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SUMMARY

The theory of belief functions assesses evidence by fitting it to a scale of canonical
examples in which the meaning of a message depends on chance. In order to analyse
parametric statistical problems within the framework of this theory, we must specify the
evidence on which the parametric model is based. This article gives several examples to
show how the nature of this evidence affects the analysis. These examples also illustrate
how the theory of belief functions can deal with problems where the evidence is too weak
to support a parametric model.
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1. CONSTRUCTIVE PROBABILITY
IN A Mathematical Theory of Evidence (1976), I discussed the possibility that the mathematical
structure for upper and lower probabilities that Dempster developed in his attempt to deal
with parametric models might be used more widely as a structure for probability judgements. 1
suggested that we call set functions that have the structure of Dempster’s lower probabilities
belief funcrions, and | developed the implications of Dempster’s rule for combining belief
functions based on different bodies of evidence.

The central role of Dempster’s rule of combination in the theory of belief functions is
merely onc aspect of the theory’s emphasis on the decomposition and description of evidence.
In general, the theory allows probability judgements to depend not only on the overall
strength of the evidence on which they are based but also on the structure of that evidence.

In this paper 1 turn this general emphasis on cvidence back onto the problem of parametric
models. I argue that belicf-function analyses of these models should depend not just on the
models themselves but also on the nature of the cvidence for them. | give several examples of
this dependence.

Before taking up the problem of parametric models, | briefly review the theory of belief
functions and its relation to other constructive theories of probability judgement.

The exposition that follows is based on the idea, first developed in unpublished work by
Amos Tversky and myself, that all theories of probability judgement, including both the theory
of belief functions and the Bayesian theory, should be thought of in terms of canonical
examples to which the theories compare evidence. For a further development of this theme, see
Shafer (1981a,b).

1.1. Three Constructive Theories
Probability judgement, like all judgement, involves comparison. In order to judge whether
given evidence makes something practically certain, very probable, fairly probable, or not at all
probable, say, we must compare this evidence to examples where it is agreed that these
adjectives fit. We must, in other words, fit our evidence to a scale of canonical examples.
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Numerical probability judgement similarly involves fitting our evidence to a scale of canonical
examples. Different choices of this scale produce different constructive theories of probability.

Here are three such theories.

The Bayesian theory. Suppose our scale consists exclusively of examples where the truth is
generated according to known chances. Then when we make a probability judgement P(4) = p
we are saying that our evidence provides support for 4 comparable to what would be provided
by knowledge that the truth is generated by a chance set-up that produces a result in A exactly
p of the time. And thesc probability judgements will obey the usual Bayesian rules.

If we are working with a set of possibilities Q, then our scale of canonical examples will
include, for each chance distribution P over Q, an example where the truth is generated
according to the chances given by P. Usually we will not. of course, be able to fit our evidence
to this scale by means of a single holistic judgement. Instead we will break the overall
comparison down into many simpler comparisons and then construct P from these simpler
judgements.

Lower probabilities. Supposc we know that a certain process is governed by chance, but
instead of knowing precisely the chance distribution P governing it, we know only that Pisina
class .# of chance distributions. Denote by Q the sct of possible outcomes for the process. Then
we might set our probability or degree of belief that the outcome of a particular trial will be in a
subset A of Q equal o

PJA) = inf{P(4)| Pe ).

This seems natural because we know the chance of A is at least P (A4). Notice that the
probabilities or degrees of belief obtained in this way will, in general, be non-additive: P (A)
and P, (A) may add to less than one.

By varying the class 2 in this story we obtain a scale of canonical examples. Let us call the
constructive theory that uses this scale the theory of lower probabilities.

Belief functions. Suppose someone chooses a code at random from a list of codes, uscs the
code to cncode a message, and then sends us the result. We know the list of codes and the
chance of each code being chosen—say the list is ¢y, ....¢,. and the chance of ¢; being chosen is
pi- We decode the encoded message using each of the codes and find that this always produces
a message of the form “the truth is in 4 for some non-empty subset A of the set of possibilitics
Q. Let A, denote the subset we get when we decode using ¢;, and set

mA) =Y ipl1<i<n A; = A) (N

for each 4 = Q. The number m(4) is the sum of the chances for those codes that indicate A was
the true message; it is, in a sensc, the total chance that the true message was A. Notice that
m(¢) = 0 and that the m(4) sum to one. The quantity

BEL(A)= Y m(B) )

Be A

is, in a sense, the total chance that the true message implies A. If the true message is infallible
and the coded message is our only evidence, then it is natural to call BEL (4) our probability or
degree of belief that the truth lies in A.

A function sEL is called a belief function if it is of the form (2), with the m(4) non-negative
and summing to one and with m(¢) = 0. The subsets A of Q for which m(A4)>0 are called the
Jocal elements of the belief function.

It is easily scen from (2) that BEL(A)+ BEL (A) 1, or BEL(A)}< 1 —BEL(A). The quantity
1 —BEL(A) is called the plausibility of A and is denoted by PL(A); it can be large even if the
evidence for A is slight, provided that the evidence against A is also slight.

The equation BEL(+)+BEL(A) = 1, which is equivalent to BEL{4) = PL(4), holds for all
subsets A of Qif and only if BEL's focal elements are all singletons. In this case, BEL is an additive
probability distribution.
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We can tell the story of the coded message with any values for the m(4) we please. So this
story provides a canonical example corresponding to each possible belief function. It is
sometimes helpful to vary the story slightly: what is cssential is that some chance experiment
with outcomes ¢y, ....c, has been carried out. that we know these outcomes had chances
Pisea Py and that we reccive a message that means A, if ¢; was the outcome.

1.2, Elements of the Theory of Belief Functions

Belief functions, we have suggested. are obtained by fitting evidence to a ccrtain scale of
canonical examples. In order to turn this idea into a practical tool, we need rules for breaking
the fitting task down into simpler judgements. and techniques for making these simpler
judgements feasible. Here we will review some of these rules and techniques for the case where
Q is finite. For an introduction to the case where Q is infinitc, see Shafer (1979).

The vacuous belief funcrion. Consider the belief function gL obtained by setting m(Q) = |
and m(A) = O for every proper subset 4 of Q. We see by (2) that BEL also satisfies BEL(4) = O for
every proper subsct A; BEL indicates no positive beliefs at all as to where in Q the truth lies. This
belief function is appropriate when the cvidence being considered does not, by itself, tell us
anything about which element of Q is the truth.

Simple support functions. Consider the following variation on the story of the randomly
coded message. A certain mechanism that produces messages has two modes of operation:
reliable and unrcliable. 1t is in its reliable mode with chance p,, and then it produces only true
messages. It is in its unreliable mode with chance p, = | —p,. and then it is completely
unpredictable; we have no idea whether or how often the messages it produces will be true or
false. Suppose this mechanism produces the message that the truth is in the subsct of E of Q.
Then we will say that the message has a chance p, of meaning E and a chance p, of meaning
nothing—i.e. meaning only that the truth is in @ And so we will adopt a belief function with
focal elements & and Q. with m(E) = p, and m(Q) = p,. This belief function, given by

0 fE&A,
BEL{A)=1{ p, fEc A£Q,
1 if4=0Q,

is called a simple support funcrion.

[t is often natural to compare evidence to 4 mechanism that is only sometimes reliable and
thus to represent it by a simple support function. The reliability of a witness can obviously be
taken into account in this way. The strength of an argument can often be assessed in the same
way; this means we compare the argument to one that has a definite and known chance of
being reliable.

Dempster's rule of combinarion. One of the basic strategies of the theory is to decompose our
evidence into two or more unrelated bodies of bodies of evidence, make probability
judgements separately on the basis of each of these bodies of evidence. and then combine these
judgements by Dempster's rule. This rule tells us how to combine a belief function BEL,
representing one body of evidence with a belief function RBE1, representing an unrelated body of
evidence so as to obtain a belief function BiIl; @ BEL, representing the pooled evidence. The
rule is most easily stated in terms of m-values: If the m-values for BEL, and BEL- arc denoted by
m(A) and m,(B), respectively, then BEL, @ BEL, is the belief function with m-values m(C), where
m(¢p) = 0 and
S imAymy(B) AcQ: B€cQ. AnB=C}

) =%
e YimA)my B A B An B#¢)

(3)

for all non-empty subsets C of Q. (Notice that the focal elements of BEL, @ BEL, consist of all
the non-cmpty interscctions of focal elements of BEL, with focal clements of BEL,.)
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The idea underlying Dempster’s rule is that the unrelatedness of two bodies of evidence
makes pooling them like combining two stochastically independent randomly coded messages.
Suppose BEL, and BEL. do correspond to two such messages. Denote by ¢y, ...,¢, and p,, ..., p,
the codes and their chances in the case of the first message, and by ¢i,....c}, and p.....p,, the
codes and their chances in the case of the sccond. Independence means that there is a chance
pip; that the pair (¢ ¢}) of codes will be chosen. But decoding may tell us something. If the
message 4; we get by decoding the first message with ¢; contradicts the message B; we get by
decoding the second message with ¢} (ic. if 4;n B; = ¢), then we know that (c;, ¢) cannot be
the pair of codes actually used. So we condition the chance distribution, eliminating such pairs
and multiplying the chances for the others by K, where

K '=Yppil1<ism 1<j<m: A, B;#¢)

s
=Y {m(A)my(B)|A<Q: B€Q; AnB#¢).
If the first message is 4 and the second message is B, then the overall message is 4 » B. So the
total chance of the overall message being C is
m(C)=K) {p;pjl 1 <i<n; 1<j<m; 4,0 By = C}
KY {im(A)ymyB)|AcQ: BcQ; AnB =C!,

which is indeed equal to (3).

We may call BEL; @ BEL, the “orthogonal sum™ of BEL, and BEL.. Here are some
elementary properties of the operation @: (i) BiiL, @ BEL, exists unless there is a subset 4 of Q
such that BeL,(4) = | and BEL.(A) = 1. (ii) Commutativity: BEL, @ BEL, = BEL, @ BEL,, (iii)
Associativily: (BEL, @ BEL,) @ BEL; = BEL, @ (BEL, @ BEL,). (iv) In general: BEL @ BEL # BEL;
BEL @ BEL will favour the same subsets as BEL but with, as it were, twice the weight of evidence.
(v) If BEL, is Bayesian, then so is BEL; @ BEL.. (vi) If BEL, is vacuous, then BEL, @ BFL, = BEL,.

Dempster’s rule can be seen as a generalization of rules formulated in the eighteenth
century by James Bernoulli and Johann Heinrich Lambert. (See Shafer, 1978.)

Conditioning. Consider evidence which establishes conclusively that the truth is in a subset
E of Q but which does not tell us anything more specific. Such evidence can be compared to a
randomly coded message which has chance one of meaning E, and so we can represent it by a
belief function BEL; whose m-value for E is one. The values of REL are

0 ifAPE,
I if ASE.
An important property of BEL is its idempotence: BEL; @ BFLy = BELg.
If BEL is a belief function satisfying BEL (E)< 1, then BEL @ BEL, exists, It is natural to call
BEL @ BELy the result of conditioning BEL on E and to denote (BEL @ BELg)(A) by BEL(A | E).

Notice that conditioning an orthogonal sum is equivalent to conditioning each term in the
sum before combining: since BEL. is idempotent,

BEL (A) ={

(BEL, @ BEL,) @ BELp = (BEl., @ BEL;) @ (BEL, @ BEL,).

The process of conditioning can be described directly in terms of focal elements: to
condition BEL on E, reduce the focal clements of BEL to their intersections with E and then
renormalize the m-values to take into account the elimination of those focal elements that have
been reduced to ¢. If BEL is an additive probability distribution, then this reduces to the usual
Bayesian rule of conditioning.

Minimal extension. Suppose the set of possibilitics Q has n elements: Q = {w,,....w,}. And
suppose A is a finer sct of possibilities. This means that the elements w,, ..., , of Q correspond
to a partition E,, ..., E, of A: “w; is the truth™ means the same as “the truth is in E;”, and, more

generally, a subset {w;,, ..., ; of  has thc same meaning as the subset E;, U...UE, of A.
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Given a belief function BEL over A we can speak of its marginal over Q: the belief function
BEL | Q given by

(BEL | Q)({ew;,, ..., }) = BEL(E; U ..U E,).

ih

Marginalization can be described in terms of focal clements by saying that a focal element A of
REL is reduced to the subset {w;|E;n A#¢} of Q. In general, there will be many belief
functions over A having a given marginal over Q. Or, 10 put the matter another way, a belief
function over Q will extend in many ways to a belief function over A.

Suppose we usc a given body of evidence to construct a belief function BEL, over Q. And
suppose we judge that this evidence bears on the questions discerned by A only insofar as it
bears on those already discerned by Q. In terms of the randomly coded message to which we
are comparing our evidence, this says that if {e; ..., w; } is the meaning of the message relative
to Q, then E; u..uE, is its meaning relative 1o A. This suggests that BFL, should be
extended to the belief function BEL over A whose m-values are given by
mE;, U..uEy)=mglw;,...0.}) and m(A) =0 for all AcA which are not unions of
elements of the partition £, ..., E,. This belief function Bri. does have BEL, as its marginal. And
for each 4 A, BEL(A) is less than or equal to the degree of belief given to A by any other
extension of BEL, to A. So we call BEL the minimal extension of BELg.

Conditional embedding. Sometimes we rule out some of the possibilitics in a set of
possibilities A, thus reducing it to a smaller set of possibilities Q< A. If we have constructed a
belief function BEL over A and we then reduce A to Q because of new evidence that establishes
that the truth is in Q without saying anything more specilic, then we will. of course, replace BEL
by its conditional given Q—i.e. by the belief function over Q that assigns to cach AcQ the
degree of belief BEi. (4 | Q). In general, there will be many belief functions over A having a given
conditional given Q.

Suppose we begin by taking it for granted that the truth is in Q and construct a belief
function BEL, over Q, but we later decide that all the elements of A must be admitted as
possibilities. And supposc we judge that the evidence on which BEL, is based does not impugn
any of the possibilities in A—€Q. In terms of the randomly coded message to which we are
comparing the evidence, this means that if 4 =Q is the meaning of the message relative to €,
then 4 V(A —=Q)is its meaning relative to A, This suggests that BEL, should be replaced by the
belief function BEL. over A whose m-values are given by m(A U(A—~Q)) = my(A) for all AcQ
and m(A) = 0 for all subsets 4 of A that do not contain A —Q. This belief function BEL has BEL,
as its conditional given Q. And for each A < A, BEL.(4) is less than or equal to the degree of
belief given 1o 4 by any other belief function over Q that has BELg as its conditional given Q.
We call BEL the conditional embedding of BEL, in A,

The idea of conditioning embcedding was first developed by Smets (1978).

Discounting. Suppose that after observing a randomly coded message and calculating the
belief function BEL by (1) and (2) we discover that our understanding of the process producing
the message is not fully reliable: say there is a chance 1 — a that our understanding is correct, so
that the message is indeed the result of choosing among the codes ¢, ...,¢, with chances
Pie.-- Do but a chance xz that the message was produced in some other way ubout which we
know nothing and must therefore be counted as meaning nothing. Then we must change the
chance associated with the code ¢; from p; to (1 —2) p,, and we must, in eflect. introduce a new
“code™ that is used with chance x and which decodes any message to the non-informative
statement that the truth is in Q. This means reducing cach m-value m(A4) to (1 —x)ym(A) and
then increasing the m-value for Q by = The result is a belief function BEL” related to BEL by
BEL*(A) = (1 — 2) BEL(A) for all proper subsets 4 of Q. (B (Q) = BEL(Q) = 1, of coursc.) We
say that BEL” is the result of discounting neL. Discounting is the natural way to take account of
doubts or sceond thoughts about belief functions constructed by oursclves or others.
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1.3. The Constructive View of Probability

By saying that probability judgements are made by fitting given evidence to a scale of
canonical examples. we are able to bring together two ideas that have sometimes been set up in
opposition to one another: the idea that probabilities are subjective judgements, and the idea
that probabilities can be based on a limited body of evidence.

The idea that probability judgements can be based on limited evidence is essential, of
course, to a proper understanding of the theory of belief functions. Ultimately, we are always
interested in judgements based on our total evidence. But the motivation for using Dempster’s
rule of combination is the idea that we might gain in clarity of thought by weighing different
items of evidence scparately before thinking about how they reinforce or contradict each other.

I do not wish to suggest that the idca of basing subjective probability judgements on
limited evidence is utterly new. But consider the typology of views on the interpretation of
probability that Savage presents in The Foundation of Statistics (1954, p. 3). Savage
distinguishes three main classes of views: objectivistic, personalistic and necessary. Objectiv-
istic views hold that probability is an objective property of certain repetitive events;
personalistic views hold that probability measures the confidence that a particular individual
has in the truth of a particular proposition; necessary views hold that probability measures the
extent to which one set of propositions, out of logical necessity and apart from human opinion,
confirms the truth of another. This typology obviously does not accommodate the idea of
probability judgement based on limited evidence. Personalistic views focus on the attitudes a
person actually has towards a proposition, and these attitudes are presumably based on his
total evidence. Necessary views allow us to delimit the evidence, but they insist that this
evidence be cast in the form of propositions, and they exclude any role for judgement in
assessing it.

I would like to suggest that our constructive view of probability—the view that probability
judgement amounts to fitting given evidence to a scale of canonical examples—should be
recognized as a fourth view of probability, distinct from and on a par with the objectivistic,
personalistic and necessary views.

2. GENERALIZATIONS OF BAYESIAN PARAMETRIC INFERENCE

Let us adopt the now standard general notation for parametric statistical models: @
denotes the set of possible values for the parameter, ¢, :#” denotes the set of possibilities for the
data x and { P,: 0 € ®} denotes the model. How do we make probability judgements about 8
after observing x?

The Bayesian answers this question by representing prior evidence about 8 by an additive
probability distribution Py over @ and by using this distribution, together with the P,, to
construct a distribution, say P, over © x 4, Pis the unique probability distribution over ® x 7
that has P, as its marginal for 6 and the P, as its conditionals given 6. Once the Bayesian has
observed x, he will condition P on x to obtain posterior probabilities for 8.

How should our constructive generalizations of the Bayesian theory generalize this
Bayesian treatment of parametric statistical inference?

Lower probabilities. The natural lower-probability gencralization is to replace the prior
distribution P, by a class 2, of additive probability distributions. This leads in turn to a class
# of additive probability distributions over & x 4", and conditioning this class on the observed
data x gives posterior lower probabilities for 0. The weakness of this approach is that if 2, is a
reasonably broad class, then the posterior lower probabilitics are not very informative. If. for
example, we judge that we have no cogent prior evidence about ) and so allow %, to be the
class of all additive probability distributions on ©, then our posterior degrees of belicf will not
indicate any evidence for any proper subset of the set of Py which are possible in light of the
observed data. For a review of the literature on this lower-probability approach to parametric
inference, sec DeRobertis (1978).
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Belief functions. Suppose we represent our prior evidence about { by a belief function BEL,
over ©. Then it seems natural to generalize the Bayesian approach by asking for a belief
function over © x & that has BEL, as its marginal for # and P, as its conditional given ¢. Such a
belief function could then be conditioned on the observed data x to yield a posterior belief
function over O.

This line of thought brings us immediately to a fundamental difference between additive
probability measures and more general belief functions: a beliefl function is not, in general,
uniquely determined by its marginal for a given partition and its conditionals given elements of
that partition. There may be many belief functions over @ x # having a given marginal BEL,
and given conditionals P,. And there may be no reason to prefer one to the others. In his
original work on “gencralized Baycsian inference”, Dempster (1968) proposed a particular
method of constructing a belief function with a given marginal BEL, and given conditionals Py,
but both he and his critics were uncomfortable with the seemingly arbitrary character of the
method. (There are general principles from which Dempster’s method can be derived (see
Shafer. 1976b) but | now belicve the method is appropriate only in the case wherc the evidence
about a random experiment is limited to evidence for its randomness; se¢ Section 4 below.)

But it is no embarrassment to the gencral theory of belief functions that a belief function is
not fully determined by a given marginal and corresponding conditionals. Belief functions are
not meant, in general, to be constructed from such elements. They are meant to be constructed
from analyses of evidence. And so long as we are working within the theory of belief functions
we expect to represent individual items of evidence by belief functions, not by objects like
conditional belief functions or parametric models.

So the gencral spirit of the theory of belief functions leads us 10 look beyond the parametric
model {Py: 8€ @} to the evidence on which the model is based. Our goal should be to represent
this evidence directly by a belief function over @ x 47, and it will be this belief function. say BEL,
that we should regard as a full account of the effect of this evidence on © x.7". The model
{Py: 0O} will be only a partial account: P, will be BEL’s conditional given 6.

Once we have constructed such a belief function, BEL, we can take the prior cvidence about
0 into account by combining BEL with BELy's minimal extension to @ x.#, which we may
denote by BEL,. If the evidence for the parametric model does not by itself give any indication
as to the value of 0 (so that BEL's marginal for 8 is vacuous), then the resulting belief function
BEL @ BEL, will satisfy the conditions formulated above: BEL, will be its marginal for 6, and P,
will be its conditional given 0.

3. SoMmt EXAMPLES OF EVIDENCE FOR PARAMETRIC MODELS

Here we shall consider three possible ways a parametric model { P, /e @} might arise:
(1) Perhaps the values of the parameter () have a substantive significance. and our knowledge
of each Py derives from actual observations, the observations affording our knowledge of one P
being distinct and independent of those affording our knowledge of another. In a problem of
medical diagnosis. for cxample. each () might correspond to the hypothesis that the patient has
a particular disease. with P, giving the frequencies with which that disease has been observed
to give rise to various symptoms.
(2) Perhaps the model arises from a single empirical frequency distribution—an “error
distribution™. This possibility is often mentioned in textbooks.
(3) Perhaps we are convinced that a phenomenon is random without having any evidence as
to the frequency distribution of its outcomes, so that the model includes all additive
probability distributions on #".

Thesc three ways suggest. as we shall see, quite different belief functions on @ x 7, though
in each case the belief function has the P, as its conditionals and has a vacuous marginal for 0.
For another example of the use of belicf functions in statistical problems see Shafer (1982).



1982] SHAFER — Bélief Funciions and Parametric Models 329

3.1. Models Composed of Independent Frequency Distributions

Suppose our model consists of finitely many P, and each is based on independent empirical
data—i.c. cach Py is an empirical frequency distribution which we would be willing to translate
into degrees of belicf about x if we knew 6 to be true, and the P, for different ¢ are based on
independent obscrvations. Then how should we combine them to obtain a belief function BEL
on @ x4

Smets (1978, pp. 145-190) has pointed out that the method of conditional embedding can
be used to answer this question. We represent cach P, by its conditional embedding, say BEL,.
in @ x &', and then we set BEL equal to the orthogonal sum of all the BEL,.

Let us show that 8iL is vacuous for # and has P, for its conditional given (. We begin with
the fact that BEL,'s focal elements are in one-10-one correspondence with the elements of .77
corresponding to xe is the focal element

HO.x)} VIO —{0)) x ), (4)

with m-value equal to Py(x). (i) A focal element for BEL is obtained by intersecting focal clements
from the different BEL,'s: in other words, it is of the form

N [i0.x)} OO =16} x 27 = | {(0. o)} (5)

te® 8e®
for some choice of x,'s. But any subset of ® x 2" of the form (5) has a non-empty intersection
with every cylinder set {6} x .#". So BEL has a vacuous marginal for 6. (ii) Intersecting the focal
element (4) with {8} x " yields {(0,x)}. while intersecting it with {('} x &, where 858, yields
{60'} x . So BEL, yields P, when conditioned on @ and yields the vacuous belief function on .&
when conditioned on ¢ 5 6. Since the conditioning of an orthogonal sum can be achieved by
conditioning cach component before combining, it follows that BiEL yiclds P, when conditioned
on 0.

It should be stressecd that Smet’s method depends on the assumption that © is finite.
Moreover, it gives sensible results only when the number of clements in O is fairly small, for
enlarging © has the cffect of weakening the posterior degrees of belief. It is only when © is
small, of course, that we could hope to satisfy the assumption that each P, be based on
independent empirical data.

Example 1. Consider, for simplicity, the case where #” and © have only two elements; say
& =101}, © = {0,,0,}, Py(1) = p, and Py (1) = p,. Then the belief function BEL on © x .4
has the m-values given in Table 1. Conditioning BEL on the observation x = 1 yields the
degrees of belief

Pil = p:) and BEL(B.|x=1)= U=p)p. .
I—(1=p)d—-py) 1—=(1=p)1—py)
Some insight into these formulae may be gained by fixing p, at some value equal neither to 0
nor to | and considering extreme values of p,. If p, = 0, then the observation x = 1 tells us that
8 = 0,; we have BEL(0, |x = 1) =0 and BEL(,|x = 1) = 1. Il p; = 1, then the observation
x = 1isevidence in favour of 8 = 0,: we have BEL. (0, |x = 1) = | —p, and BEL(U,|x = 1) = 0.

(6)

BEL(O,|x=1)=

TaBLE 1
Focal element m-value
W8, 1). 18, 1)) pi P2
HO,.1). (0,.0)] pil—p3)
116,.0). 0, 1)} U-=pip;

10,.0). (#,.0)) (1=pH1—py)
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The combination of observations. Smet’s method can be applied. of course, (o the case of
multiple observations. If we expect to make n independent observations from Py. then we
simply construct the product distributions P§ on #™, conditionally embed these to obtain belief
functions BELS on @ x ™", and then combine by Dempster’s rule to obtain a belief function BEL"
on ® x 4™ that can be conditioned on the observations x,,...,x, to yicld a posterior belief
function on ©.

An alternative approach to assessing independent observations x,,..., X, is to use each x; to
construct a posterior belief function BEL (] x;) on © and then to combine these posterior belief
functions by Dempster’s rule. This, it turns out, gives the same result (Smets, private
communication).

Proof. For each (x,..., x,) € 47", BEL§ assigns the m-value Pyx,)}... P{x,) to the focal element
{0, % ccu X))} W UO =10} x ™). (7)
Let BEL, denote, as before. the conditional embedding of Py in © x 2. And let BtL 4 denote the
result of conditionally embedding BEL, in © x 2™, with the 4" in © x 7 identified with the ith
copy of 2" in @ x #™. Then BEL, assigns. for each x; .7, the m-value Pg(x)) to the focal element
({0} x Iy x o x i x4 X XX ) U (O —10)) x ™). (8)

We sce, by comparing (7) and (8), that BEL; = BEL,, @ ... @ BEL,,. So

BEL, = (DBEL) = P(BEL,p @ ... @ BEL,5) = (DBEL ) @ ... ® (PBEL,).
[ 2] f ;]

But )¢ BEL; is the conditional embedding in @ x 4™ of BEL =(@),BELs. So conditioning
(s BEL;g On (x...., X,) Yields the same belief function on © as conditioning BEL on x;. So

BEL, (| Xy, ....X,) = BEL(-|X,})® ... ® BEL (| x,)
for all (xy,...,x,)ed™.

Example 1 continued. Suppose k of our observations x,,...,x, are equal to 1 and n—k are
cqual to 0. Then BEL,(-]x,,...,x,) is obtained by using Dempster’s rule to combine k copies of
BEL(-|x = 1) and n—k copies of BEL(-|x = 0). The result is
n k

PiL—py" *—(p, pM(1 —py)(1 = py))*

BEL, (0, | X[ ., X,) = — -
2 P —p "+ p = p) *—(p, p)M (1 =p) (] —pap =t

and

PE=po *~(py p MU —p (1 =pa)y ™t
Pl =p ) T 4+ 3 = p2) T = (py p N —py) (1 = poy ™Y
Notice that for large values of n and n—£,

BEL, (05| X;...., X,) =

BEL, (6, ] X|..... X))+ BEL (£, ] x{,....x,)x |,

BEL, (0 | Xysex) (p N1 =p Y4 9

BEL (0, ] X,,...x,)  \p,/ \1—p, ' ®
This agrees with the posterior Bayesian odds that would result from equal prior probabilities
for 8, and 0,.

Medical diagnosis. Smets’ work was inspired by the problem of medical diagnosis. Here ©
is a list of possible diseases from which a patient might be suffering, 7" is a list of symptoms he
might exhibit, and we assume that study of each discase 0 has resulted in a distribution P, that
gives the frequency with which that disease produces the various symptoms. Conditional
embedding seems reasonable because Py bears on the set of possibilities © x .#" regarding our
patient only conditionally on his having disease 0, und the use of Dempster’s rule scems

and
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reasonable because the different frequency distributions can be regarded as independent items
of evidence.

The assumption that one’s evidence in a problem of medical diagnosis consists of complete
and clearly relevant frequency distributions of symptoms is. of course, very unrealistic. But, as
Smets points out (p. 160), the method of conditional embedding can still be used when the
evidence about each disease justifies only a relatively weak belief function instead of a full
frequency distribution. The following example illustrates some of the possibilities.

Example 2. Imagine a disorder called “ploxoma”. which comprises two distinct “discases™
#, = “virulent ploxoma”, which is invariably fatal, and €, = “ordinary ploxoma”, which varies
in severity and can be treated. Virulent ploxoma can be identified unequivocally at the time of
a victim’s death, but the only way to distinguish between the two diseases in their early stages
seems to be a blood test with three possible outcomes, labelled x;. X, and x;. The following
evidence is available: (1) Blood tests of a large number of patients dying of virulent ploxoma
showed the outcomes x, x, and x; occurring 20, 20 and 60 per cent of the time, respectively.
(ii) A study of patients whose ploxoma had continued so long as to be almost certainly
ordinary ploxoma showed outcome x, 1o occur 85 per cent of the time and outcomes x, and x;
to occur 15 per cent of the time. (The study was made before methods for distinguishing
between x, and x; were perfected.) There is some question whether the patients in the study
represent a fair sample of the population of ordinary ploxoma victims, but experts feel fairly
confident (say 75 per cent) that the criteria by which patients were selected for the study should
not affect the distribution of test outcomes. (iii) It secms that most people who seck medical
help for ploxoma are suffering from ordinary ploxoma. There have been no careful statistical
studies, but physicians are convinced that only 5-15 per cent of ploxoma patients suffer from
virulent ploxoma.

We can represent cach of these three items of evidence by a belief function on
O x4 =1{0,,0,} x{x,,x5,x;}. () The first item of evidence can be represented by the
conditional embedding in © x# of the frequency distribution P, where Py (x,) = 0-2.
Py (x,) = 02 and P, (x;) = 0-6. (ii) For the sccond itcm of evidence, we begin with a belief
function BEL,, on 2" that has focal elements {x,} and {x,,x;} with m-values 0-85 and 015,
respectively. We discount this belief function at rate = = 0-25, and then conditionally embed it
in @ x Z'. (iii) For the third item of evidence we begin with a belief function BELy on © that has
m-values mg({0,}) = 0-05, m,({6,}) = 0-85 and my(@) = 0-10. and we minimally extend BEL, to
Oxd.

Combining these three belief functions by Dempster’s rule results in the belicf function on
© x 2" with the m-values given in Table 2. Table 3 shows the posterior degrees of belief that
result when this belicf function is conditioned on the result of the patient’s blood test. As these
numbers indicate, the blood test is not as informative as one might hope. The physician’s initial
85 per cent degree of belief that a given ploxoma is ordinary is raised only to 96-5 per cent by a
test that comes out x, and lowered only to 782 per cent by a test that comes out X,

3.2. Models derived from a Single Frequency Distribution

Let us turn from the case where there is a diflerent frequency distribution underlying cach
P,y to an opposite extreme: the case where all the P, are derived from a single frequency
distribution. And let us think about the tritest example: the parametric model generated by an
error distribution.

Consider a measuring instrument whose propensities to err are thoroughly known to us;
we have used it to measure many known quantities and recorded its errors in these cases so as
1o obtain a frequency distribution Pie) which we arc willing to translate into degrees of belief
about what our error ¢ = x—(/ will be when we shortly use the instrument to obtain a
measurement x of an unknown quantity ¢. Consider © x ¢, where O is the sct of possible
valucs of (! and .7 is the set of possible values of x; we assume that © = .. Each possiblc crror ¢
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will correspond to a subset @ x.#7 namely, [((.x)|x—8 = e¢}. So we can accomplish the
translation of the crror distribution Ple) into degrees of belief about x —# by minimally
extending P to © x #°. This means adopting the belief function BEL on © x 7 that assigns the
m-valuc Pe) to the focal clement {(0, x)] x — 0 = e!. It is evident that BEL is vacuous for 0. And
its conditional on %" given @ is given by BEL (x| ) = P(x — ). The belief function BEL(-| 0} is an
additive probability distribution. and so it may denote it by P,, thus obtaining a parametric
model {Py: 0@} on &,

The preceding paragraph merely translates into the language of belief functions a
traditional account of how a parametric model arises from an error distribution. Moreover. the
result of conditioning the belief function BEL on the actual measurement x is the additive
probability distribution BEL(-|x) on © given by BEL(#|x) = P(@—x), and this is the familiar
fiducial solution to the problem of inference for this model. Notice, however, that the belief-
function argument depends on the model having really arisen from the error distribution: the
argument gives no sanction to fiducial methods in cases where one begins with an abstract
model { Py 0 ©} and then notices a pivotal quantity x — 0. {This belief-function treatment of
the fiducial method was given by Dempster (1966). The only novelty in the present exposition
is my insistence that the criterion for the method’s validity should be sought in the origin of the
parametric model.) This lack of sanction for the use of arbitrary pivotal quantities appears to
rule out marginalization paradoxes of the type discussed by Dawid et al. (1973).

The belief function BEL on © x . is non-additive, even though its conditionals BeL (| @) and
BEL (-] x) arc all additive. Notice also that REL can. in some circumstances, lecad to posterior
probabilitics for ¢ that are non-additive. If instead of observing the measurement x we observe
only that x is in some subset A of .#', then we will condition BEL on @ x A, and the resuiting
conditional belief function will have a non-additive marginal for 6.

The combination of observations. Here, as in the case of Smets’ method, there are two
approaches to combining independent observations. We can construct the product distribu-
tion P* conditionally embed it in ® x 7", and then condition on the observations (X ) eees Xp)
Or we can construct a posterior belief function BiL(-|x;) for each observation and then
combine these by Dempster’s rule. It can be shown, here as in the case of Smets” method, that
both approaches give the same final belief function BEL,(*|x,,....x,) on ©. In this case.
BEL,(-{Ny,....x,) Is an additive probability distribution.
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Example 3. Suppose .#" and © are both cqual to the set of all integers. and P is given by
Pie) = 0-8*", where ¢ 2 0-26651. Table 4 gives the values of P(e) that exceed 107 . If we observe
(X5 X,), then BEL(0) x;) = cO-8° " and BEL(‘|x,,...X,) = BEL(-|x,)® ... ®BEL(-|x,) is
the additive probability distribution specificd by

BEL, (8] x,,....x,) % [] BEL(B]x;) = (0-8)*“~*.
i=1

If, for example, n = 4 and (x.....x3) = (—2,1,0,9), then we obtain
BEL, (0]—2,1,0,9) oc 0-8+# 27,

Table 5 gives the values of BEL, (8] —2.1,0,9) that exceed 10”5,

TAnLE 4
e Ple) e Pre)
-6 0-0000Y 1 0-2132]
-3 0-00101 2 010916
-4 000750 3 003577
-3 003577 4 0-00750
-2 0-10916 3 0-:00101
-1 021321 6 0-00009
0 0-26651
TABLE 5
0 BEL{(/| —2,1,0,9)
-1 000017
0 0:01500
1 0-21832
2 0-53300
3 021832
4 001500
5 0-00017

Example 4. Let us suppose, in order to construct an example that is comparable to Example
1 above, that ® = {0, 1}, that 0 and I are also the possible errors, with frequencies P(0) = p and
P(1) = t — p, and that the addition to obtain x = 0 +¢ is modulo 2. This means that 2 = {0,1}.
and that P, assigns 0 and 1 the frequencies p and 1 —p, respectively, when 0 = 0 and the
frequencics 1 —p and p, respectively, when (/ = 1.

The belief function BEL on @ x & has focal elements {(0,0).(1, 1)} and {(0, 1),(1,0)} with m-
values p and 1 —p, respectively. So conditioning on x = 1 yields BEL(# = 0|x = 1) = | —pand
BEL(f = 1|x = 1) = p. Notice that these posterior degrees of belief do not agree with the
posterior degrees of belief that we obtained using Smets’ method in Example 1. In order to
make the comparison, we set ), = 1,0, =0, p, = p and p, = 1 —p in (6), thus obtaining

BEL(O = l[x=1)=p{l—=pl—=p)} ' and BELO=0|x=1)=(1-pP{l—-pl-p)} "
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There is asymptotic agreement, however. If we have measurements x,.....x,. k& of which
equal 1 and n—k of which equal 0, then we obtain
BEL(0 = 1|x,,....,x,) = p"(L—pY"  p*I —py" %+ (1 —pfp %1,

BEL, (0 = 0] X, X,) = (1= p)'p" Sp* (1 —p)" *+(1 = p)p"~H) !
and
BEL, (0 = [(x,,...x,) pil—p)*

BEL, (0 = 0]x,,....x,) (1—pFp" %

which agrees with (9).

Practical complications. The premises for our justification of the fiducial method through
belief functions will rarely be fully satisfied. Usually our experience with a measuring
instrument will be inadequate for us to credit fully a frequency distribution and the possibility
of systematic errors wiil always limit the extent to which we are willing to treat successive
errors as independent. However, these complications, though they do push us away from the
fiducial method, need not push us away from the use of belief functions.

Example 3 continued. Suppose we take seriously the possibility of outliers and therefore
discount the frequency distribution P(e), using the discount rate x = 0-01. This results in the
BEL(-]x;) also being discounted at this rate. When we combine these four discounted belief
functions by Dempster's rule, we obtain a belicf function BeL9°4(81—-2,1,0,9) that is very
nearly an additive probability distribution; the whole set @ is a focal element, but its m-value is
only 0-00005, and all the other focal elements are singletons. Values of BeLS ! (9] —2.1,0,9)
that exceed 107 % are shown in Table 6. Notice the sharp disagreement with the values of

TABLE 6
BELSOYH] —=2.1,0,9) BELY N —2.1.0,9)
-7 0-00001 4 0-00042
-6 (-00004 3 000013
-5 0-00022 6 0:00022
—4 000119 7 0-00059
-3 0-00961 8 000116
-2 0-08154 9 0-00144
—~1 0-32160 10 0-00116
0 0-39841 |1 0-00059
1 015299 [2 0-00019
2 002517 13 0-00004
3 0-00320 14 0-00001

BEL, (1] —2.1.0,9) given in Table 5. When we do not discount, we obtain a probability of
0-53300 for ¢ = 2, but when we do discount. we obtain a probability of only 0-:02517 for 6 = 2
and a probability of 0-87302 for — 1 <0< 1. This disagreement can be explained by saying that
discounting leads us to treat the measurcment x; = 9 as a probable outlier. (See pp. 251-255 of
Shafer, 1976.)

Now suppose we admit the possibility that there may be a svstematic crror f affecting all
our measurements. And suppose we make the following probability judgements about /. based
on our knowledge of the measuring instrument and process: we consider it certain that | /| <2,
and we feel there is a chance 0-8 that | f|< 1 and a chance 0-6 that f = 0. In other words. we
adopt a belief function BEL, that has focal elements {0}, { —1.0.1} and { 2. —1,0,1.2}, with
m-values (-6, 0-2 and 0-2, respectively.

We are now assuming that x; =0+f+¢, or 0+f=x,—¢,. So the belief function

By (1| —2,1,0,9) must now be interpreted as giving degrees of belief about 0 + frather than
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Focal element

m-value

0-00000

Focal element

m-value

0-00000

Focul element

m-ralue

(7 (—8,—7,-6} {=9.-8.-7,-6,—5; 000000
I—6) 0-00003 [-7,—6,-3} 000001 (—8,-7.-6,—5—4' 00000
-5 0-00013 [—6, -5 —4] 000004 [=7,—6.-5 —4.=31 000004
(=4} 000071 f-5, -4, -3} 000024 [—6,-5-4,-3,-2} 000024
-3 000577 f—4,-3, -2 000192 (=5 —4,=3. -2, -1} 000192
r_2 004892 f=3,=2.-1) 001631 (—d4,-3.-2.-1,0} 001631
=1 0-19297 (=2 —1,0! 006432 1=3,-2,-1,0,1) 006432
{0} 023906 f 1,01} 007969 {-2.-1.0,1,2} 007969
i 009179 0.1,2} 003060 f=1,0,1.2,3} 003060
{2) 001510 23 0-00503 {0,1,2,3.4! 000503
{31 000192 £2.3.4! 0-00064 {1,2,3.4.5! 0-00064
{4) 0-00023 13.4,5) 0-00008 £2,3,4,5,6} 0-00008
Is 0-00008 £4.5,6! 0-00003 13.4.5,6.7) 000003
16! 000013 '5.6.7} 0-00004 14,5.6,7.8) 0-00004
17 000036 16,7,8! 000012 15,6,7,8,9) 000012
{8} 0-00069 17.8.91 0-00023 16,7,8.9,10} 000023
59! 0-00087 (8.9.10! 0-00029 17,8.9,10, 11} 000029
ao! 000069 19.10,11} 000023 18,9,10.11,12} 0-00023
1} 000033 10,1112} 000012 19,10,11,12,13} 000012
N2 0-00012 1,12,13) 000004 110,11,12,13, 14} 0-00004
Bki! 0-00002 112,13, 141 0-00001 {11.12,13,14,15} 000001
114 0-00000 113.14,15) 0-00000 112,13,14.15,16} 0-00000
[C] 0-00005
TABLE 8

A BEL*(A)

‘0 0-23906

-1 019297

an 009179

[} 004892

] 001510

+—1.0.1] 0-60351

| 054527

{0.1.2, 0-37655

f-2.-1.0,1,2] 084214

T3 -2 L0123 0-96609

about 8. When we combine these degrees of beliel about 8 +f with the degrees of belief about f
given by BEL ;, we obtain a belief function BiL* with the m-values given (1o the nearest 0-00001)
in Table 7. A few values of BEL* arc given in Table 8.

3.3. Pure Randomness

Suppose we know an unknown quantity X must take one of u finite set. say & = {1,....k},
of possible values, and we feel it does so randomly. We can express this by saying that X is
governed by some frequency distribution. But there are only so many frequency distributions
on 7 —so many as there are vectors 8 = (6,,0,.....0,) of non-negative numbers that add to onc.
Setting © equal to the set of all these vectors and letting Py denote the frequency distribution
corresponding 1o 0 (i.c. Pylx) = 0, for all xe.¥), we obtain a parametric model {Py: 6 ©}. This
model, it scems fair (o say. arises solely from the idea that X is random.

As a result of work by de Finetti (1964). Hewitt and Savage (1953) and others, many
Bayesians subscribe to a purely subjective interpretation of the idea that X is random and is
governed by one of the frequency distributions P. This interpretation involves thinking of X as
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one of a sequence X = (X, X,....) of unkown quantitics, each of which takes values in .7, and
considering a countably additivet probability distribution P that represents a Baycsian's
belicfs about X and that is symmetric—i.c. invariant under permutations of finitely many of the
X/'s. As it turns out, the countable additivity and symmetry of P imply that for each xe7
Plim, _, . f(x.n) exists) = 1, where f(x,n) is the proportion of the quantities X,..., X, that
equal x. The vector lim,_. .(f(1,n),....f (k,n}) can be identified, of course. with the unknown
parameter 8; conditioning P on this vector being cqual to 0 reduces P to the product
distribution P§. The Bayesian's prior distribution for 0 is implicitly contained in P; it is P’s
marginal for the vector lim,., f(l.n),....f(k,n). The distribution P is fully dctermined,
moreover, by this prior distribution: there is only one symmetric and countably additive
distribution for X having a given marginal for lim, . ,(f(1,n),....f(k.n)).

How might we give a treatment of randomness via belief functions which is analogous to
this Bayesian treatment? The obvious goal is to capture the aspects of our idea of randomness
(belief in the existence of limiting frequencies and recovery of {Py: 0€®] by conditioning on
the limiting frequencies) captured by the Bayesian treatment while avoiding opinions about
the value of the limiting frequency. This means we should try to construct a symmetric belief
function BEL for X = (X, X>,...) that satisfies

BEL( lim f(x, n) cxists) = | (10)
for all xe ', o
BEL{X, = x{,.... X, = X, [ lim (f(],n),.... (k) = 0) = Pylx)),.... Pofx,) (an
for all x,,....x,e., and
BEL{ lim ( f(1,n),...f(k,n)eA) =0 (12)

for every proper subset A of ©. As it turns out, this goal can be achicved; there are belicf
functions satisfying these conditions.

The dichotomous case. The construction of a belief function BEL satisfying (10), (11) and (12)
is most easily carried out in the case where 2" has only two elements. In this case it is
convenient to use {0, 1} rather than {1,2} to label the elements of #" and to use [0,1] as the
parameter space O, with Py(1) = 8 and Py(0) = | —0. Let us also write S, = Z}., X, Then (10),
(11) and (12) become

BEL ( lim (S, /n) exists) = 1, (13)
BEL(X, = x,.... X, = x,| im(S,/n} = 8) = Pyx,)... Pglx,) (14)

and T
BEL( lim(S./me4) =0 (15)

for all Ac[0,1].

The construction of a belief function BEL satisfying (13), (14) and (15) begins with the
construction of a belief function BEL, for the finite sequence (X,. X.,.... X,). We construct BEL,,
which is a belief function over {0, 1}", by assigning m-values 1/n! to cach of the n! subsets of
{0, 1}" of the form

Ay = {Ux e X0, 1 X ) 2 Xa2) 2o Z N )
where ¢ is a permutation of {I...,n}. (Here is an example of a set A, If n =3 and
(o(1).0(2),6(3)) = (1, 3,2), then
A, = {(0,0,0), (1.0.0), (1.0. 1), {1, 1, )}.)

+ De Finetti prefers the weaker condition of finite additivity. But we can neglect this subtlety in the present brief
exposition.
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(7Y

A permutation of (.X...., X,) mercly permutes the 4,. So BEL, is symmetric—i.e. it satisfies
BEL, (X, ... X, )€ 4) = BEL, ((X 1 )0 ee X)) E A) {16)

for all permutations 6. It is also easy to sec that cach 4, has exactly one representative for cach
possible frequency of ones—i.e. for each k, 0k <n. there is exactly one element (x,,...x,) € 4,
such that Z{_ | x; = k. This means that 8EL,'s marginal for S, is vacuous—i.e.

BEL,(S,e A) = 0 (1n

for every proper subset A of {0.1....,n}. It also means that conditioning on S, = k reduces the
A, to singlctons and hence reduces BEL, to an additive (i.e. Bayesian) belief function. Thus. by
the symmetry of BEL,,

BEL, (X} = Xpoon X, = X, 1S, = k) = | /('A') (18)

!
[

provided that Zi. | x; = k.

The belief functions BEL, “cohere™, in the sense that if m <n then BEL,, is BEL,’s marginal for
Xy, X, And it is fairly easy to show that this set of coherent belief functions is the only one
satisfying (16), (17) and (18). All the BEL, together can be regarded as a belief function for the
infinite sequence (X, X5, ...). More preciscly, they can be regarded as defining a belief function
on the algebra of subsets of {0,1}* consisting of all “finite cylinder sets™. This belicf function
can then be minimally extended to a belief function on the algebra of all subsets of {0,1}~. It
turns out that if we use a form of minimal extension that preserves “sequential continuity™ (a
condition equivalent to countable additivity in the presence of finite additivity)., then the
resulting belief function BEL on {0, 1} does indecd satisfy (13). Since BEL, is BEL’s marginal, (16)
says that BEL is symmetric. And. as it turns out, (17) implies (15) and (18) implies (14). (The
proofs of the assertions in this paragraph have not been published. But the concepts of
continuity and minimal continuous extension are discussed in Shafer. 1979.)

Since the belicf function BEL, like the Bayesian’s additive probability distribution P, gives
degree of belief one to the existence of the limit # = lim,_ ,(S,/n), we can examine BEL’S
marginal for (0, X,), which is a belief function on ® x.#. By (15), this belief function has a
vacuous marginal for £. And by (14), its conditional given 0 is P,. Thus the construction of BEL
yields a solution to our general problem of constructing a belief function on © x .4'—a solution
which scems appropriate when the specification is based purely on the idea of randomness. As
it turns out, this solution is Dempster's original “generalized Bayesian” method. (See
Dempster, 1968, or Shafer, 1976b).

Instead of considering the marginal just for (0, X,). we could also consider the marginal for
(0, X4, ..., X,), thus obtaining a belief function on @ x 4™ which is vacuous for 0 and has Pjas its
conditional given ¢ Tt is also true, here as in the case of Smets’ method and the fiducial method,
that the belief function BEL, on © obtained by conditioning on a vector x = (x,,.... x,) of actual
observations is the same as the belief function BeL,, @ ... @ BEL,. where BEL, is the belief
function on obtained by conditioning on a single observation x;. See Section 4 of Dempster
(1966) for some calculations of values of BEL,.

The gyeneral case. The results in the dichotomous case generalize to the case where
A = {1...,k} in that therc does exist a symmetric belief function on 4 that satisfies (10), (11)
and (12) and has a marginal for 4 x @ corresponding to Dempster’s generalized Bayesiun
method. It appears, however, that when k> 2 there are other symmetric belief functions on 4~
that satisfy (10), (11) and (12) but have different marginals for #" x ©. It would be interesting to
obtain an understanding of these belief functions.

It should be noted. in any case. that the justification for Dempster’s generalized Bayesian
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method offered herc depends on the idea of pure randomness and hence only applies when the
parametric model consists of all the distributions on . This rules out Aitchison’s counter-
example to the method. (See Aitchison, 1968, or Lindley, 1972, p. 9.)

4, PARAMETRIC MODELS NOT BASED ON EVIDENCE
In Chapter 11 of A Mathematical Theory of Evidence 1 suggested a general belief-function
treatment of statistical evidence which, in contrast to the methods just discussed, does not
depend on the nature of the evidence establishing the parametric model and docs not condition
on the observations. This method simply translates each observation x into the consonant
belief functions on © guven by

BEL, (A) = sup {s| fi(0) =1 —s implies O A}, (19)
where f(8) is the normalized likelihood function:

[ = Pyx)/sup Py(x).
8O

(BEL,, is determined by the conditions that it be consonant and that it award degree of belicf s
to each “likelihood interval™ {0| f(O) =1 —s}.)

Many statisticians have discussed the idea of determining degrees of belief by (19). (See, for
example. Hudson, 1971, and Edwards. 1972.) But the uscfulness of the idea seems to be limited,
for one can construct examples where the likelihood function cannot be normahized, or where
the normalized likelihood function seems to be misleading. (Sec Lindley, 1972, pp. 12-13)) |
emphasized likelihood intervals in 4 Mathematical Theory of Evidence because of their simple
relation to the idea of weights of evidence. But I now think (19) should be rejected as a general
method of statistical inference because it does not take into account the origin of the model.

If we do use (19), then how should we combine physically independent observations
Xy, X,? For cach of the three methods we considered above (Smets’ method, the fiducial
method and the model of pure randomness) there are two different ways of combining
obscrvations: (1) A belief function can be constructed on © x ™ that has Pj as its marginal
given 8. and this belicf function can be conditioned on x = (x,.....x,) to yield a belief function
BEL, on ©. (2) A belief function can be constructed on © x 7" that has P, as its marginal given 6,
for each x; this belief function can be conditioned on x; to yield a belief function BEL,, on ©, and
Dempster’s rule can be used to obtain the orthogonal sum BEL,, @ ... @ BEL, . These two ways
of combining x;,...,x, give the same final result for all three methods: we always find that
BEL, = BEL, @ ... ® BEL,. In the case of {19) we are not conditioning belief functions
constructed on ® x 2 or O x 2", but we can still distinguish two ways of combining
observations: (1) We can represent the physical independence of x,,....x,, by constructing the
product model {Pj: /e O} and apply (19) directly to this model to obtain a belief function BEL,.
(2) We can apply (19) for each x; and then combine the resulting belief functions, obtaining the
orthogonal sum BEL, @& ...® BEL,. And in this case BEL, and BEL, @ .. @ BEL, will, in
general, be different.

Several reviewers of A Mathematical Theory of Evidence (see Diaconis, 1977, p. 678; Fine,
1978, p. 671; and Williams, 1978, pp. 384-385) have found the divergence between BEL, and
BEL,, @ ... @ BEL, in the case of (19) unacceptable. I am now inclined to agree with them. The
choices that a theory of evidence asks us to make ought always to be judgements based on our
evidence—i.e. choices for which we can look to our evidence for guidance. And it is not clear
how we can use our evidence to choosc between BEL, and BEL, @ ... ® BEL, .

The use of likelihood intervals, though unacceplable where the evidence for a parametric
model can be spelied out, may still be of interest in cases where there is no evidence for the
model—in cases. that is to say, where one is merely trying out the model to see how it fits and
what it suggests about 6. Here the arbitrariness of the choice between BFL, and
BEL, @ ... @ BEL, can be seen as a consequence of the arbitrariness of the model itsclf.
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5. BEYOND THE PARAMETRIC MODEL

In the preceding pages we have seen several examples where evidence conventionally used
to justify parametric models can further be used to justify belief-function analyses of thosc
models. The purpose of presenting these cxamples was to illustrate how the choice of a belief-
function analysis depends on the nature of the cvidence for the model, not just on the model
itself. But a second lesson also emerged from our discussion—the lesson that the evidence for a
parametric model often does not justify the model very well and that a belief-function analysis
that makes weaker claims on behalf of the evidence may often be appropriate.

Itis here. I believe. that the theory of belief functions has the most to offer. There is no great
need for new methods of statistical inference for traditional problems where we have well-
supported parametric models involving few parameters. But there is a need for new methods
for problems where such models are not available. Some Bayesians have sought to address this
need by constructing models that have so many parameters that they could not possibly fail to
fit the data and then pretending to have prior beliefs about these parameters. The theory of
belief function offers an approach that better respects the realities and limitations of our
knowledge and evidence.
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DISCUSSION OF PROFESSOR SHAFER'S PAPER

Professor G. A. BARNARD (Retired): The first thing 1 like about this paper is the development of the
author's idea that theories of probability judgement should be thought of in terms of canonical examples
with which the theories compare evidence. Indications of such an idea are to be found in Ramsey’s 1928
essay and in Koopman's 1930’s papers on the foundations of probability; and Allan Birnbaum came close
with his term “evidential meaning” used to denote an equivalence class of experimental data, since it is
merely a technical step to denote such a class by a canonical member of it. But Shafer’s formulation has
the great meril of encouraging us to look for evidence of various types, corresponding to various
canonical examples. This removes the temptation, so prevalent nowadays, to force all the Protean forms
in which uncertainty can present itself into two or three simple frames. The worst offenders in this respect
are the strict personal Bayesian, with their insistence that all uncertainties are to be uniformly expressed
as personal probabilities. But adherents of the Neyman-Wald ideology are not much better. insisting on
reducing all problems to decision making. And when we teach statistical inference with textbooks
limiting their categories to “hypothesis testing”, point and interval estimation, and perhaps a few frills
such as discrimination, we may casily fall guilty of encouraging students to develop similar blinkered
views,

Although, as Mahaluanobis was fond of pointing out, Hindu philosophers perceived something of the
complexity of uncertainty, and such perception of complexity continues to be expressed in the works of J.
Bernoulli and J. H. Lambert, from the mid-eighteenth century until Fisher’s 1912 paper. with only a
suggestion of dissent in S. D. Poisson’s treatise, the idea that there may be more than one kind of
measurable uncertainty was dormant.

In his 1912 paper Fisher distinguished likelihood from probability though it was not, perhaps. until
the 1930s that he fully recognized the concept as of value in itself rather than as a means of arriving at the
maximum likelihood estimate and its properties. (Though already in the 1925 (first) edition of Statistical
Methods for Research Workers he says that “inferences respecting populations . . ." are to be expressed in
terms of likelihood, which “does not obey the laws of probability™). In his 1956 Staristical Methods and
Scientific Inference he explicitly distinguished the “hypothetical” probabilities involved in tests of
significance from the (in some sense) real probabilities encountered in games of chance. In his 1957 paper
“The underworld of probability”, published in Sankhya, he went much further, pointing to uncertainties
of Rank A. Rank B and Rank C, with practical examples, and calling for further exploration of other
forms. He would, | think, have welcomed Professor Shafer’s paper as a development of the kind he was
calling for, unlcss he were unduly put off by Shafer’s tolerance for Bayesian notions.

Another attractive feature of Shafer’s theory is his way of expressing absence of knowledge by means
of a belief function. When Fisher realized the importance for fiducial theory of the condition of ignorance
he saw that it would be a major advance if it became possible to give such ignorance formal expression.
He also recognized that such formal expression would be difficult though not, as the personal Bayesians
suggest, impossible.

It may be worth pointing out in this connection that in suitable circumstances we can give expression
to ignorance by a marginalization step. If. from the joint distribution of X and Y, we derive the
distribution of X' by marginalization this implies that nothing is known about Y other than what is
implied by this joint distribution. If, for example, it were known, aside from the joint distribution, that Y
lay within a narrow range, the set of associated conditional probabilities might well contradict the
marginal distribution for X. In the derivation of inferences about location, using Student’s 1, the
marginalization with respect to the scale parameter expresses ignorance of this parameter.

As another connection with other inferential theories one may mention the work of Graham
Wilkinson where, in some problems, he leaves some of the fiducial probability unassigned. This may be
compared with the fact that, in general, BEL(A)+BEL(A) is less than 1. In both theories, it may be
remarked, the set upon which the uncertainty is defined is taken to be a Boolean algebra, closed under
negation. This diflerentiates the theory from. for example, those of likelihood and plausibility (Barndorfl-
Niclsen), defined, as these are, on a set not closed under negation, nor, necessarily, disjunction. It is too
often forgotten that the negation of a proposition is, typically, a wholly different kind of thing from the
proposition itself.

It took nearly 50 years to reach a reasonably clear understanding of the meaning and applications of
likelihood: we must therefore be prepared to allow at least a similar period to reach clarity on belief
functions. Certainly to me they currently present puzzling features. With the author’s Example 1, we
have.if p; = 1 and p, is between 0 and 1, the observation x = | produces belief | — p, in 8, and belief0in

nt
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0,. It could perhaps be argued that the corresponding likelihood ratio 1/p, in this situation
underestimates the “degree of confirmation™ of (|, since it fails to allow for the much greater specilicity of
0.~ that is, the fact that just one observation could contradict 8, though this is impossible with 0),. But
the comparison of 1 —p, for 8, with zero for 8, scems to err in the other direction. Of course we have to
bear in mind that zero does not correspond with total disbelief, and this may be the source of my
difliculty. But this difficulty of scaling is for me reinforced by the ploxoma example. Ignoring the
qualifications made in the paper concerning the reliability of the data, if we split the 15 per cent
probability for (x, or x;). given ordinary ploxoma into 10 per cent for x, and 5 per cent for x,, we obtain
a likelihood ratio for virulent ploxoma of 12: 1, given x,. This outweighs the prior odds, taking these at
their central values of 10 and 90 per cent, giving odds of 1:9. The belief function, on the other hand,
suggests that the ordinary form is considerably more plausible than the virulent form even when x; has
been observed. This suggests to me that a set of rough estimates of odds along lines well described in
Spiegethalter’s recent paper (The Staristician, 31 (1982), pp. 19-36)—incidentally a good illustration of
the application of likelihood idcas, in spite of the author’s Bayesian prolegomena—would be more
usefully interpretable than the belief functions.

This is. I think, the case for a further reason. The analysis using odds ratios shows clearly that the way
in which the 15 per cent proportion is split between x, and x; greatly influences the interpretation of the
X, result, and so suggests it would be very much worth while to check, if possible, on how this division
should be made. It may be that the belief function analysis can indicate equally well where we should look
for further information; but for me. for the present, the calculations are too complex. Perhaps one day we
shall have hand-held computer programs to get over this difficulty.

Another problem | have with the theory is also perhaps due to unfamiliarity. The connections
between the logical structure of the ploxoma example and the logical structure of the story about the
uncertain codes are not at all clear to me. While the rules of proccdure—Dempster’s rule, and the
marginal and conditional rules—have reasonably clear justifications when the coding model is known to
apply. it is therefore not clear to me how far it is reasonable to carry the rules over to the ploxoma case.
Professor Shafer’s brilliant presentation of his idcas tonight, and his paper, make it clear that he is not
suggesting he has cut and dried solutions for these problems, only that he is giving suggestions which may
help us explore largely uncharted territory. I I, for my part, feel the best use of what time I have lies in
smoothing existing roads and exploring more byways in the area of more standard statistical models,
that is all the more reason for hoping that he and his friends will continue to work along the lines he has
opened up and that they will send us back more and more messages in the form of more and more
examples of the application of these ideas. If | might suggest one possible such example, it occurs to me
that the recent pair of papers by Bickel and Doksum, and by Box and Cox in rebuttal, concerning the use
of transformations in the analysis of linear models, could perhaps be looked at in the light of the notions
here presented. While it is clear to me that the rebuttal is fully effective, the question arises whether a
belicf function analysis could provide a formal framework within which the issues involved here could be
more explicitly dealt with, In the hope of more to come, | have much pleasure in proposing a hearty vote
of thanks.

Dr P. M. WiLLiams (University of Sussex): A beliel function in Professor Shafer’s sense is intended to
measure the degrees of support a body of evidence provides for the various propositions in its domain.
Since there need be no positive evidence in favour of either of two alternatives even when there is positive
cvidence for their disjunction, belief functions are generally non-additive. We may have positive evidence
that either 4 or B is the culprit, if only they hold keys and the safe was not forced, though we may have no
positive evidence against either individually. Every belief function is nonetheless the lower envelope of a
family of additive distributions but only those lower envelopes for which there exist associated m-
functions in the sense of Professor Shafer’s identity (2) count as belief functions.

The central tool of the theory is Dempster’s rule of combination. It is this that principally
distinguishes it in both its aims and methods from either the Bayesian theory or the theory of lower
probabilities. Conditioning is a special case of the rule. If we learn that the truth lies in a subsct E of Q
then the old value of m(A) is reassigned to A N E, if this is non-empty, with suitable renormalization.
Expressed in terms of its associated plausibility function, the resulting belief function when defined is
given by

pPL(A| E) = PL{A n EYPL(E).
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Example 1 provides a simple example of the streagth of onc of the techniques Professor Shafer
recommends. The posterior marginal for # depends non-trivially on the two conditionals in accordance
with relations (6) even though the prior marginal for 8 is vacuous. In such a case the method of lower
probabilities would leave us with a vacuous posterior marginal for @ no matter what obscrvations were
made. Again in the treatment of “pure randomness™ in Section 3.3 the symmetric belief functions BEL,
have vacuous marginals for the frequency but yield the usual additive schemes when conditioned on its
value. Incidentally, I doubt whether a belief in the existence of a limiting frequency should be assumed to
be already part of the intuitive idea of randomness. It is possibly more interesting to point out that this
follows necessarily from the idea of pure randomness expressed by conditions (16)-(18) if “sequential
continuity™ is assumed.

The techniques which Professor Shafer has developed are undoubtedly powerful and the results
which they vield in numerical form appear intuitively plausible. But is there any finer way of judging the
theory? Where does its justification lie?

Professor Shafer has presented us with three theories which he calls constructive. By this he means
that the mathematical formalism of each is supplemented by a class of models or examples which are
intended to be “canonical”. For the theory of belief functions these concern situations in which the
meaning of a message depends on a randomly chosen code. Professor Shafer argues that the quantity
mi A) defined by the relation (1) is then, in a sense, the total chance that the true message was A. This is
correct from a Bayesian point of view if all possible true messages were «a priori equiprobable. Then the
same is true of all possible coded messages if we think of a coded message as a function from the list of
codes to the list of possible true messages. But in that case one who was obliged to specify rates at which
he would then have to risk bets concerning the events in €, either on or against at the choice of an
opponent, might pay more attention to the additive distribution assigning to each element w of Q the
value

S AL "mid) we A},
A

where | A| is the number of elements in A. Under the assumption of a uniform prior this will be the
posterior distribution over Q given certain plausible assumptions. Naturally this reduction of a beliel
function to an additive distribution discards the structure of the evidence. Both the vacuous belief
function and the uniform additive belief lunction, for example, reduce to the same distribution. We lose
the distinction between a complete lack of relevant evidence and the existence of positive evidence
favouring each of the possibilities equally. I do not believe, however, that the theory of belief functions
should stand or fall on the question of the material adequacy of this analogy with randomly coded
messages.

There is an important sense in which Professor Shafer’s is the only constructive theory amongst the
three mentioned. It secks to construct a beliel function representing the effect of total evidence by
decomposing it into separate unrelated items. Each item by itself is supposed to determine a belief
function, in the judgement of some individual, without relation to any other item of evidence or prior
belief. The overall belief function is obtained by combining these separate belief functions by Dempster’s
rule. (Sec the remarks on “limited evidence” in Section 1.3.) It is important to emphasize that this is very
different from the Bayesian theory according to which nothing can normally be said about the effect of
new evidence without reference to prior beliefs. This is because in the Bayesian theory, or extensions of it
based on principles of maximum entropy or minimum information for example, the stimulus to which
change of belief is the response takes the form of a direct constraint on the posterior distribution which
expresses the effect of the total evidence. This is equally true of the theory of lower probabilities. In this
respect Professor Shafer's theory is attempting to answer a question which the other theories choose not
to ask, namely one concerning the effect of a limited portion of the evidence taken by itself prior o
combination. There are certainly cases where it is intuitively natural and possibly unavoidable to raise
such a question—legal proceedings for example—and Professor Shafer has now shown that problems of
statisticul reasoning can also be put in this form. He has shown that the analysis yields mathematically
significant and intuitively plausible results. [ believe nonetheless that a deeper justification of the method
is still required. It may need to provide a further treatment of the idea of “unrelated bodies of evidence™ or
clse to show how the discovery of relations between various items of evidence can itself function as an
item of evidence. If we agree that a principle is a general rule that treats similar cases in a similar way,
such a justification would best of all demonstrate that Dempster's rule of combination is the unique
principle governing processes of this type. These are interesting and important problems. We owe
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Professor Shaler a debt of gratitude for the energy and insight he has shown in drawing attention to them
a}\d to their possible solution, both in the present paper and in a series of recent publications, and I am
sincerely pleased to second the vote of thanks.

The vote of thanks was passed by acclamation,

Professor P. SMETS (Brussels): I have been most interested in the comparative study of the
various inferences presented by Professor Shafer. The idea of selecting an appropriate model for the
representation of ignorance through canonical examples is most useful but I think, nevertheless, that the
underlying axiomatization is also needed in order to understand the basic assumptions of each model.

I want to comment first on Shafer’s claim that the evidential inference as developed in Smets (1978)
gives practical results essentially when @ is finite. The equation is

BiL(B]x) = ([ | PE0)—] ] Penid =[] Pax), (N

et €6 €@

where 1 are the singletons of ©, and the prior belief function on X is vacuous. Its extension to the case
where @ is infinite is straightforward but L (0] x) = Ofor all 0 in © except when s finite. It represents a
highly uninformative beliel function. When one starts with total ignorance on an infinite space, it is
indeed predictable that the « posteriori belief function one could derive from some observation should not
be much different from total ignorance: some kind of infinite information is needed to transform infinite
ignorance into some knowledge.

One might feel that my evidential inference method suffers from a serious weakness inasmuch as the a
posteriori belief function can only be computed and applied when © is finite. One could start with infinite
© but relation (1) applies only when one conditions the « posteriori belicf function on some finite subsct 7'
of ©. The u posteriori belief function can only be described explicitly on such finite T. This fact is shared
by another highly respectable measure of beliel: the probability function (Fine, 1973). Let N be the set of
integers and select an integer at random, any integer being equiprobable. A probability function cannot
be described on N, but whenever one conditions on any finite subset of N, one obtains a well-defined
conditional probability function. Of course, this example does not justify our model, but shows that the
so-called weakness is also encountered with probability functions.

My second remark deals with the normalized likelihood function that Shafer used in Chapter 11 of .4
Mathematical Theory of Evidence and now rejects as unfit for a general method of statistical inference.
Indeed this model leads to contradictory results when one considers two independent observations and
combines the informations cither before or after computing the a posteriori belief function. This
contradiction was the recason why I developed my method. Nevertheless the likelihood function is an
excellent method for statistical inference when placed in the theory of possibility as developed by Zadeh
(1978). A possibility function poss is a set function such that for all 4 and B in its domain

POSS{A4 U B) = max (POsS(A), POss(B))

Poss is defined by its valuc on the singletons of its domain. It obeys the same rules as Shaler’s
consonant plausibility functions, but covers diflerent situations. [t deals with problems like “the
possibility to put n tennis balls in a given wooden box™, a situation where randomness and belief are
irrelevant.

If one starts with a possibility function on @ and, if for all singletons 0 of © one has a probability
function Pgx) on X, then the a posteriori possibility function for the singletons 6 of @ given x is

POSS (0| X) = Pgfx)/max P(x),
€0

the normalized likelihood function (Smets, 1982). Of course Dempster’s rule for the combination of
cvidence does not apply to the possibility function and is replaced by the following possibilistic rule of
combination
POSS 2 (0) = POsS, (1)) POSS, (0)/max (POSS, (1) POSS, (1))
wee

With such a combination rule and statistical inference based on the normalized likelihood function.,
the results are identical when one considers two independent observations and decides to take inference
directly from @ x X or to combine the a posteriori possibility function that can be inferred from each
individual observations (Smets, 1982). Likclihood function can be perfectly integrated in a well-
structured theory and one might wonder if this possibility theory could not be used to justify inference
based on the likelihood.
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Dr P. WaLLEY (University of Warwick): This is an adventurous and stimulating paper. Reading
Professor Shafer’s book in 1977 led me to study belief function representations of statistical evidence.
Reluctantly, I reached the conclusion that an approach along the lines of this paper, based on Dempster’s
rule of combination, is unlikely to succeced. 1 have space here only to outline the difficulties, and must
omit discussion of many important points of agreement with Shafer—notably his emphasis on
constructing probability judgements.

(i) Assume © = {0,,...,0,} is finite. pL, denotes the plausibility function on © induced by an
observation x, and is regarded as a function of Py (x),.... Py {x). (The discussion is a little simpler in terms
of pL, rather than BEL,.) We look for functions with the property that pL,, ,, based on independent
observations x and y agrees with the combination pL, @ pL, by Dempster’s rule. Formally, we require
(1) PL (A) = PL(A, Py (X), ..., Py (x)) is defined for all A € © and 0P, (x)< 1, provided Py (x)>0 for

SOME j.

(2) pL, is a plausibility function on ©.

(3) When x and y are independent under each 0e®,pL, , =PL @ PL,.

(4 pL({f;}) is non-increasing in Py(x) when i# j.

(5) When pLq is additive on ©, PL, @ PL, agrees with the combination of PLg and {P{x): € @} by Bayes’
rule.

There is a one-to-once correspondence between functions PL satisfying 1-5 and partitions of ©. Given
a partition {4,,.... 4,}, the corresponding pL, have additive restrictions to the partition, with

PLAB) =k (1=[][1-Pdx)]) for BS A,

el

where

r

k=Y (1—T] [1=Pgx)]
i=1 0cd;

This result brings together two of Shafer’s methods. The trivial partition (r = 1) gives Smets’ method
(Section 3.1). For the finest partition (r = N), 1. is additive with pL, ({8}) ¢ Py(x). which agrees with the
“fiducial”™ method (Section 3.2).

(ii) Consider the constant likelihood Pyx)=p. Apart from the fiducial case, PL, depends on p,
violating the Strong Likclihood Principle; e.g. cach pL.(*]| Aj) is vacuous for p = | but not for p< 1. This
presents difficulties in specifying an experimental outcome. In Shafer’s Example 2, suppose we observe
the patient’s sex (y), and this is unrelated to the result of the blood test (x) and type of ploxoma (8). Except
in the fiducial case, PL,, ,,#PL,,. It is disturbing that our conclusions might depend on whether we
report the “uninformative” ancillary .

(iii) Shafer constructs BEL and pL on subsets of ® x #". Consider

(6) If PD) = p for all € © then BEL(O x D) = rL(® x D) = p.

This condition seems reasonable under a “constructive™ interpretation of probabilities, and also
under frequentist or betting-rate interpretations. The next examples show that Shaler’s first two methods
violate (6).

(@) Let N =2, Pylx,)=Pylx,) =05 For Smets’ method, BEL(O x{x,}}=]]sPx,) = 025,
PLIOx {x,}) = L =] [o [1 — Polx,)] = O-75.

(b) Let ' =0=1{0,1,2,3}, x = 8+e(mod4), PO =04, P(1)=03, P(2) =01, P(3) =02, with BEL
induced by P(e) as in Section 3.2. If D = {0, 2} then P{D) = 0-5 for each 0, but the fiducial method
gives BEL(OxD) =0, PL(@ x D) = 1.

(iv) Such counter-intuitive properties of the solutions in (i) suggest that we weaken condition (3) by
allowing other rules of combination. For example, simple axioms imply pL_(A) = sup,,.  f(0), where f, is
the normalized likelihood function. This is equivalent to Shafer's equation (19). Condition (3) then
implics a new rule of combination, which disagrees with Dempster’s rule in general, but agrees in the case
of conditioning. We might then try to define pL on © x Z, with vacuous ©@-marginal, so that pL, is
obtained by conditioning (by Dempster’s rule) on © x {x}, and P, by conditioning on {6} x Z. That
cannot be done if P1. is required to be a plausibility function, but can be achieved by the upper probability
function PL(A) = supy.e Peo(4,), where A, = {x: (0, x)e A}, which also satisfies (6). In order to reconcile
basic intuitions about “plausibility™, it scems necessary to abandon both Dempster’s rule of combination
and the restriction to plausibility or belicf functions.

(v) Even Dempster’s rule of conditioning must be abandoned if one wants to interpret pL and BEL as

r.
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sensible upper and lower betting rates, as Smith (1961). But there is a promising alternative—the thcory
of upper and lower probability. developed by Smith, Williams (1976) and Walley (1981, 1982). Shafer
mentions one interpretation of upper and lower probabilities: instead of knowing precisely a distribution
P, we know only that P is in some class of distributions. That is the “Bayesian sensitivity analysis”
interpretation. An alternative “direct” interpretation, in terms of betting behaviour or other actions,
seems more promising because it does notl invoke an “underlying” additive P. When the direct
interpretation is followed through we find important divergences from Bayesian sensitivity analysis, e.g.
concerning independence and exchangeability, with serious consequences for statistical inference.

Professor J. F. C. KiNnGMaN (Oxford University): It may be helpful to remark that the quantities m(B)
in (2) define the distribution of a random subset X of Q. and that

BEL (A) = Prob(X < A),
PL{A) = Prob(X hits A).

If the examples in the paper are interpreted in this way, they become easier to visualize, and the great
varicty of different belief functions becomes more evident. Moreover. it is easier to see the necessary
adjustments to make the theory work smoothly when Q is infinite.

The following contributions were received in writing, after the mecting.

Professor A. P. Dawip (University College London): The situation considered in Section 3.2 would
appear to cover the general functional model (Dawid and Stone, 1982) in which we have, for each value of
an “error” variable e, a one-one correspondence between the values of ¢ and of x, although x and 0
together may not determine e. An example, with e = (e, e,), is given by x = (0+e¢,)fe,, 6 = xe,—e;.
Assigning to e its fixed distribution (e.g. ¢, ~N(0, 1), es~/(z2/v) independently), the first equation
induces the model distributions for x given 0, and the second the fiducial distributions for 8 given x, here
justified. it seems, by the theory of belief functions. But in fact this is a vacuous justification, since an
unjustified fiducial step lies at the heart of that theory. We can consider # as a message, e as a code and x
as the coded message. Then probabilities arc assigned to 0, after observing x, on the basis that the
original distribution assigned to e is still relevant—a step willingly taken by Fisher, Fraser and Shafer,
but by few others.

Can the theory of belief functions, suitably extended to conditioning on probability-zero cvents,
extricate fiducial inference from the following anomaly (Dempster, 1963, Dawid and Stone, 1982)? We
start with the functional model:

X= ;:+00,}

s = oe,
What is the appropriate distribution for (g, o) based on data (¥, 5) and the extra information that u/c = k?
If the data become available first, we might calculate the joint fiducial distribution of (g, 6), and then
condition this on the value k for yu/o. Alternatively. inserting the information ufe = k into the model, we
discover that (k +e,)fe, = t/s. We have therefore learned something from the information and the data
about the code e used, and so can proceed with the fiducial analysis after first conditioning the
distribution of e on the value X/s for (k+e¢,)fe,. However, these two routes yield different answers,
although the logic underlying Dempster’s rule appears to apply with equal force to both.

[ foresee cqually difficult problems of conditioning in other continuous problems: e.g. with
x =(0+e e, ¥ =0+ f1)/f>. how do we condition, after seeing (x,y), on the discovered fact that
xes—e, = vf,— f,? To do so, we should embed this information in a suitable partition, but this is
problematical (see -Brenner and Fraser, 1979). Indeed conditioning even in finite problems is not
immune from such considerations (Dawid and Dickey, 1977), so that Dempster’s rule must be treated
with caution.

Professor TERRENCE L. FINE (Cornell University): Professor Shafer is to be congratulated on his
sustained and thoughtful devclopment of the theory and application of belief functions. I welcome the
present contribution in which he clarifies how the weight and structure of evidence come to bear on the
selection of probability models. The constructive view of probability that is espoused is plausible,
particularly in the Bayesian/subjectivist/personalist context wherein individuals are often encouraged to
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scale their degree of conviction through reference to familiar chance setups. However, | am not clear
about the explicit bearing of the constructive viewpoint on either lower probabilities or belief functions.

A given lower probability P, can be derived as the lower envelope of rather different sets of
probability measures, and this absence of unicity suggests that the class 2 does not constitute a suitable
canonical example. Furthermore, the coded message interpretation suggests for belief functions, while
providing a canonical scale, is ignored when Professor Shafer actually constructs belief function models
in Section 3, thereby calling into question the relevance of the canonical scale.

The Dempster rule of combination for belief functions, while staunchly defended by Professor Shafer,
numbers me among its opponents. I continue to fail to see how a single such prescription can account for
the interactions between such different sets of evidence as those leading to the parametric model and
those informing us about the parameter value.

The defence or justification of new approaches to probabilistic reasoning is a difficult and poorly
understood process. I presume that Professor Shafer means us to bring our intuitions to bear on his
examples and thence find his conclusions satisfactory in some private epistemic sense. I would prefer to
see more explicit arguments for the acceptability of the suggested processes of constructing belief
functions, although T recall that in his earlier work Professor Shaler expressed little hope for such
arguments. For example we might wish to inquire into the use to which belief functions will be put. After
all, a great strength of Bayesian probability is the close articulation between an individual’s assessments
of probabilities and the use which the individual makes of these probabilities in forming rational
decisions. Considerations of belief function-based decision-making lead to the use of upper and lower
expectations. The upper and lower expectations in turn lead us to consider the probability measures
dominating the belief function; given a random variable X its, say, lower expectation E_X is in fact equal
to the usual expectation EpX for some I' dominating (VA)[(4) = BEL (4))BEL. While Professor Shafer
may not fecl that the set of measures dominating BiL need have any direct meaning, it might nonetheless
be disturbing to find, say, in a model of independent observations that E X is achieved by a measure I’
that is not a product measure.

The preceding cavils, notwithstanding, I believe that the theory of belief functions is well worth study,
and I agree with Professor Shafer’s emphasis on the structure of evidence.

Professor D. V. LINDLEY (Somerset). | will discuss Example 2 and try to show that probability
concepts are adequate. The first piece of evidence (i) establishes in the usual way that the chances for a
person with virulent ploxoma to have blood-test results of types x,, x, and x; are 0-2, 0-2 and 0-6. The
second (ii) is subtler for two reasons: x, and x, are not distinguished in the data, and the patients in the
study are not judged exchangeable with other patients so that the chances f§ in the study and y for the new
patients are not necessarily equal. The first presents no difficulty since the likelihood for the data is
B+ B3~ where r = 0-85n and n is the number of patients in the study. The distribution of #§ given
the data can therefore be found. Let p(;y] ) be the conditional distribution of y, given 8. This concept
replaces the single figure of 75 per cent quoted by Shafer and which yields a discount rate of x = 0-25. It
would be possible to suppose y = 8 with probability 0-75 and is otherwise uniform in the unit interval in
imitation of belief functions; but this may be an unrealistic description of the situation. The third piece of
evidence (iii) says the distribution of the chance 0 that a patient has virulent ploxoma, p(9), is essentially
confined to the range (0-05. 0-15). We are now ready to perform the requisite probability calculations.

Let G be the event that a new patient, George, has virulent ploxoma and let g; be the result of his
blood test. We require p(G|g;, E) where E is the evidence. From (i) p(G) = jOp(())d(). From (i)
Py |G.Ey=02fori=1,2and 0:6 for i = 3. From (ii)

Mg G E) = JJ:. Py BpBlIE)dB dy

= JE()'alﬁ)MﬂIE) dp

and the calculations can be completed in the usuval way using Bayes' theorem. If E(8) = 0-10.
E(y, | = f; and E(B,|f,) = {1 —B,) then the probabilities of G given g; are respectively 0025, 0-229
and 0-471.

It may be objected that this analysis virtually ignores the uncertainty about the study and about 0. It
does so because they are jrrelevant. The interested reader may like to consider the case of George and

i
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Henry and their blood tests. Then the uncertainties will matter: for example, E(7?|f), involving the
conditional variance of y;, will arise.

My view is that, as here, anything beliel functions can do probability can do as well, but with the
advantage that the results will be coherent and have an operational meaning. The only description of
uncertainty is probability.

Professor C. A. B. SMITH (University College London): Professor Shafer’s paper represents a new,
ingenious and attractive attempt to overcome problems in statistical inference. For example, one would
very much like to turn observational evidence directly into a probability, or at least something
resembling Shafer’s belief functions. Yet, according to subjective probability theory, observational
evidence gives only likelihoods, which are factors modifying degrees of belief according to Bayes'
theorem. Can one do better? The world’s energy problem would be solved if one could find an infinite
source of energy. But the law of conservation of energy forbids that. However attractive it would be to
obtain probabilities which are functions only of the observations, if such probabilities are to be used for
decisions (by one person), e.g. medical treatment following diagnosis, either Bayes’ theorem effectively
holds, or dccisions are “incoherent™, i.e. contradictory (Savage, 1954; Smith, 1961). Even when no
decisions are involved, this conclusion still seems to hold (Smith, 1977). These considerations appear to
impose uncomfortable limits on any “reasonable” theory of inference, just as conservation of energy or
the Arrow paradox impose uncomfortable but unavoidable restrictions. This point was of course made
by Savage in 1954; it does not lose its validity with age.

Professor Davib H. KranTz (Bell Laboratories): Professor Shafer’s theory of belief functions is a
valuable generalization of the Bayesian theory, chiefly because it provides a natural account of prior
ignorance or weak evidence. In the paper under discussion, this is illustrated by a variety of examples in
which the marginal belief functions over parameter spaces are vacuous; thus, the proposed statistical
analyses can be used on a background of complete prior ignorance or any degree of weak or strong prior
evidence.

Shafer’s methods would be even morc useful, and more readily accepted, if a satisfactory
interpretation could be devised for numerical degrees of belief. Section 1 of the paper suggests such an
interpretation; evaluate a belief function numerically by comparing a body of evidence to a prob-
abilistically coded message. 1 find this suggestion unsatisfactory for two reasons. First, such comparisons
seem strained; second, the procedure only seems numerical, whereas in fact it is merely ordinal.

Consider an analogy: suppose one attempted to measure the “degree of aesthetic pleasure” from
viewing a painting by comparing the experience to the sweetness of a graded series of sucrose solutions of
known concentration. First, the two realms of experience do not match very well. And, second, the
numerical value of sucrose concentration yields (at best) an ordinal scale of “aesthetic pleasurce™. because
no empirical relations in the aesthetic domain are represented, cxcept ordering. Similarly, measurement
of mass by comparison of objects with a graded series of weights in a pan balance would only yield
ordinal measurement, were it not for the fact that the mass numbers are required to represent an
additional empirical relation: combination of parts into a whole is represented by addition of the
corresponding mass values. This leads to a ratio scale of mass.

Returning to Shafer’s suggested interpretation, the comparison of evidence to a probabilistically
coded message seems strained; moreover, such comparisons run counter to the basic rationale for belief
functions. For example, consider the reliability of a witness. One’s judgement about such a question
would typically be based on just the sort of evidence that Shafer analyscs elsewhere using belief functions
rather than additive probability. If one could justify comparing the judgement of reliability to a random
drawing of “reliable” or “unreliable™ balls from an urn, why not do the same with one’s judgement of the
fact about which the witness is testifying, climinating altogether the need for non-additive belief
functions?

In place of probabilistically coded messages, | would suggest two kinds of canonical examples that
could provide comparisons to many, though not all, evidential situations. First, when the cvidence
consists of (a) the similarity of the current situation to many past situations and (b) the record of past
experience in the aforesaid similar situations, then it seems natural to compare one’s knowledge to an
additive probability distribution. For example, “He’s late about 60 per cent of the time™ summarizes such
a comparison. Second, when evidence consists of an observation that would be usual under hypothesis H
but rarer or astonishing under fI’, then it is the likelihood ratio that provides a family of apt canonical
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examples. For example, *10 to I it wasn't an accident” ordinarily should be interpreted as a judgement of
likelihood ratio, rather than of posterior odds.

The usc of additive probabilities and likclihoods as canonical examples does not. however, require
me. or even tempt me, to be Bayesian. The advantages of belicf functions are great and necd not be
surrendered. The comparison of given evidence with the above examples is merely ordinal. as argued
above. That is, a numerical measure of strength of evidence should be a monotonic function of the
matching probability value. in the first type of example, and should be monotonic with likelihood in the
second one. The measurement on a cardinal scale can be obtained from the requirement that strength-of-
evidence values be combined by Dempster's rule when independent lines of evidence are combined, just
as ratio-scale measurement of mass is obtained from the requirement that combination of parts be
represented by additivity of mass values. Details of such a measurement scheme for belief functions have
been worked out by John Miyamoto and me, but are not yet published. How well the scheme will work in
practice is not known at present.

I do not agree with Shafer that the constructive view of probability should be regarded as an
alternative to the objectivistic. personalistic and necessary views. Rather, it secems to be a correction
applicable to each of them, since some mutching process, involving canonical examples, may play an
important role in a practical realization of each.

Turning to Sections 2 and 3 of Shafer’s paper. I see a difficulty with the method of conditional
embedding: equation (6) implies that a likelihood ratio of | has non-trivial effects on belief! Since
conditional embedding seems attractive, this paradox may be hard to resolve. Perhaps it is a mistake to
try ever to incorporate evidence into the domain of belief functions; statistical evidence, in particular,
may be better handled via methods based on likelihood, e.g. equation (19): I find it unnecessary to reject
such methods just because statistical and epistemic combination rules yield conflicting results (end of
Section 4). This difficuity can be resolved another way: epistemic combination {(Dempster’s rule) is simply
inappropriate when applied to different observations governed by the same chance model. This is not an
ad hoc adjustment, for there is no reason to apply Dempster’s rule except under the limited conditions of
bodies of evidence that are entirely unrclated except via their: bearing on common hypotheses.
Observations that are statistically independent are by definition related by a common chance model in
which this statistical independence is expressed. and they should be combined within the model, not by
Dempster’s rule.

In my view, the major puzzle about parametric models lies not so much in the direction of statistical
inference about parameter values—since that can be dealt with through the likelihood function—as in
the direction of statistical prediction or explanation. What kind of belief function over X is generated by a
family of parametric models M, each providing a probability distribution over X, together with a belief
function over M? The method of conditional embedding suggests an interesting possible answer, one
which crics out for an axiomatic analysis.

The AUTHOR replied later, in writing, as follows.

I would like to thank Professor Barnard, Dr Williams and the other contributors to the discussion for
their thoughtful and constructive comments. | would also like to express my gratitude to the Royal
Statistical Society for the opportunity to present my paper and for the very pleasant reccption they gave
me.

Probability analyses as arguments. 1 am pleased by the positive reaction to the general idea of
constructive probability. There are aspects of this idea which were not developed in my paper but which
are relevant to the discussion. One of these is best expressed in the words of Amos Tversky: “The result of
a probability analysis is only an argument.” Suppose we compare various items of evidence to the
canonical examples for a particular theory, combine the results by the rules of the theory, and end up
with a degree of belief 0-99 that A is true. Then we have constructed an argument for A. We have said,
“Look, our evidence, when put together in this way, strongly supports A.” Other people may or may not
find this argument convincing, and if they do not find it convincing they may try to improve on it or try to
construct a different argument with a diflerent conclusion. Thinking of probability analyses in this way
can help us resolve some of the difficultics which arise if we look for probability judgements that are
based on logic alone or are otherwise apodictic.

Consider, for example, Professor Dawid’s comments on the fiducial step he sces at the heart of the
theory of belief functions. Suppose | receive a coded message and I know there was a chance 0-99 that it
was encoded using the code ¢. I decode using ¢ and obtain the message 4. This strikes me as a strong
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argument for A. Perhaps Dawid is right that few people would agree that A now has, in some apodictic
sense, probability 0-99. But most people would agree that there is a strong case for A, and this is all a
constructive theory can hope for.

Seeing probability analyses as arguments also opens the way to a pragmatism that allows our
approach to probability judgement to be influenced by our purposes. My remark that Smets’ method is
sensible only when © is small might be better expressed by saying that the method is not appropriate for
the purposcs we usually have in mind when © is large. Similarly, we may find Dr Walley’s condition (6}
attractive if we are interested in prediction but irrelevant if we are interested in inference.

Belief functions—canonical examples and axiomatic foundations. Professors Barnard and Fine are
troubled because they do not see a very clear fit between randomly coded messages and the items of
evidence that T represent by belief functions in Section 3 of the paper. I share their misgivings to some
extent. It is not clear, for example, that a study of symptoms of victims of virulent ploxoma has the same
structure, as evidence, as a message that has a certain chance of meaning that a given victim will have a
given symptom il his ploxoma is virulent. It does not, at any rate, seem obligatory that we should think of
this evidence as having this structure. To a certain extent our problem is, as Barnard suggests, one of
unfamiliarity. The abandon with which Bayesians assimilate all sorts of evidence to the familiar model
where truth is generated by chance suggests that with practice we could fit any evidence to a randomly
coded message. Still, onc would like the fit to be clearer.

David Krantz, in private conversation, has pointed out to me that we want the fit to be clear because
the canonical examples for belief functions carry so much weight—they justify the whole calculus of the
theory. If this calculus could be given a more fundamental justification, then some of this weight would be
removed. We would still need canonical examples in order to scale the strength of individual items of
evidence, but we would not need to match the structure of our evidence to these canonical examples. I am
intrigued, thercfore, by Dr Williams’ comments about how a deeper justification of Dempster’s rule
might be sought. I hope that both Williams and Krantz will further develop their ideas on these issues.

In the absence of axiomatic foundations of the sort to which Williams and Krantz point, I will
continue to rely on the canonical examples of the theory of belief functions as the source of the theory’s
structure. This approach is often adequate for the construction of convincing probability analyses and
since the canonical examples use traditional probability ideas, this approach has the virtue of drawing
the theory closer to the statistical tradition.

Alternative canonical examples for belief functions. In his contribution to the discussion, Krantz
emphasizes not the nced for axiomatic justification of Dempster’s rule, but rather the possibility, once we
have accepted Dempster’s rule, of giving a fully cardinal meaning to the values of belief functions. The
argument he has in mind involves adopting an alternative set of canonical examples for belief functions:
additive probability distributions and likelihood ratios. I find the idea of a cardinal scale intriguing, but |
have not yet convinced myself of its importance. Does a probability analysis based on using randomly
coded messages as the canonical examples for belief functions lack effectiveness as an argument because
the degrees of belief it produces have only ordinal meaning? I am inclined to resist a reliance on likelihood
ratios as canonical examples for belief functions because I believe in many problems the theory of belief
functions can do better than the Bayesian theory precisely because it allows us to avoid forcing our
evidence into the likelihood mould. One example is discussed in Shafer (1981d). Another is provided by
the ploxoma example in the paper under discussion.

Aleatory vs epistemic combination. Several participants in the discussion touch on the question of
whether Dempster’s rule should be used to combine belief functions based on statistically independent
observations or whether such observations should be combined within one’s chance model before
undertaking a belief-function analysis. The fundamental question is whether the statistical independence
of observations can be taken as satisfying the intuitive criterion of independence required by Dempster’s
rule. Smets and Walley say yes, and so regard the discrepancy between the two methods of combination
in the case of the likelihood method (formula (19)) as an unacceptable “contradiction”. Krantz says no, on
the grounds that beliel functions based on statistically independent observations represent overlapping
evidence; both rely on the evidence for the statistical model. I have changed my own opinion on this issue
several times, and [ continue to waver. 1 do believe that there are many problems where features of the
evidence that statisticians are accustomed to representing as statistical independence can be alternatively
thought of as justifying Dempster’s rule. And so I find the concordance between the two methods of
combination in the examples considered in Section 3 of my paper reassuring. On the other hand, [ see the
justice of Krantz’s view once we have accepted the statistical model.
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Canonical examples for other theories. Professor Fine notes that a given lower probability can be the
lower envelope of many different sets of probability measures. 1 do not see that this fact renders an
example involving partial knowledge of chances inappropriate as a canonical example for a constructive
theory, though it does mean that this theory can be richer than the name “lower probability” might
suggest. (Sec Shafer, 1981a, pp. 11-12.) Perhaps there are other constructive theories that can also be
called theories of lower probabilities—i.e. other useful sets of canonical examples for lower probability
functions. I would be interested in Fine's thoughts on this. Are there, for example, canonical examples
that better fit the techniques developed in Wolfenson and Fine (1982)?

[ am puzzled by Dr Walley’s suggestion that a betting interpretation can replace the canonical
examples [ have suggested for lower probabilities and by his related claim that Dempster’s rule must be
abandoned if we are 1o interpret BEL(A4) and p1.(A) as lower and upper betting rates. It scems to me that
the degrees of belief constructed within the theory of belief functions and those constructed within the
theory of lower probabilities can equally well be used as betting rates. The idea of betting cannot
distinguish betwcen these two very different constructive theories. (See Shafer, 1981a, pp. 16-40.)

Professor Smets mentions Zadeh's theory of possibility. What is meant when one says, “The
possibility of putting 10 tennis balls in this box is 3™ Perhaps it would be helpful to have canonical
examples for this theory.

Canonical functional models. T am fascinated by Professor Dawid’s example of a continuous functional
model that yields different fiducial distributions depending on how the problem of conditioning on an
event of zero probability is handled. I do think the theory of belief functions can cast some light on this
example. In contrast 1o Fisher’s fiducial argument, the theory of belief functions allows us to take discrete
models as basic and to think of continuous models as mathematically convenient approximations. This
might mean that the correct result from conditioning a continuous belief function on an event of zero
plausibility could only be found by referring to the exact discrete model. But presumably a continuous
belief function would be counted as useful only if this correct result could be found as the limit of the
results from conditioning on a sequence of ¢vents of smaller and smaller positive plausibility. This idea is
familiar from standard probability theory, as is the concomitant idea that in order to condition on an
event of zero plausibility we need to specify which decreasing sequence of events of positive plausibility
we have in mind. In this context, Dawid’s example runs as follows. We have a continuous belief function
for(X. S, u. o)suchthat | X = X, S = 5. p/o = k) has zero plausibility, yet () {X =X, S =5, | —k|<¢}
and (i) { ¥ = X, | X/'S—%/s|<e. p/o = k} both have positive plausibility for e>0. And the limit obtained
after conditioning on (i) differs from the limit obtained after conditioning on (ii). This example shows that
life is more complicated with continuous beliel functions than with continuous additive probability
distributions; in a well-bchaved additive probability space we would take it for granted that a conditional
distribution is uniquely determined by values of the random variables X, S and u/o. But there is no
fundamental paradox: it is simply necessary to say whether (i) or (ii) is meant. Presumably a convincing
story about the evidence that led us to construct the functional model would say which is meant.

I agree with Dawid that Bayesian conditioning is subject to pitfalls even in finite problems and that
we need to watch for these same pitfalls when we use Dempster’s rule of conditioning. One way of
explaining the problem is to say that Bayesian conditioning is justified only when the event that we
receive the information we want to condition on can be considered independent of the event that the
information is true. (See Shafer, 1981c, 1982b.) Conundrums arisc because this is not made explicit in the
standard presentations of the Bayesian theory. [ have tried to make the corresponding requirement of
independence quite explicit in my presentations of Dempster’s rule.

Ploxomu. Since | believe that theories of probability judgement must ultimately be compared in terms
of examples, | am delighted to see that the discussion includes two alternative analyses of the ploxoma
example—a likelihood analysis by Professor Barnard and a Bayesian analysis by Professor Lindley. Both
these analyses disagree with the belief-function analysis given in Example 2 in that they show greater
support for virulence in the case of a ploxoma patient whose test comes out x;. Table D1 puts the results
of Lindley’s anulysis and the results of the belief-function analysis in a form where they can be directly
compared. When the test comes out x,, the two analyses are in rough agreement, but when it comes out
X5 of X,, the belief-function result is more conscrvative, in the sense that it stays closer to the prior 5-15
per cent for virulence. This is because the belief-function analysis discounts the results of the study of
patients with ordinary ploxoma. Lindley insists that the uncertainties affecting this study are irrelevant
and should be ignored. [s this reasonable? Suppose that instead of having only 73 per cent confidence in
the study we have much Icss confidence. Is there not some point where even Lindley would chuck out the
study and revert to the prior 3-135 per cent?
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TaBLE D1
Lindley Example 2
P (virulence) BEL (virulence) PL (tirulence)
Prior 010 003 015
Posterior X, 0023 0014 0-035
X, 0229 0062 0082
X, 0471 0165 0218

Observational evidence. Professor Smith reminds us that “observational evidence gives only
likelihoods™. The constructive view suggests that we express this somewhat differently. We should say,
“Observational evidence is evidence that we have decided to assess in terms of its likelihood.” Evidence
does not come to us labelled “obscrvational™ or “other™; even within the Bayesian framework, we must
decide whether given evidence is to be assessed in terms of its likelihood or used in the construction of
prior probabilities. We can treat any evidence as obscrvational evidence if we insist on doing so. for we
can always ask, “What is the likelihood of obtaining this evidence if such-and-such is truc?” But an
insistence on treating all cvidence as observational would be incompatible with the completion of a
successful Bayesian analysis; it would lead to an increasingly complicated model, where more and more
detailed prior probabilities arc required but less and less evidence is available on which to base them. So
even within the Bayesian framework we do not assess evidence in terms of its likelihood every time it is
possible to do so. The central theme of my paper is that evidence that can be assessed in terms of its
likelihood can sometimes be better assessed in terms of belief functions.

Other comments. 1 would like to thank Professor Barnard for his review of the history of varieties of
uncertainty, Dr Walley for his review of his work on belief functions, and Professor Kingman for his
remarks on the connection with random sets. For more on the connection with random sets, see Nguyen
(1978).

I would like to conclude by again thanking the Royal Statistical Society for the opportunity to bring
the theory of belief functions before a broad statistical audience. The ideas in this theory will, | am
certain, continue to arouse wide interest outside of statistics. These ideas are sufficiently natural to have
been reinvented many time since they were first sketched by James Bernoulli; recent reinventions have
appeared in the legal literature (Ekeldf, 1981) and in the literature on artificial intelligence (Friedman,
1981). Only within the statistical tradition is the theory likely to acquire the depth and clarity that will be
nceded for it 10 become widely useful.
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