have the picture of conditional probability and
expected utility in mind, we would not even be able to
understand most of Savage's axioms (Shafer, 1986b).

The idea of a scoring rule also derives from the
Bayesian ideal rather than vice versa. It has relatively
little force in abstraction from that ideal. If we intend
to assign a number to each of two complementary
events and accept a penalty for each event based on
the number’s distance from one if the event happens
and its distance from zero if it fails, then we should
make the two numbers add to one. But how would we
explain this game to a naive listener? We would say
that the numbers are supposed to be like probabili-
ties—close to one for events that are expected to
happen and close to zero for events that are expected
to fail. The game fits the picture of additive, or
frequency-like, probability. and it is incomprehensible
outside that picture. It does not fit the theory of belief
functions, where a degree of belief close to zero indi-
cates inadequate evidence for the event. not assurance
that the event will fail.

Another argument for Bayes is based on the rela-
tively sharp preferences given by expected utility
calculations. We can calculate upper and lower expec-
tations from belief functions, but these will not give a
definite preference between two alternatives as often
as the Bayesian calculation will. But would we expect
such sharp preferences were it not for our fascination
with the Bayesian ideal? Would we really expect an
analysis of our evidence and pre-existent preferences
to tell us always exactly what to do. leaving no occa-
sion for caprice? In fact, human beings, unlike Buri-
dan’s ass, are capable of choosing without sufficient
reason. and they often use that capability. Building a
similar capability into a computer is one of the easier
tasks of artificial intelligence.

CONSTRUCTIVE PROBABILITY

In my contribution to this symposium, I say that
Bayesian analyses use games of chance as canonical
examples to which to compare actual evidence.
Lindley says such games provide a standard by which
to measure belief. There are commonalities here. but
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also important differences. It is difficult to use the
verb “measure” without pretending that there is
a well-defined property to be measured. Talk about
canonical examples encourages a more constructive
attitude.

One aspect of the constructive nature of Bayesian
probability judgment. emphasized by Shafer and
Tversky (1985), is the fact that we must construct our
starting point. We must construct a probability dis-
tribution before we can condition it or multiply it by
likelihoods. Bayesian theorists often assert categori-
cally that every new experience must be treated in
terms of its likelihood. Lindley, for example, declares
that “an Al system faced with uncertainty about A.
and experiencing A, has to update its uncertainty by
considering how probable what it has experienced is.
both on the supposition that A, is true, and that A; is
false.” But since a person may get around to construct-
ing “initial” probabilities only after experiencing A,,
he or she has the option of treating A, as part
of the evidence for those initial probabilities. Consider
Lindley’s investigator. who has discovered evidence
that a criminal is left-handed. Instead of treating
this evidence in terms of its likelihood, the investi-
gator uses it directly in constructing a probability
distribution.

There are problems. of course, where the construc-
tion can all be done in advance and then applied to
many cases. GLADYS deals with this kind of problem;
the same framework is applied to one patient after
another. If I understand Spiegelhalter correctly, he
believes that the bounded nature of expert systems
means that this is the only kind of problem with which
they can deal.

A finite system that permits construction can, how-
ever, deal with an unbounded range of situations. This
is one of the fundamental points of the generative
theory of grammar. The constructive nature of human
reasoning makes us capable of exploring ever new
realms of experience, and the ambition of Al is to
duplicate this capability. Rule-based expert systems
are one attempt to do so. These systems do not handle
probabilistic reasoning very well, and many Al theor-
ists would conclude from this that probabilistic rea-
soning has little role in genuine intelligence. In order
to prove them wrong, we must do more than retreat
to bounded systems like GLADYS. We must take the
problem of automating construction seriously.
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Comment: A Tale of Two Wells

Dennis V. Lindley

The main issue is whether uncertainty should be
described by probability. belief functions. or fuzzy
logic; not just in artificial intelligence and expert
systems, but generally. Are we to be probabilists,
believers, or fuzzifiers? Or do we need some mixture
of all three disciplines? To me, the important distinc-
tion between the methods rests on the rules of com-
bination of uncertainty statements. Do we operate
with the calculus of probability, the rules of belief
functions. or with those of fuzzy logic? In my paper
the challenge was made “that anything that can be
done by these methods (belief functions and fuzzy
logic) can better be done with probability.” This reply
will address one such challenge and I hope to show
that Dempster's rule for belief functions does not
behave as well as Bayes rule. My discussion is there-
fore chiefly addressed to Shafer and Zadeh. The omis-
sion of any discussion of Spiegelhalter’s contribution
arises because I agree substantially with it, and highly

regard it. I wish that his program for dyspepsia had
been more Bayesian and that he had recognized that
uncertainty about a probability is usually a reference
to the desirability of obtaining more data, so that his
conflict ratio should really reflect this. To return to
the challenge.

In 1685 the then Bishop of Bath and Wells wrote a
paper in which the following problem was discussed.
Two witnesses separately report that an event is true.
Both are known to be unreliable to the extent that
they only tell the truth with probabilities p, and p,
respectively. What reliability can we then place, in the
light of the witnesses’ testimonies on the truth of the
event? The Bishop's answer was 1 — (1 — p,)(1 — p3).
The following is a precis of his argument. If the event
is false, both witnesses must have lied. an event of
probability (1 — p))(1 — ps). Consequently one minus
this is the required reliability.

The result retains its interest today because the
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Bishop's rule of combination of the two pieces of
evidence is the same as Dempster’s rule used in belief-
function calculus. So here we have a challenge: 1
maintain probability can do better. (Readers will no-
tice that the example is similar to that of Slippery
Fred. used by Shafer in his paper, but is somewhat
simpler. It was introduced by Shafer in the oral dis-
cussion of the original papers.)

Almost 80 years later, in 1763, the rector of
Tunbridge Wells, Thomas Bayes, introduced his rule,
presumably being unaware of the Bishop’s proposal.
This is now known as Bayes' rule (of probability),
which we now apply to the Bishop’s problem.

Let A denote the event whose truth is in question,
and write a, and a» for the statements by the two
witnesses that A is true. Since A is uncertain and
a;. a» are known assertions, we have to calculate
p(A | a1. a»), the probability that A is true, given both
a;, and a». using the rules of the probability calculus.
This probability. and all those subsequently calcu-
lated. are judgments by some person. When. later. the
Bishop's values, p, and ps, are used, it will be supposed
that, suitably interpreted, they are accepted as his by
this person.

It is easier to work with the odds rather than the
probability. These satisty Bayes' rule

p(A|ay, a) _ plar, a2 | A)p(A)
p(Ala, as) plai, a:| A)p(A)’

(1)

On the far right we have the original odds on A before
the witnesses gave their evidence. Write p(A) = =, so
that the odds are n/(1 — #). Also on the righthand
side, in the numerator, occurs the probability p(a;,
as | A). This is the probability, were A true, that both
witnesses would report it so; that is, tell the truth.
The problem as formulated tells us nothing about
this but there is a strong hint of independence in
the original presentation—notice the multiplication
(1 — p)(1 — ps)—so if it is presumed here we might
write p(a;, as: | A) = p(a; | A)p(az | A), and similarly in
the denominator, p(a;, a;| A) = p(a, | A)p(az | A).

Next consider one term in the numerator, p(a, | A).
This is the probability that the first witness will say
the event is true when indeed it is true: in other words,
tell the truth. But this is not the only way he could
tell the truth: he could announce A was false when
indeed it was false. This is p(&, | A) = 1 — p(a, | &),
which occurs in the denominator. The Bishop's argu-
ment used p;, the probability of telling the truth. and
to apply the rector’s approach it is necessary to relate
p1 to p(a; | A) and p(a, | A). If ¢, is the event that the
first witness tells the truth, then

p(t;)) = p(t | A)p(A) + plt IA-)p(E)

But ¢, when A is true (false) is a,(a,). so
pr = pla; | A)r + p(@ | A1 — =)

on inserting the Bishop's value p; for p(t,). The sim-
plest assumption is that p(a, | 4) = p(a, | A); that is.
truth is just as likely when A is true as when it is false.
It then easily follows that the common value is p;.

Applying the same argument to the second witness.
we easily have from (1) that

pld|a, a)) _ Pipem
plAla;, a:) (1 —-p)(L—p)1Q—a)°
whence,
plAla. a)
(2) PP

" e+ (-0~ P~ )

It is this result that can be compared to the Bishop's
1= (1= p)(1 = po).

To reach the Bayesian result {2) some assumptions
have been made. We list these and comment upon
them.

I: p(A) = = is known, and relevant to the answer.

Its relevance seems indisputable. Even the testi-
mony of very reliable witnesses (p; and p» near 1)
would leave some doubt in a person’s mind about A if
initially he thought it most improbable (small 7).
Conversely. unreliable witnesses would still leave him
having appreciable probability for A if initially = was
near 1. Since it is relevant, its value must be included
in the calculations. This is perhaps the Bishop's main
mistake: to fail to appreciate the importance of .

II: @, and a, are independent, both given A, and
given A.

Notice that the independence assumption is quite
subtle. It demands independence both when the event
is true and when it is false—but not unconditionally.
It is easy to imagine circumstances where one inde-
pendence holds but not the other. Suppose A is the
event that a defendant in a court of law truly commit-
ted the crime with which he has been charged. If A is
true, two witnesses may collude in providing him with
an alibi; if A is false, no such collusion is needed.
So a, and a; may be independent given A, but not
given A.

The Bishop almost certainly was tacitly assuming
independence in 1685. It is also supposed in the mod-
ern belief function treatment, and Dempster's rule
only realistically applies when it obtains. The
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Bayesian approach works without independence: it
has only been assumed here for simplicity and com-
parison with beliefs. What the Bayesian view does is
to force one to consider the subtle nature of the
dependence between the witnesses.

II: p(a;|A) =plalA), (i=12).

This asserts that the witnesses are equally reliable
whether A is true or false. Again it is easy to imagine
circumstances where this is not true. In some cultures
there is a tendency for witnesses to say what they
think will please the listener. So if A is the event “the
airport is near,” veracity is more likely when A is true
than when it is false. Consequently one cannot be sure
that p(a;| A) and p(, | A) are both p,.

The Bishop certainly did not recognize the distinc-
tion, as have many writers after him. The Bayesian
approach does not demand the equality: it merely
forces one to recognize that two types of veracity are
possible.

Applied to the Bishop's problem, the rector’s ap-
proach forces one to consider one’s initial belief in the
event, the nature of the dependence hetween the wit-
nesses, and the two forms of reliability that arise. We
suggest that, on reflection, it will be admitted that all
three features are relevant to the final answer. Even
if the independencies and the equalities of the relia-
bilities are admitted, as the Bishop and the modern

Comment

David J. Spiegelhalter

It is fairly predictable that I should agree whole-
heartedly with Professor Lindley’s lucid justification
of probability as the correct paradigm for handling
uncertainty in expert systems (but how strange it is
to see him cast in the role of defender of orthodoxy!).
In particular, his emphasis on remembering the back-
ground evidence H is crucial to avoid any conception
that there is a single “true” probability of an event,
and the frequent references to the operational mean-
ing of probability gives a practical as well as a the-
oretical justification. However, playing the devil's
advocate, | see two main reasons why the artificial
intelligence community may not be convinced by the
argument.

Firstly, he turns all statements expressing uncer-
tainty into expressions of probability concerning (at
least theoretically) verifiable events. whereas many
constructors of expert systems would prefer to keep

equivalent tacitly do. the result is still different from
the Bishop's. It is of interest to enquire when they are
equal. Equating (2) and 1 — (1 — p;)(1 — pp) easily
gives after a little algebra the condition that

(1 = m) = pipom + (1 — p)(1 = p2)(1 — 7).

The righthand side is p(a;. ay), the unconditional
probability that both witnesses assert A is true, so
that the Bishop and rector only agree (under assump-
tions IT and III) if

p(A) = pla,. ay).

In words, the probability that the event is false has to
be equal to the probability that both witnesses assert
its truth. This is surely unreasonable.

I put it to the readership: my challenge has survived,
probability does do better. Let us support the rector
of Tunbridge Wells and not the Bishop of Bath and
Wells: let us favor truth and not the establishment.
(Bayes was a minister in the unestablished church.)
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their propositions deliberately imprecisely defined in
order to look more like human reasoning, and do not
provide an operational means of verification. Sec-
ondly, even if verifiable events are being considered,
the scoring rule argument presumes a certain type of
evaluation procedure which many might claim was
rarely appropriate, since the criteria for the “success”
of an expert system may only require a very coarse
handling of uncertainty.

Nevertheless, the theoretical arguments concerning
optimality and coherence are only one weapon in the
armoury. Pearl (1986b), in a recent strong advocacy
of probability, uses no normative criteria but concen-
trates on the power of the theory in adequately mod-
eling complex evidential reasoning, and I feel. in the
end, it will be the intuitive appeal and flexibility of
probabilistic reasoning that will change the current
climate.
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Professor Shafer’s historical perspective puts the
current discussion in an appropriate context, and em-
phasizes that many of the issues raised in expert
system research are by no means novel. The interest
in beliet function methodology is understandable, as
it appears to provide a means of avoiding full subjec-
tive assessment of a joint probability distribution,
and—by formulating “uncertainty” in terms of relia-
bility of evidence—it seems to attach uncertainty
directly to the rule rather than the consequences of
the rule. All this is very attractive, but users of the
methodology also have to take on board a rule of
combination that can lead to somewhat unintuitive
results (Zadeh, 1986). problems in providing an oper-
ational interpretation of the numerical inputs and
outputs, and a considerable computational burden.

Shafer does show how computationally efficient
schemes are available on simple trees, but this is an
extremely restrictive class of model, excluding both
multiple causes of the same event, and an element
being a member of two taxonomic hierarchies (for
example. “gallstones” may also be part of a “dyspep-
sia” taxonomy). In contrast, efficient probabilistic
schemes are now being devised for general graphical
structures.

This still leaves the ability of belief functions to
deal with “unknown” or “unknowable” probabilities.
From a historical point of view, it would be easy to

Rejoinder

Glenn Shafer

Watson and Dempster and Kong underline the
point that belief functions are a form of probability.
I can only say that | agree wholeheartedly.

I still have some bones to pick, on the other hand,
with Spiegelhalter and Lindley.

Spiegelhalter's comments on the computational sit-
uation are misleading. He suggests that computation-
ally efficient schemes for belief functions are available
only for a very restrictive class of models. whereas
efficient Bayesian schemes “are now being devised”
for very general models. In fact, most Bayesian com-
putational schemes have belief-function generaliza-
tions. It is true that the Bayesian special cases usually
require less computation: Bayesian models require
more complicated inputs than belief-function models,
and there is less need for computation when you begin
with more information. But the trade-off between
complexity of input and complexity of computation

slip into the “likelihood versus Bayesian™ debate at
this point. But [ believe the objective of constructing
expert systems enables us to avoid such arguments.
In such technological applications, there is real un-
derstanding of the problem to be exploited. and from
a purely pragmatic point of view, unknown probabili-
ties just do not occur—an assessment can always be
obtained by careful questioning. Of course, the subject
may not feel too confident in his assessment, and will
not be able to list a set of independent sources of
evidence for his opinion. But the opinion is there and
can be used, although. as Professor Lindley empha-
sizes. in certain circumstances the imprecision may be
relevant. As Professor Shafer points out: explanation
of a system’s conclusions may be provided at many
levels, and probability judgments that have not been
“constructed” on specified evidence can, if necessary,
be identitied. Provided a system'’s predictive perform-
ance is being monitored by scoring rules, it seems
quite reasonable in a medical area to exploit “informed
guesses’ rather than rely on a legalistic paradigm that
models unreliable “witnesses.”
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differs from case to case. and belief-function compu-
tations are manageable in a greater variety of situa-
tions than Spiegelhalter suggests.

In my article, I discussea Judea Pearl's work on
propagating Bayesian belief functions in trees. and [
noted that Pearl’s Bayesian scheme is a special case
of a general scheme for propagating belief functions
in trees. This general scheme has now been described
in some detail by Shafer, Shenoy. and Mellouli (1986).
In recent unpublished work, Pearl and Spiegelhalter
have made progress in dealing with Bayesian networks
that are not trees. Similar work is also underway for
belief functions, with the most important contribution
so far being Augustine Kong's dissertation at Harvard
(Kong, 1986). In the last chapter of this dissertation,
Kong shows how the belief-function scheme of Shafer
and Logan (1985) can be adapted to handle multiple
diseases with no additional computational cost.
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Spiegelhalter cites Zadeh in support of the view
that Dempster’s rule of combination can lead to unin-
tuitive results. For a reply to Zadeh's arguments, see
Shafer (1986a).

The Bishop of Bath and Wells whose work on
probability Lindley discusses was named George
Hooper. Hooper actually became a bishop only in
1703, long after his work on probability was published.
Details about Hooper's life and work are given by
Grier (1981). Hooper gave two rules for combining
testimony, a rule for concurrent testimony and a rule
for successive testimony. I have discussed these rules
and their Bayesian counterparts elsewhere (Shafer,
1978. 1986¢).

Hooper's rules were widely admired in the 18th
century: they appear, for example. in Diderot’s Ency-
clopedie. The Bayesian analysis that Lindley reviews,
together with a corresponding analysis for the case of
successive testimony, displaced Hooper's rules in the
early 19th century (see Shafer, 1978). But this Baye-
sian account of “the probability of testimony™ quickly
became a laughingstock. It was roundly and justly
denounced both by logicians critical of probability,
such as John Stuart Mill, and by probabilists
who preferred a frequentist interpretation, such as
Antoine-Augustin Cournot.

Rejoinder

Dennis V. Lindley

I find myself in general agreement with the contri-
butions of Watson and Spiegelhalter. Watson is right
when he says we do not have to accept Savage's
axioms. But it is desirable to have an axiom system to
support one’s calculations and the lack of them must
count against the alternatives to probability. Spiegel-
halter is right when he says that ultimately it's the
appeal of probability that matters: people will see that
it makes good sense. Just as with Euclidean geometry.
it is the operational aspect that counts, rather than
Euclid. Watson queries the existence of the Great
Scorer. I do not think it matters because one would
wish to behave in such a way that one could not be
exposed by his or her arrival. I would regard it as a
serious proposal to pay meteorologists, or even medical
doctors, according to their scores.

Whilst [ find myself in dispute with Shafer, his
arguments command respect and are not easily re-
futed. He contends that the axioms depend on condi-
tional probability and expected utility, rather than

The theory of belief functions does not require us
to go back to Hooper's rules. Instead it provides a
framework that includes both Hooper's analyses and
the Bayesian analyses as special cases, along with
many intermediate possibilities. The virtue of this
flexibility is that we can tailor our analysis to our
actual evidence. If we have significant prior evidence,
we can use it. If we have evidence for causal depend-
ence between the witnesses, we can use it. If we have
instead evidence for dependence in our uncertainties
about the witnesses, we can use it. By relating the
numbers we offer to actual evidence in this way, we
can hope to escape the ridicule that so wounded sub-
jective probability in the 19th century.
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that these depend on the axioms. While it is true that
historically the concepts pre-date any axiom system,
Savage introduced the axioms in order to justify a
system, classical statistics, that denies conditional
probability (of a hypothesis) and does not admit ex-
pected utility (with an expectation over unknowns);
and he was much surprised when the axioms destroyed
that system.

The scoring-rule argument works for almost every
rule and does not depend on 0 or 1 as Shafer suggests.
The preferences in Bavesian decision analysis are not
necessarily sharp. If d, has expected utility 10.927 and
d» 10.926, then d, is preferred only slightly to d.. The
analysis is designed to select an act because only one
act is typically possible.

Shafer also raises the issue of constructive proba-
bility. It is difficult, having experienced A;, to think
of probabilities for 4, if only because probability de-
scribes uncertainty and A, is no longer uncertain. My
response is that we should try to develop methods that
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would help people to do this. If these all fail, then it
will be necessary to think afresh. But forensic scien-
tists, finding it necessary to think about probabilities
for clothing stains (for example) have been able to
assess them.

There remains the contribution by Dempster and
Kong. They really throw the book at me and I am at
a loss how to react. Certainly no response within the
limits that the editor is likely to impose on me could
be adequate. It is therefore perhaps best to remain
silent except for one remark that touches on a point
raised by others. One reason that I reject belief func-
tions is that. at every stage. they are more complicated
than probability—and that is hard enough. as Watson
points out in connection with Schum’s work. They
involve more assessments and harder calculations.

Rejoinder

David J. Spiegelhalter

By concentrating on applications, I appear to have
escaped lightly in the discussion. Dr. Watson pointed
out the multitude of criteria that could be used for
evaluation of aids to clinical decision-making. Some
order can be introduced by classifying all criteria
according to whether they concern the system as
decision-maker or as aid. and whether they are meas-
ures of process or outcome. Thus “internal coherence”
is a process measure of the system as decision-maker,
“comparison with experts” is an outcome measure as
a decision-maker, “user satisfaction” is a process
measure as an aid, and “effect on patients’ health” is
an outcome measure as an aid.

Professor Lindley was concerned about my inter-
pretation of “uncertainty about a probability.” Per-
haps this phrase should not be used, since it does not
differentiate between doubt in one’s current beliefs
due to imprecision in the probability assessments on
which that belief is based, and sensitivity in that belief
due to ignorance of potential future evidence. As evi-
dence accumulates, the imprecision will generally in-
crease as one gets into an increasingly narrow area of
experience, but ignorance will be reduced. One’s
“point” current belief can therefore be thought of as
the mean of two second-order distributions, repre-
senting what that belief might be now, and what it
may become in the future.

Professor Shafer offers a vision of creative systems
that can generate arguments in novel situations. He

Furthermore, in my experience it is never necessary
to extend the probabilistic argument in the way the
theory of belief functions suggest. For example, if
imprecision about a probability is relevant, then prob-
ability theory will require its assessment within its
own calculus. Dempster and Kong reinforce this point
when they take several paragraphs to solve the simple
decision problem in their Table 1.

In conclusion may [ thank those responsible for
arranging the conference that led to these papers. and
the editors for encouraging them to appear. I hope
that readers will feel that the issues we address are
important, both in theory and practice. If any readers
feel they can meet the challenge it would be interesting
to hear from them.

is correct that I, and my clinical colleagues, view
expert systems in a much more limited sense, often
having very little to do with the tenets of artificial
intelligence, although exploiting their programming
environments. [ remain confident that probability is
the appropriate tool in this area, and recent develop-
ments in strict probabilistic reasoning using local com-
putations in general causal networks (Lauritzen and
Spiegelhalter, 1987) overcome many technical prob-
lems. The parallels raised by Professor Shafer between
probability /belief-function and expert-system/artifi-
cial intelligence contrasts are intriguing.

Both Professors Shafer and Dempster mention up-
per and lower expected losses from belief functions,
which I find rather confusing. Are belief intervals to
oe interpreted as upper and lower probabilities or not?
Suppose we adopt Dempster's decision theoretic struc-
ture after hearing “Slippery Fred's” evidence. Then
{uip. obey .8 < P (slippery) < 1.0, which—from Shaf-
er’s original equation (3)—can easily be shown to
impose the constraint ¢ = max{0, 4(1 — 2p)/(4 — 3p)}.
If p= Y. then {ulga is equivalent to 0 < ¢ < 1, which
does not appear too unreasonable. However, the im-
plicit constraints become much stronger after a crank
of the rule-of-combination having seen the thermom-
eter. Let us denote by r the probability the thermom-
eter is right even if it is not working properly. To
obtain coherently ulpq = .04 < P (slippery) = .05, we
require for, say p = Y. that (3 + 97r)/(123 — 23r) =<
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g < (23 +77r)/(118 — 18r). which is a fairly narrow
band around ¢ = r. Thus, far from having no basis
for specifying p. ¢ and r. very strong constraints
appear to have to be made in order for the decision-
theoretic scheme to be coherent, were the probabilities
available.

Shafer-Dempster belief intervals are widely inter-
preted as upper and lower probabilities in the expert-

system world. but I had always thought this was an
error. Now | admit to being confused.
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