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1. EvipeNee

here are at least two ways in which the impact of evidence on a proposi-
tion may vary. On the onc hand, there are various possible degrees to
which the evidence may support the proposition: taken as a whotle, it may
support it strorgly, just a litde, or not at ali. Or (i« other hand, there are
various possible degrees to which the evidence mav cost doubt on the
proposition: taken as a whole, it may cast serious doubl on it, thus cender-
ing it extremely doubtful or implausible; it may cast only moderate doubt
on it, thus leaving it moderately plausible; or it may cast hardly any doubt
on it, thus leaving it entirely plausible.

1.1. DEGREES OF SUPPORT AND PLAUSIBILITY

In this cssay, T formally distinguish these two aspects of the evidence’s
impact. [ say that the evidence supports a proposition to a certain extent,
thus endowing it with a certain degree of support, and that it casts
doubt on it to a certain extent, thus endowing it with a certain degree of
plausibility.

I'approach these degrees of support and plausibility with two ambi-
tions. First, [hope that in some situations they can actually be represented
by numbers. And sccondly, T hope that in these situations such numerical
deprees of support and plausibility for relevant propositions will be sufli-
cient to completely sunnarize the cvidernce's impact on our knowledge
and opinion.

A proposition’s degree of support and its degree of plausibility arc ob-
viously related. and it might scem that they arc so strongly related that
the one should determine the other. But they are not, The fuct is thal
while a high degree of support dacs imply a high degree of plausibility, a
low degree of support is compatible both with a low degree of plausibility
and with a hich degrec of plausibility. If the evidence supports the propo-
sition not at all and casts a great deal of doubt on it, then it endows it
with a low degrec of support and a low degree of plausibitity. But if the
cvidence {ails to provide much support for the proposition and also fails
to cast much doubt on it, then it endows it with a low degree of support
and yet feaves it with a high degree of plausibility. Actually, this latter
situation is all foo ccmmon, for it arises whenever the cvidence is scanty.
Wien there is littie evidence bearing on a proposition, that proposttion
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czonot be said to be supported by the evidence, but it is plausible even in
light of the evidence.

[ want these deurces of suppert and plausibility (o be numbers. What
numbers?

Consicler first the range of numhers that we might want for degrees of
support.

At one extreme, when there is no support for a proposition, we will
want to say that its degree of support is zere. At tlie other extreme, we
will want 2 maximum degree of support, corresponding to the case where
the cvidence cstablishes the propositioa for certain. A conveaicat conven-
tion is to set this maximam degree of support equal to onc. So when we
mcasure the degree of support for a proposition we will assign the proposi-
tion a numbcer between zcro and one.

This same scale from zcro to oune also secms appropriate for degrees of
plaustbility.

A proposition will have degree of plausibility zero when the evidence is
conclusively against it, and degree of plausibility one when there is no

cvidence against it.

1.1.1. The Support and Plausibility Functions

We are usually interested tn degrees of support and plausibiiity for more
than onc propaosition at a time. IFor example, when we are concecned with
the truc valuc of some quantity 0, we are intcrested in any proposition
that asscrls that the truc valuc is included in a given subsct of the sct of
possible values.

Denoting the sct of possible values by @, the propositions of intercst
are precisely those ol the form ‘The true value of 0 is in A7, where A is a
subset oi ©.

Hencee the provositions of ialerest are in a one-to-one correspondence
with the subseis of @, and for the sake for convenience we can ‘identify’
them with these subsets.

So denoting the sct of all subsets of @, or the power set of ©, by the
symbo! 27, we can describe our problem as thut of specifying two functions
on 2Y. First we want a function :

S:29 5 [0, 1]

such that §(A)is the degree of support for the subset 4. And sccondly, we
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want a function
PL:2° - [0, 1]

such that PL(A) is the degree of plausibility of A.

This formalism may seem fairly special. For we are often interested in
propositions that do not deal with the value of a numerical quantity. But
it becomes quite general if we allow 0 to be a ‘parameter’ that takes pos-
sibly non-numerical values. For example, we might let 0 be ‘the date
and place of origin of the relic in my hand’. In this case, the possible vilues
of 0 would be pairs, each pair consisting of a date and a place.

Whatever 9 is, it should be noted that whenever a subsct Ac® is
thought of as a proposition, its complement A, the set of all elements of
© not in A4, must be thought of as the negation of that proposition,
Notice also that the empty set @ is in 2%; it corresponds to the proposition
that is necessarily false, for the true value of 0 cannot be in . And the
entire set @ is also in 2%; it corresponds to the proposition that is neces-
sarily true, for by assumplion the true value of 8 is in ©.

1.1.2. The Relation Between S and PL

I have already pointed out the relation between a proposition’s degree of
support and its degree of plausibility: high support implies high plausis
bility, but low support is compatible with both low and high plausibility.
We can formalize this relation by requiring that the degree of plausibility
be at least as great, but possibly greater than the degree of support. In
symbols:

(1) S(4) < PL(4)

for each A€2°. In words: plausibility is easier to come by thaa support.

A fundamental relation between support and plausibility can be dis-
cerned when one compares the degree of plausibility of a proposition
Ae2° with the degree of support for its negation 4. Recall that a propo-
sition A is plausible to the extent that the evidence fails to cast doubt on it.
But casting doubt on A is really the same thing as supporting 4. Hence
A is plausible to the extent that 4 faifs to be supported; PL(4) is large to
the extent that S{A) is small.

Since both PL({4) and S(A) are measured on a scale from zero to one,
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the most natural way to make this relation precise is 1o sct
(2) PL(A) =1 — S(A)

for all Ae2°. ‘
This relation implies not only that we can obtain the function PL from

» knowledge of S, but also that we can obtain S from knowledge of PL.

For (2) implies that
() S()y=1-PL(A)

for all A£e2°. Hence the functions PL and S convey exactly the same in-
formation.

1.1.3. Elementary Rules for S and PL
It is worth noting that the relations (1) and (2) imply that

S(A) + S(A) <1

for all 4€28. Verbally: it is impossible for both a proposition and its
negation to be well supported. Similarly, (1) and (3) imply that

PL(A)+ PL(A) 2 1

for all Ae2®. Verbally: for every proposition, either it, its negation or
both must be fairly plausible.

There are several other rules that § and PL should obey. For one thing,
the elements @ and @ of 22 are rather special. No matter what the evidence
is, 0 is impossible and hence S(0)=PL(P)=0. Similarly, @ is always taken
to be certain, and even in the absence of any evidence we would set
S(©)=PL(8)=1. The function S ought also to obey the rule of mono-
tonicity:

If A4c B, then S(A)< S(B).

This rule is unavoidable, for when 4 B, any support for the value of 0
being in A is also support for the value of 0 being in B. Finally, the rule of
monotonicity for S implies exactly the same rule for PL:

If 4cB, then PL(4)<PL(B).

The rules for S and PL arc summarized in Table L.
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TABLE T

Rules for § and PL. To the right of each rule for PL is the corresponding rule for S,
Lased on the relation S(A)=1—PL(.t)

Rules for plausibility Rules for support
PL{O)=0 S(@)=1

PL(O)=] SO =0

If A= DB, then PL(A)KPL(B) If A< B, then S(A)<S(H)

PL(AYA-PL(AD)=1 S -+S(A) <)

[.2. THE CASE OF TWO ALTERNATIVES

The simplest support and plausibility functions occur when 0 consists of
only two alternatives; say @ = {0y, 0,}. In this case the support function
§:2% {0, 17 will be completely determined by two numbers: S({0,})=
=5, and S({0,})=r,. And since {0,}={0,}, thesc lwo numbers must
obey s, +s,<1. :

TABLE 11

The gencral form for S and PL when
@=[01, 02} (s1+s2<1)

A SA) PL(A)
0 0 0

{01} 51 1 —s2
{0:} 52 1—s;
® | 1

1.2.1. No Lvidence

Tt is generally difficult if not impossible to actually assess the evidence and
arrive at numerical degrees of support and plausibility. But in one case it
Is easy — the case where there is no evidence. When there is no evidence
none of the propositions in 2% can be supported, and hence all must have
degree of support zero. Dually, none can have doubt cast on them and
hence all must have degree of plausibility one. Of course, we must make
lwo exceptions: @ being logically impossible, we must have PL(0)=0;
and O being logically certain, we must have S(©)=1.850 when there is no
evidence we obiain the vaczous support function, which assigns every
proposition excent @ supnort zero, and the vacuours plausibility function,
which assigns every proposition except @ plausibility one.
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Tn terms of Table IT, such a vacuous support function would be rc-
presented by setting s, =5, =0. Let me give a concrete example. My friend
the art collector shows me a vase and tells me that it has been represented
as a product of the Ming dynasty. He asks me what I think - is it genuiie
or is it courlerfeit? Now the only thing [ know about vases is that flowers
can be kept in them, and the only thing [ know about the Mings s that
they were not Frenchmen. Surely ycu will agree that I have no evidznce
and hence should adopt the vacuous support function, shown in Table 11I.

TABLE 11

The vacuous support function
when 6.~ {genuine, counterfeit}

A S(A) PL(A)
(5] 0 0
{gcnuinc} 0 ]
{counterfeil} 0 )
© I 1

1.2.2. Conflicting Evidence

The case of no evidence is casy. But we usually- have some evidence. [n-
deed, there is often so much evidence that we can find some agaiast cach
possibility.

Consider again the question of whether the vase is genuing or counter-
feit: @ = {genuine, counterfeit}. By definition it is one or the other, but
I will not be surprised if I find some evidence pointing to its being genuine
and some evidence pointing to its bcing cournterfeit. Suppose I do. For
the sake of concreteness, suppose my evidence comes from a study of the
painting on the vase. My evidence for the vase’s being genuine may be
the particular skill exhibited in the intricate design, a skill that is not
Lefieved to have survived the Ming period. And my evidence for its being
counterfeil may be the presence of a cectain pigiment previously believed
to have been unavailable duacing the Ming peciod. Suppose botl of these
items of evidence scem to be fairly weighty, but equally weighty. Then
the total body of evidence can be aptly deseribed asinternally conflicting:
there ay be quile a bit of it, but iy points in both directions at ouce.
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What docs the plausibility function look like? Both alternatives have
evidence against them and thus doubt cast on them; hence neither remains
completely plausible. Let us suppose they both retain plausibility 3/4.
‘Then we obtain the support and plausibility functions shown in Table 1V.
Notice that the set @ = {genuine, counterfcit} retains plausibility one cven
though neither of its individual elements are that plausible any more.

Table IV might strike you as a complicated way of saying nothing.
“Sure you have all that cvidence”, you might argue. “But it cancels itself

TABLE 1V

A support function that indicates internally
conflicting evidence

A S(A) PL(A)
o 0 0
{genuine} 1/4 3/4
{counterfeit) 1/4 3/4

e ] 1

out. Why should you say that the evidence supports both alternatives to
a degree of 1/4? It would be simpler to say that the tendencics to provide
support in the two opposite directions cancel each other completely,

lcaving support 2ero and plausibility one for both alternatives™. In other
~words, you might argue that this precisely balanced conflicting evidence
really comes down to the same thing as no evidence at all.

Admittedly, not all the vocabulary we use nowadays to discuss evidence
is adupted to distinguishing between a lack of evidence and the presence
of conflicting evidence. For example, conflicting evidence does no better
than no evidence in providing us with ‘information’ or helping us make a
‘decision’. But the difference between no evidence and conflicting evidence
is both real and practical and should be basic to any theory of evidence,

1.2.3. The Combination of Evidence

The importance of the difference between no evidence and conflicting
evidence emerges clearly when we undertake to combine the evidence we
atready have with new evidence. Suppose, for example, that we have the
conflicting cvidence summarized in Table 1V, and that we then obtain

A THEORY OF STATISTICAL EVIDENCL 373

new evidence strongly in favor of the vase’s being genuine. Indecd, sup-
pose the new evidence supports that alternative fairly strongly and does
not cast any doubt on it at all. Then this new evidence, taken by itself or
cotnbined with ‘no evidence’, will result in S({genuine}) being fairly high
and in PL({genuinc}) being equal to onc. But when this new evidence is
combinsd with the previous conflicting evidence, the result will be dif-
ferent. Certainly the new evidence will shift the balance in favor of the
vase’s being genuine, and perhaps it will raise the degree of support for
that alternative. But the original evidence against the vase’s being genuine
(the suspicious pigment) will remain part of the combined evidence, and
hence PL({genuine}) will not be equal to one.

Let me make the example more concrete. Say the new evidence 1s the
testimony of an expert who has analyzed the chemical composition of
the clay in the vasc and has concluded that it could only have come from
the Ming period. Now we may put some faith in his expertise and his
honesty, so his testimony will provide positive support for the vase's
being genuinc. But experts can be wrong, so we will not regard his testi-
mony as conclusive evidence. Suppose we think it provides a degree of
support of 1/2 for the vase’s being genuine. Then when considered alone
or combined with no evidence it will produce the support and plausibility
functions given in Table V.

TABLE V

The support function based on
the new cvidence

4 ‘ S(A4) PL(A)
' 0 0
{gcnuine} 1/2

{counterfeit} 0 i 12

(2] 1 1

Let us consider the degrees of support that might be expected to result
from the combination of the old evidence represented by Table I'V with
the new evidence represented by Table V. It seems rcasonable that the
combination of the two bodies of evidence should produce a fairly kigh
degree of support for the vasc’s being genuine, perhaps higher than the
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egree of support in either table. On the other hand, the degres of support
foc the vase's being coualerfeit ought to fall between the 0 in Table V and
the 1/4 in Table IV. There will be positive support, deriving from the old
evidence, but the one-sidedness of the new evidence will erode it con-
siderably. Numbers in Table VI scetn to meet these general requirements.

TABLE VI

The support function resulting
from combjnstion

A S(A) PL(A)
0 0 0
genuine 4/7 6/7
countcrleit 1/7 377

15} 1 I

1.2.4. Lambert’s Rule

Actually, Table VI can be obtained from Tables [V and V by the applica-
tion of a simple rule that was first proposed by J. H. Lambert in 1764 and
was rediscovered by A. P. Dempster in 1966.

In order to describe the application of Lhis rule, we niced to learn how
to represent a support function over two alternatives by a ass that is
uniformly distributed over a line secgment. This is done in Figure 1 for
the supporl function in Table I'V.

mass committed  mass committed  mass uncommitted
to {geninne] to {counterfeit) /

f
0 114 12 1
Fig. 1.

In that figure, 1/4 of the mass is commilted to {genuine}, corresponding
to the degree of support of 1/4 for that aliernative, and 1/4 is comraitted
to {counterfeit}, corresponding to the degree of support of 1/4 for that
alternative. The support funclion in Table V is similariy represented in
Figure 2. Since the degraes of support for two alternatives must always
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mass committed mass uncommitted
to [genuine} [
f — —
0 12 1
Fig. 2.

add to some number less than or equal to one, any suppost function over
two alternatives can be represented in this way.

In order to combine these two support functions, we combine the two
line scgmants orthogonally, obtaining the square shown in Figure 3. The
division of the line scgment of Figure 1 into three picces then induces a
division of the squarc inlo thrze vertical strips, while the division of the
line scgment of Figure 2 into two picces induces a division of the squire
into two horizontal strips. Altogether the square is thus partitioned into
3% 2=6 rcetangles which T have labeled with the letters A4 thcough F.

1
A | B c
1
2
D | E F
0 1L 12 1
Fig. 3.

Let us consider how each of these six rectangles is aflected by the two
support functions. Rectangle /1 is committed to {genuine} by the first
support function — a commitment that is not challenged by the sccond
support function; hence it may be counled us committed te {genuine}.
Rectangle B8 is similarly committed to {counterfeit]. Ractangle C, not
being committed by either of the two, must be counted as uncommittzd.
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Rectangle D is committed to {genuine} by the first support function,
and the second concurs. But for rectangle E there is a conflict: the first
support function would commit it to {genuine} and the second would
commit it to {counterfeit}; hence it cannot be counted at all. Finally,
rectangle F is committed to {genuine} by the second support function,
and this is not challenged by the first one (Figure 4).

) coun-
{ n%?n_e} 2 fteeirt—f {uncommitted}

SIS

{ngu?n_ei {genuine}

0 e 12 1
Fig. 4.

The net result, then, is that 4/8 of the square is committed to {genuine},
1/8 is committed to {counterfeit}, 2/8 is uncommitted, and 1/8 cannot be
counted. So of the 7/8 of the square that can be counted, 4/7 is committed
to {genuine}, 1/7 is committed to {counterfeit}, and 2/7 is uncommitted.
This result corresponds to the numbers in Table V1.

It should be obvious that the procedure used here can be used to com-
binc any pair, or any larger number, of suppor( functions over the same
two alternatives. The rule is so simple as to secm almost silly, but its
results are always intuitively reasonable.

1.2,5. Cuveat

Lambert formulated his rule only for the case of two alternatives, but as
we will sec in §3, Dempster’s more general rule of combination car be
applicd when @ has any number of clements, provided that the support
functions satisly ccrtain further conditions. This greater generality is im-
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portant, for the use of the rule for only two alternatives has severe limita-
tions.

The fact js that our evidence often refers to rather large sets of alter-
natives and loses much of its precision when we narrow our attention to
a single dichotomy. In the case of the vase, for example, we might obtain
new evidence not bearing directly on the vase’s origin, but merely tending
to impeach one of the sources of our old evidence. Such new evidence
certainly ought to affect the degrees of support and plausibility based on’
our old evidence, but it can hardly do so by means of Lambert’s rule.
For it will produce only a vacuous support function when applied directly
to the dichotomy @ = {genuine, counterfeit}. In order to combine the old
and new evidence properly, we would have to apply Dempster’s rule {o
support functions over a set @ large enough to distinguish not only whethet
the vase is genuine but also whether the various sources of evidence are
trustworthy.

In general, then, Dempster’s rule ought always to be applied to support
funclions over sets @ that are large enough to make all relevant distinc-
tions. If ® represents too coarse a division of the possibilities, then the
result of the combination may be inaccurate. We can achieve our ambi-
tion of complelely summarizing the evidence by a support function only
if we make O sufficiently large.

1.3. CONSONANCE AND DISSONANCE -

When © conststs of two altcrnatives, a support function that awards
positive degrees of support to both alternatives betrays internal conflict
or dissonance in the evidence. Dissonance can be revealed in a similar
way when © is larger. Indecd, whenever 4€29 and both S(A4) and S(A)
are positive, the evidence and the support funclion S arc clearty internally
conflicting and hence dissonant, Is this the only wity in which & support
function can betray dissonance in the evidence?

Itis not the only way. As we will see in the following example, a support
function can betray dissonance even when it avoids the outright conflict
involved in supporting both sides of a dichotomy.

1.3.1. Another Vase

Suppose 0 is the exact place of origin of a Chinese vase. We may take O
1o be the set of all places in China, or we may abstract a bit and take O to
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be the set of all points on 2 map of China; this will give us an infinits
number of *places’ in China, many of them very close together. And
supposc ihe evidence is dissonant.

Whai might it mean for the evidence to be dissonant in this exarmpic?
Consider a subset A of the map and two subsets A, and 4, of A such
that A, " A,=0 and 4, U, =4; say A is the province of Honan and
A, and A, arc western and eastern Honan, respectively. For the cvidence
to be dissonant with respect to A, and A4, would mean that some evidence
points in ons dircection, say towards 4, and away from A,, while other
evidence poiats in the other dircction, towards A, and away from A,. It
is not hard to imagine how such conflicting evidence might arisc; some
aspects of the vase's desigin might resemble other pottery from sites in
castern Honan, while other aspects niight seem more likely to have come
from the west.

But we must draw some distinctions. Since Honan does not make up
the whole map, evidence pointing towards western Honan is not exactly
the same thing as cvidence poinfing away from castern IHonan. Hence,
we can distinguish two different kinds of dissonance. First, there might
be some evidence pointing towards, and hence supporting western Honan,
and otherevidence pointing towards, and hence supporting castern Fonan.
Since easlern and western Honan are disjoint, this would certainly bz a
conflict. Secondly, there might mercly be some evidence pointing away
from western Honan without pointing away from eastern Honan and
other evidence pointing away from castern Honan without pointing away
from western Honan. In other words, there might be some evidence cast-
ing doubt on western Honan but not on castern Honan and other evidence
casting doubt on castern Honan but not on western Honan. In this case,
the evidence taken as a whole would have to be considered dissonant,
even though we might not want to say that it is in clear conflict with
itself. Let us consider botl kinds of dissonance in turn.

In the first case, we have positive support both for 4, = western Honan
and for 4, =eastern Honan. These two subscts are disjoint: 4, n 4, =0.
So dissonance is revealed in this case by the fact that

(4)  A,nA, =0, S4)>0 and S(4;)>0.

Notice that the disjointness of 4, and A, implies that 4, < A, ; hence
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S(.1,)= 8(4,)>0. So whencver (4) occurs, we have
(5 S(4,)>0 and S(4,)>0.

Hencz (4) is mecely another way of saying thet there is positive support
{or both sides of 2 dichotomy.

Fig. 5.

The second kind of dissonance, which is weaker but more interesting,
is best described in terms of the plausibilities PL(A), PL(A,) and PL(A,_.).
There may be some doubt casl on Honan as a whole and that (l_ouhl will
also apply to eastern Honan and to western Honan, thus pushing down
all three values PL(A), PL(A,) and PL(A;). But in the casc we are de-
scribing, there is evidence casting additional doubt on wesieen Honan
but not on eastern Flonan and hence not on Honan as a whole, and also
cvidence casting additional doubt on eastern Honan, but not on weslern
Honan and hence not on Honan as a whole. Hence, both PL(A,) and
PL(A,) will be pushed down farther than PL(A); we will have l.)oth
PL(A)<PL(A) and PL(A,)<PL(A). So the occurrence of the rclations

(6) PL(A)<PL(A, U 4;) and PL(4;)< PL(A; U A4,)

marks our second kind of dissonance.

The relations (6) can occur even without the occurrence of positi.ve
degrees of support for both sides of any dichotomy. In order to verily
this, let us make our example numerical. Let the value ofPL(B) for non-
empty B be given by (i) PL(8)=1 if B is not containcd in Honan, (ii)
PL(EY=1/2 if B is contained in Honan but includes points from both
western and eastern Flonan, and (iii) PL{B)=1/4 if B is complctely con-
tained in either western or eastern Honan. '

These values assure that (6) dees oceur, and they result in the tollowing
quantitiss S(B) for proper subsets B of @: (i) S(B)=0 if B does not
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include the complement of Honan, (i) S(B)=1/2 if B contains the com-
plemient of Honan but excludes points from both western and eastern
Honan, and (iii) S(B)=3/4 if B contains both the complement of Monan,
and ali of either western Honan or castern Honan. 1t is evident that &
does not obey both S§(B)>0 and S(B)>0 for any Be2°, for it is impos-
sible for both B and B to contain the complement of Honan.

We should pause to remark that (6) does not requirec 4, and 4, to be
disjoint. This is appropriate, for (6) is a symptom of dissonance even
when A4; and A, overlap. Suppose, for example, that A4, is the western
two-thirds of Honan, while A, is the castern two-thirds. Then (G) would
still betray the presence of some evidence pointing in both directions. In
fact, it would imply the same relation for the case where 4, and A4, are
the western and eastern halves of Honan.

We have isolated (5) and (6) as different symptoms of dissonance. In
fact, however, (5) is merely a special case of (6). For if we set 4, in (6)
equal to 4 and A4, equal to 4, we obtain

PL(A)<PL(AUA)=1 and PL(A)y<PL(AUL A)=1;
and when this is translated by (3), it becomes (5). So (6) is the most
gencral symptom of dissonance we have discerned so far.

1.3.2. The Definition of Consonance
Let us consider now a plausibility function that is completely non-disso-

nant, Such a function will fail to satisfy (6) and hence will satisfy

(7) PL(A, U A,)= max PL(A))
i=1,2
for all pairs A}, A,€2°. In fact, it will satisfy
PL(A UV A)= max PL(A)
I=1,..n )
for all finitc collections Ay, ..., A, of clements of 2%, for (7) implics (8).
Now a relation like (8) naturally causes one 1o ask whether the analo-
gous relation for infinite collections should hold. Does () imply that

©)  PL(UA,) = supPL(A,)

for all non-cmpty collections {A4,} of elements of 2°? Unfortunately, it
docs nol. If @ is infinite, then (9) is a stronger condition on PL than (8).
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Nonetheless, if PL were based on strictly non-dissonant evidence, then
it would be reasonable to expect it to obey (9) as well as (7) and (8).
Hence 1 will take (9) to be the crilcrion for completely non-dissonant
evidence. I will say that a plausibility function PL is consonant if it obeys (9).

Oune virtue of this definition is that ii reduces to a much simpler form.
It is easily verified that a plausibility function PL: 2° - [0, 1] is conso-
nant if and only if

(10) PL(A)=sup PL({%})

for all non-empty A€2. This implies that a consonant plausibility func-
tion is completely determined by its values on singletons.

Conflicting evidence is the rule rather than the exception in this life,
and we can expect most of the plausibility functions we meet to be dis-
sonant. But the definition of consonance is interesting because it shows
what this dissonance costs in terms of complexity. Consonant plausibility
functions have a very simple structure, but dissonant ones do not, and the

" more dissonant they ure the more complex their structure is.

1.4. THE LIMITS OF DISSONANCR

Though most plausibility functions exhibit some dissonance, the nature
of empirical evidence seems to set limits on the degree of possible disso-
nance, Let us return to the example involving the map of China to see how
such limits arise.

In thal example, I raised the possibility that both western Honan and
castern Honran might be less plausible as places of origin of the vase than
the province as a whole, If we partition the province more fincly, we
can adduce cxamples of more scvere dissonance. Consider, for example,
a partilion into three regions as shown in Figure 6. It is possible for
Ilonan as a whole Lo be more plausible than any ol the regions A, U /A,

Fig. 6, Honan partitioned ito western, northern and southern regions,
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AU dy or A, U A4; taken singly, This would happen if for each of tue
three regions A, uA;, A U A,y and 4, U A5 therc were some cvidence
casting doubt on it but not on the remaining third of Honan.

We need not stop with thirds: given any integer », we can partition
Honan into n regions and raise the possibility that the union of any
(n—1) regions is subject to doubt not applying to the remainder of the
providence and hence that all such unions arc less plausible than the pro-
vince as & whole. Following this linc of thought to its furthest extreme,
we might postulate that every proper subset of Honan is subject to some
doubt that does not apply to all of the cemainder, and hence is less phiru-
sible than the province as a whole.

Clearly, though, such cxtremic dissonance could never be attained on
the basis of empirical evidence. Consider, for cxample, a subset B of
Honan that fatls shorl of including the whole province only by the ex-
clusion of a single pornt. Are we to supposc that empirical evidence could
cast doubt on every poiat of B without casting doubt on the single rc-
maining point? One could hardly cxpect such precision. And it is cven
more farfetched that the evidence could be sufficiently voluminous and
discordant for this to happen for every possible choice of the cxcluded
point.

Surely any subset of Honan that excludes only a single pcint lias to be
accounted fully as plausible as Honan as a whole. And the same should
hold true for many much smaller subsets of Honan. Consider, for exam-
ple, a proper subset B that 1s so dense that it includes some point within
an inch cf every point of Honan. Such a subsct B might contain oaly a
finite number of points, but it scems hard Lo imagine any evidence casting
doubt on it without casting doubt on all of Honan.

This example reveals two limitations of empirical evidence and two
corresponding restrictions on the dissonance of plausibiiity functions
based on empirical evidence. First, our ability to distinguish points on
the map is timited, so much of the doubt cast on any point maust also
apply to many ncighboring points. And secondly, the total amount of
c¢vidence we can acquire is limited, so our evidence cannot point in too
many directions at once. Let us consider cach of these limitations in turn.

1.4.1. Topologicul Rules

The mathematician will recognize the ficst restriction as essentially topo-
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logical, and an attempt to express it preciscly would lead him to adduce
several rules framced in terms of the topology of O. Sevzral of these rules
would correspond to the regularity conditions used by Gustave Choquet
to define his ‘capacities’. Another rule, more easily stated but less familiar

-to mathematicians, would require the plausibility of any subset of O to

equal the plausibility of its ‘closure’. These topological rules are interest-
ing, but T will not investigate them in this essay.

1.4.2. Condensability

The sccond restriction on dissonance derives not from the topology of
© but rather from the fact that the evidence itscll can have only limited
complexity. There can only be so many distinet aspects of the cvidence,
and hcuce onty so many distinet subsets of @ that are touched by distinet
buascs of doubt. In fact, one might cxpect only a finite number of such
furdamentally distinet aspects, or at most a countably infinite number
with a finite number predominaling in importance.

Fixing our allention on a given subset A of @, we can adduce similar
considerations relative to the bases of doubt that apply to proper subscts
of A but not to all of A. If there were only a finite number of these, then
by choosing a point of A immune to cach we could form a finite subsct B
of A4 which, as a whole, was immune to all the bases of doubt. This finite
subset B< C would be fully as plausible as A4 itself. If, on the other hand,
therc were an infinite number of bases of doubt, a finitc number of which
carried most of the weight, then we could expect to find a finite subset
Bc A which was nearly as plausible as A.

This second restriction leads us, then, to the rule that

() PL(A) = sup {PL(B)| B = A: B s finite}

for all A€29. A plausibility function that obeys this rule is called condens-
able - a namie based on the intuitive idea that at least most of the plausibil-
ity of A can be ‘condensed’ onto a finile subsct,

The considerations just adduced are mecant to explain the intuitive
significance of condensability; they hardly constitutc a demonstration
that plavsibility functions ought always to be condensable. I have found,
however, that condensability is characteristic of empirica) evidence, and
it plays an important role in the theory developed in this essay. As wiil
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see in §3, condensability is one of the conditions that must be met if
Dempster’s rule of combination is to be {ully applicable.

It is also interesting to note that the criterion for consonance, 9), is
cquivalent to (7) once condensability is assumed.

2. STATISTICAL BEVIDENCE

I have explained at length what degrees of support would look like if we
could calculate them, but it remains painfully obvious that we usually
cannot. In most cases where we want to assess the evidence for a proposi-
tion there is simply no quantitative structure that can be exploited to
produce numbers. But we find an exception in statistical evidence - a
lype of evidence that has so rich a quantitative structure that the calcula-
tion of numerical degreces of support is quite conceivable,

2. 1. THE PROBLEM OF STATISTICAL SUPPORT

The notion of statistical evidence depends on the notion of an aleatory
law, or an objective probability law. An alcatory law is a law that tells an
experiment’s propensity for producing each of its various possible out-
comes. The first step in specifying an aleatory law is to specify the set X
of all possible outcomes of the experimeni. If X 1s conceived of as a
topological space, then the further description of the afeatory law is some-
what complicated. But in the case where X is ‘discrete’ it is quite simple.
Onc simply specifies, for each xe X, a quantity P(x) which is the experi-
ment's propensity for producing the outcome x. The quantity £(x) is
also called x’s objective probability, and it 1s the frequency with which x
will occur in a long sequence of physically independent trials of the ex-
periment, Bach of the quantities P(x), x€X, is non-ncgative, and they add
lo one, In the following discussion T will concern myscll mainly with the
case where X is discrete.

Let us return to the problem of support for a parameter 0 whose pos-
sible values constitute a sct @, Suppose that 0 is related to a given ex-
periment by a statistical specification {Py}gco- This means that to each
clement 0e O there corresponds an cleatory law P, on X, and that the
cxperiment is actually governed by the aleatory law corresponding to the
true value of 0. Since the different aleatory laws may attribute different
propensitics or ohjective probabilitics o the various possible outcomes
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in X, the outcomes that are observed in a sequence of physically indepen-
dent trials will constitute evidence as to which aleatory law actually
govarns the ptocess and hence as to which element of O is the true valuc
of 0. It is reasonable to call this type of evidence statistical evidence. If it
is the only kind of evidence we have about 8. then the problem of measur-
ing degrees of support for 8 1s a problem of stutistical support.

It is useful to distinguish between statistical specifications that are com-
plete and those that are restricted. A complete specification {Py}geq ON
X is one that includes every possible aleatory law on X; a restricted one
is one that is not complete. (This terminology is not standard.) Obviously,
every restricted specification on X can be thought of as a subset of the
essentially unique complete specification on X.

The idca of using the outcomes of an experiment as evidence about
which of a class {Pg},.e of aleatory laws governs it is a familiar one. I
should enlarge, though, on what is meant when an aleatory law P is said
to govern an experiment. This is taken to mean not only that the experi-
ment’s propensity to produce the outcome x in a single trial is P(x), but
also that its propensity to produce the sequence (x,, ..., x,) of outcomes in
a sequence of physically independent trials is P(x,)... P(x,).

2.1.1. Dissonance

I just asserted that thc outcomes observed in a sequence of trials of an
experiment constitute a body of evidence about which aleatory law gov-
crns the experiment. The thought behind this assertion is that the observa-
tion of an outcome xe X is evidence in favor of those Jaws that attribute
to the experiment the greatest propensity for producing x. More generally,
it tends to favor any law that attributes a given probability to x over a
law that attributes a smaller probability to x.

The straightforward appearance of the evidenee provided by a single
observation x might lcad us to think of it as highly consonant evidence.
After all, it points in just one dircction — towards those alcatory laws that
at{ribute a high probability 1o x. In some cases, however, there will be
scveral quite diflerent aleatory laws that attribute a high probability to
x, and since the cvidence points towards cuch of these, it might be said to
point in many directions at once. Hence it is not clear that the evidence
provided by a single observation will always be consonant; in some cascs
it might be better to think of it as dissonant,
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While there may often be some question about the consorance ot disso-
nance of the evidence in the casc of a single obscrvation, there will usvally
be little question in the case of several observations. In that case, the
cvidence will almost always be highty dissonant. For even if each siagle
observation points in a single dircction, the different observations will
most likeiy point in different directions.

So we must consider two possible types of dissonance: dissonance
arising {rom the combination of observations and dissonance arising (rom
a single obscrvation.

2.1.2. Dissonance from the Combination of Observations

Let us consider the simplest of statistical specifications: the binomial speci-
cation. Supposc X'={Heads, Tails} and ©=[0, 1], with Py(Hcads)=0
Py(Tails)=1—0. In other woeds, 0 is a coin-tossing cxperiment’s propen-
sity or probability for producing heads, and 0 might have any valuc be-
tween zeco and one. Obviously, a flip resulting in tails will be evidence
for a low viluc. Any single flip by itsclf will be quite straightforward
cvidence, but a flip resulting in heads will point in the direction opposite
to a flip resulting in tails. So while we may expcct a singte obscrvation x
fo produce a consonant support function, we must expect a sequence
x=(xy,..., X,) of observations Lo produce a dissonant sepport (unction,
at least if x includes both some heads and some tails. In other words, we
might expect the support function .S, arising from the ith trial to bc con-
sonant, but we would expect the support function S, resulting from the
combination of the support functions S, ,..., S, to be dissonant.

2.1.3. Dissonance from a Single Obscrvation

Suppose we arc confronted with a closed box of recently hatched chicks.
We know that the chicks include both Rhode Jsland Reds and White
Leghorns, and both males and females, but we are uncertain of the pro-
portions in the diTerent categories. There may be equai numbers of each
breed, but eitber morz males or fewer males than females. Or there may
be equal numbers of each sex, but eithcr more Rhode Jsiand Reds or
fewer Rhode island Reds than While Leghorns. For the sake of con-
creteness, let us suppose that there are only four possibilities: (i) equal
numbers of each braed but four times as many males as femalcs, (ii) cqual
numbers of cach beeed but four times as many females as males, (iit)
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equal numbers of cach sex but four times as many Reds as Whites, or
(iv) equal numbers of each sex but four times as many Whitcs as Reds.
Denote these four possibilities by 0y, 0p, 0g and 0., respectively, and
set @ = {0y, Op, Oy, Oy}

Now suppose we draw a chick from the box ‘at random’, Then the
element of @ that correctly represents the contents of the box will deter-
mine an aleatory law that will govern the result of the draw. That alcatory
law will be defined, of course, on the set X={Red Female, Red Male,
White Female, White Male}. The four possible alcatory laws are shown
in Table VII.

TABLL VIT

The four alcatory laws

Red Female Red Male White Female \Whitec Malc
Or 0.4 0.1 0. 0.1
O 0.1 0.4 0.1 0.4
On 0.4 04 0.1 Q.1
Ow 0.1 0.1 0.4 0.4

Finally, suppose our single draw results in a Red female chick. What
sort of evidence docs thus provide as to tiw correct aleatory taw?

Clearly, the evidence points both towards 0 and towards 0,. The fact
that a female chick was drawn points towards 0p; and the fact ithat a Red
check was drawn points towards 0g. So the result of the single draw
points in two diffecent directions at once; it provides dissonant evidence.

2.2. THE PIRST POSTULATE OF PLAUSTIBILITY

Ina problem of statistical support, the propositions about 0 are somelimes
called hypothescs, and one distinguishes between simple hypotheses and
composite hypotheses. A subsct {0} =@ that contains a single clement 0
is a siimple hypothesis; it asserts that the experiment is governed by the
alcatory law Py, A subsel of @ that has more than oac clement, on the
other hand, is a composite hypothesis; it asserts only that the experiment
is governed by one of several aleatory laws. As il turns out, il is casier {0
investigate the plausibilitics of simple hypotheses than the plausibilitics
of composite hypothescs.
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Suppose, indeed, that one has observed the outcome x in a trial of the
experiment and wants to compare the plausibilities of the two simple
hypotheses {0,} and {0,}. Is it more plausible that the expcriment is
governed by P, or that it is governed by Py, 7 We answer this question,
of course, by comparing Py, (x) and P, (x): the simple hypothesis that
attributes the greater objective probability to the actual observation x
will be the more plausible one.

It seems reasonable to go even farther and postulate thar the degree of
plausibility of a simple hypothesis {0} should be proportional to the
quantity P;(x). Denoting by PL, the plausibility function on 2° resulting
from the observation x, this postulate can be written in symbols as

PL((6)) = e(x) Po(x),

where ¢(x) depends on x but not on 0.
For the sake of economy, I will state this postulate formally for the
case where {P;}.6 is complete:

) Suppose {Py}yeo is @ complete statistical specification on the
discrcte space X, and suppose PL,: 2%~ [0, 1] is the plausi-
sibility function based on the single observation xe.X. Then

PL({0}) = e(x) Py(x),
where ¢(x) depends on x but not on 0.
This is the first postulate of plausibility.
In the presence of other postulates that I will adopl in §4, this postulate

implies the following more general stalement, which applies to both com-
plete and restricted specifications and to any number of observations:

(1 Suppose {P,),.¢ is a statistical specification on the discrele
space X, and suppose L, 22— [0, 1] is the plausibitity func-
tion bascd on the observations x=(x,,..., x,). Then

‘PLK({O}) = C(X) Pﬂ(xl)"'PO(xn))
where ¢(x) depends on x but not on 0.

The first postulate of plausibility is hardly a novel idea. Every statisti-
cian will agree that the objective probability that a simple hypothesis
atrribuies to the actual observations is a measure of the simple hypothesis’
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‘rciative plausibility’, ‘likelikood’, ‘probability’, or some such thing. The
idea can be traced back at least to Johann Heinrich Lambert’s Phoro-
metria, published in 1760. Danicl Bernoulli toyed with the idea about the
same time, and shortly Jater it was incorporated into the ‘Bayestan’ frame-
work that was firmly imposed on statistics by the consummate politician
named Picrre Simon Laplace. In this century it was forceflully re-extracted
from that {ramework by R. A. Fisher, who called the quantity Pg(x),
considered as a function of 0, the ‘likelihood’ of 0.

The aspect of the present formulation that is novel is the explicit re-
cognition that it is only the plausibilitics of simple hypotheses that are
proportional to the objective probabilities. The first postulate tells us
only about the quantities PL ({0}) for 0e®, and when the evidence is
dissonant these will not determine the quantities PL_(A4) for composite
hypotheses 4€2°.

I will now consider the first postulate of plausibility in the Iight of two
examples, one involving a complete specification, and the other involving
a restricted specification.

2.2.1. The Binomial Specification

Consider first thc example mentioned earlier, where X= {Head, Tails},
©=[0, 1], and P, (Heads)=0, P, (Tails)=1—0. This specification is
complete, and since X has two elements it is called a binomial specification.

Suppose we have six observations, x=(x, ..., x4) from this specifica-
tion, and three of them are heads while the other three arce tails. Then by
the first postulate of plausibility,

PL,({0)) = c(x) Po(xy) ... Py(x6)
= ¢(x) [Py(Heads)]? [ Po(Tails)]?
= c(x) 0*(1 — 0)*.

Since 0°(1—0)? takes its maximum value when 0=1/2, 1/2 will be the
most plausible single value for 0. Any other value 0 will have a degree of
plausibility that is only 640*(1 —0) as great as the degree of plausibility
for 1/2.

But this is all the first postulate of plausibility tells us. It docs not tell
us the absolute value of PL {1/2}) or of PL ({0}) for any othcr 0€0O.
And it tells us nothing abeut the degrees of plausibility for composite
hypotheses.
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2.2.2. A Restricted Binomial Specification

Now lct us consider the restricted statistical specification that is chtainzd
from the preceding example Ly taking © to be the pair {1/3, 2/3} jastead
of the whole interval {0, 1]. In other words, let us suppose that 6, the
coin’s propensity for coming up heads, is known to have cither the value
1/3 or the value 2/3. Still assuming that we have obtained three heads and
three tails, the plausibilities for the simple hypotheses {1/3} and {2/3}
will be

PL(1/3) = c(x) (113)* (2/3)°
and

PL.(2/3) = c(x) (2/3)* (1/3)*.

In other words, they will be the same. But how great will their common
value be? .

Bothalternatives are equally plausible, and they are the only alternatives,
so one might be inclined to award them both plausibilily one. But tlus
would correspond to saying that the six tosses have really produced no
evidence at all. In fact, they have produced conflicting evidcrce; each of
the two values has had some doubt cust on it as a result of the six tosses.
Doubt was cast on the value 1/3 every time heads came up, and doubt
was cast on the value 2/3 every time tails came up.

Another way to see that our evidence is internally conflicting rather
than rull is to obsecve that it has an effect when it is combined with further
evidcace. Suppose, for example, that another six tosses of the coin result
in four heads and two tails. Now this ncw cvidence, considercd on its
own, should produce a mild degree of support and a higher degree of
plausibility for {2/3}. But when we combine it with the old evidence, we
end up with seven heads out of twelve tosses. This overall result still lends
morc support to {2/3} than to {1/3}, but it surcly casts more doubt on
{2/3} than did the observation of four heads out of six tosses. So the
three heads and three tails do difler from no cvidence when combined
with more tosses.

We can describe this phenomenon more gencrally. The cflect of the
three heads and three tails will be to counter any more one-sided evidence
arising from further tosses, And the same countering effect will result
from any equal number of heads and tails - the greater the number, the
stronger the eficct. If, for example, our initial evidence censists of £fly
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heads out of a hundred tosscs, then it will practically nullify the rore
one-sided evidence provided by four heads and six {osscs.

So the comimon degree of plausibility resulting from three heads and
three tails must be less than one. On tie other hand, it must be greater
than one-half, for the two plausibilitics must obey

PL({1/3)) + PL({2/3}) = PL{1/3)) + PL{113}) > L.

The theory of §4 below gives the value 0.6, resulting in the dissonant
plausibility function in Table VIIT.

TABLE Vil

Sx and PL, when x consists of three heads
and three tails.

A Sx(A) LLy(A)
0 0 0

{1/3} 0.4 0.6
{2/3} 0.4 0.6

o 1 |

23 THE.-SECOND POSTULATE OF PLAUSIBILITY

The first postulate of plausibility concerns the plausibilities of subsets of
O that consist of single elemeats. As a ficst step beyond the ficst postulate,
it is natural to consider subscts of © that consist of two elements.

Consider a doublcton {0, 0,}e2°, and suppose we have a single ob-
servation xeX. If PL, werc consonant, we would have

PL ({0}, 0,}) = f_”“x PL.({0.}).

But if PL_ were dissonant with respect to the pair 0y, 0., we would have

(12) PL, ({0, 0,}) > max PL_({0:}).
I=1,2
When ought (12) to occur? In other words, wher is the evidence x disso-
nant with respeet to 9, 0,?
We may assume that Py, (x)2Pg,(x), so that PL.({0,})=PL.({0,}) by
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the first postulate. Our question then becomes whether we ought to have

(l3) PL:({GD 02})>PLX({01})

even though PL_({6,})=PL.({0,}). In other words, when ought the addi-
tion of 0, to the hypothesis {0,} cause an increase in plauvsibility even
though P,, attributes no greater objective probability to the actual ob-
servation than Py ?

This is a difficult question. On the whole, of course, the evidence x
points towards 0, more strongly than towards 0,. (Or equally strongly if
Py (x)=P,,(x).) Butif some aspect of the evidence x points more towards
0, than towards 0;, we will have an example of dissonance, and (13)
should hold.

Without answering definitely the question of when (13) should hold,
we can specify one situation where nearly everyone would agree that it
should not hold. Suppose that for every yeX,

Pa. (x) Po, (X)
W ) PG)

This is stronger than saying that P, attributes a greater probability to x
than P, does. For it says that for every other possible outcome y, Py,
attributes a greater probability to x relative to y than Py, docs. If (14) holds,
then it would secem that cvery aspect of the evidence points towards 0,
more strongly than towards 0,. Certainly, the comparison of the actual
outcome with any other possible outcome favors 6, over 0,. Hence we
may conclude that (13) should not hold if (14) holds.

We have arrived at the second postulate. As in the case of the first
postulate, 1 will state it formally for the case where the specification is
complete:

(1) Supposc {P;}oce is 1 complete statistical specification on the dis-

crete space X, and supposc PL,:2°—[0, 1] is the plausibility
function based on the single obscervation xe X, Then

PL.({0y, 0;}) = PL:({Ox})

whenever ¢, and 0, are elements of © and
Pu() Pa(9)
Po, (¥) . Po,(¥)

for all ye .
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This is the second posiulate of plausibility.
In the presence of the fur ther postulates adopted in §4, this postulate
implics the following more general statement:
(I1") Suppose {Py}ycp is a statistical specification on a discrete space
X, and suppose PL,: 22 — [0, 1] is the plausibility function based
on the obsarvations x=(xy,..., x,). Then

PL({0,, 05}) = PL.({6,})

whenever 8, and 0, are elements of @ and

Py, (xy) ... Po, (Xn)> PO;(xl)"'PO;,(xn)
Py, (y1) - Po, (¥a) - Ly, (1) -+ Po, (¥a)

for all sequences y=(yy,..., y,) of elements of X.

2.3.1. The Binomial: One Observation

Consider the complete binomial specification: X={Heads, Tails},
©=[0, 1], and P,(Heads)=0, Py(Tails)=1~0. And suppose we have a
single observation x=Heads. Then (14) becomes
Py, (Heads) . Pon (Heads)
PO( (_}’) - Pﬂz (y)

for all ye X. But this means that

0 0 0
&2_2 and __12_._2__.,
9.~ 0, (-0, 1-0,

and this is cquivalent to 0, > 0,. Hence the second postulate says in this
case that
PLHcmh({olv 02}) = PLllcndS({ol})

whenever 6, 2 0,.
Hence
PLHcadt({ob 92}) = ,maxz PLIItada ({o(})
= 1:

for all pairs 0,, 0,; there is no pair 0, 0, for which dissonance is ex-
hibited. This reficcts the consonant nature of the evidence consisting of
a single outcome of heads. Such evidence points unambiguousty towards
the alcatory laws that attribute greater probability to heads.
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Notice in particular that

PLycgas ({1: 0}) = -pLucm({l})

for all 0€[0, t]; there is no aleatory law whose addition will increase the
plausibility of the simple hypothesis that attributes probability one to
heads.

2.3.2. The Binomial: Many Observations
While discussing the first postufate, T consideced an example of six
observations X=(x, ..., X;) from the restricted binomial specification
O ={1/3,2/3}. Assuming that x consisted of three heads and three tails,
I obtammed the dissonant plausibility function in Table VIIL Is the
dissonance in that plauvsibility function permitted by (11')?

The plausibility function PL_ in Table VIII is dissonant because

PL({1/3,2/3}) > PL,({1/3}) = PL,({2/3)).
This is permitted by our seccond postulate only if

_-_’)113(‘\'1)‘--/)1/3 (xb) Pas (xl)"'PZIJ(xﬁ)
P (}’1)-~~ Pu)(}’e) Pz/:(}’l)---lel()’ﬁ)

holds for some y. But (15) will indeed hold if we choose a y consisting,
say, of six tails. For then {15) will become

(1)’ 2R)" _ (23) (113)°
(@) "

(15)

or (1/2)* <27, Hence the second postulate does allow the dissonance in
this example. This can be explained by pointing out that while {2/3}
attributes no greater likelihood to the overall observations x than {1/3}
does, it does attribute a greater likelihood to x relative to a sequence y
containing even more tails.

2.3.3. A Trinomial Example

Set X={Azurc, Brown, Crimson}, and let {Py},.o be the complete
slatistical specification on X, This spccification is most casily described
by setting.

O={(a,b,c)|a=0,b=0cz0a+b+c=1)}
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and setting P,(Azurey=a, P, (Brown)=0, and P,(Crimson)=c when
C=(a, b, c).

In order to think about the sccond posiuliite, consider the foltowing
clements of ©:

0, = (3/4, 1/3, 1/8) 04 = (12, 1/6, 1/3)
0, =(1/2, 1/4, 1/4) 0y =(1/4,0,3/4)
05=(1,0,0)

Now suppose we have a single observation x=Azure. Then what does
the second postulate tell us about the plausibilitics of the various double-
tons that can be formed from these five elements of @?

Well, the second postulate will require that

PLAzurc({Oi' 01}) = PLAzurc({Di})
whenever

£, (Azure) - Py, (Azure)
Pﬂ.‘ (y) Pa; (y)

forall ye X: i.c.; whenever

Py, (Azure) P, (Azure)
P, (Brown) ~ Py, (Brown)

Py, (Azure) ., P, (Azurc)

and - > .
Py (Crimson) = P, (Crimson)

This means that the second postulate will require

PLAzur:({oll 02}) = PLAzurc({ol}) v
PLAzurc({Oh 93}) = PLAzurc({Ol}) ’

and
PLAzurc({OS» 0:}) = PLAzurc({Os})

fori=1,..., 4. But it will nof require

PLAzu(c({02) 03}) ='PLAluru({02})l
nor

PLAzuu:({ol» 04}) =PL.A\zu(r({Ol})'

Tn other werds, it wilt allow

(16) 'PLAzurC({ob OJ}) > PL,\zun:({oZ})
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andd

{17) P-LAzur:({Gh 64}) > PLAl,uu({o.l})’

cven thouBh PLAzur:({03})=PLA:\":({02}) and PLAzurc({04})<
<PLAzurc({0[})‘

Notice that if (16) and (17) actually hold then this will be an example
in which dissonance is displayed even though there is but a single ob-
servation. This may scem strange, for the observation x=Azure might
be thought to point unambiguously towards those aleatory laws which
attribute the greater probability to Azure. Actually, it does point towards
the aleatory laws attributing a greater probability to Azure, but this does
not define an unambiguous ‘direction’. In comparing 0, and 0,, for
example, we see that 0, attributes the greater likelihood to Azure relative
to Brown, while 6, attributes the greater likelibood to Azure relative to
Crimson.

2.3.4. The Geometry of the Trinomial Specification

The application of the second postulate to tlie trinomial specification
can be understood more casily if the sct @ is represented by an equilateral
triangle.

Fig. 7.

As we sce in Figure 7, any point 0 of an cquilateral triangle divides the
triangle into three smaller triangles o, f#, and y, cach based on one of the
three sides of the equilateral triangle. Let us suppose that the total arca
of the triangle is cqual to onc, and denote the arcas of the triangles «, 8
and y by @, b and ¢, respectively. Then a+b+c¢=1. The triplet (a, b, )
is ¢lled the baryeentric coordinates of the point 0. As the position of
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0 varices, the areas ¢, b and ¢ will vary; and it is evident that by placing 0
in the right place they can be made to assume any triplet of non-
negative values adding to one. Hence the points ¢ of the triangle are in a
one-to-one correspondence with the elements 0 of ©.

Now consider a ray emanating from vertex 3, as in Figure §, and
consider any two points 0, =(ay, by, ¢;) and 8,=(a,, b,, ;) on that ray,
It is easily seen that a, /b, =a,/b,. In other words, the ratio a/b is constant
for points on a given ray from vertex 3. Furthermore, that ratio increases
as the ray is raised; in Figure 9, for example, the ratjo is higher for 6,
than for 0,.

1 1

. . a
o constant -g Line of higher 3

Line of lowerg

2 3 2 ~ 3
Fig. 8. Fig. 9.

Fig. 10.

Similarly, rays from vertex 2 are lines of constant afe; the higher the
ray the highcr that constant,

Now as we saw above, the plausibility function PL,,,,. is required by
the second postulate 1o obey PLy,u ({0, 0,})=PLy,,.({0,}) whenever
both

a, _ a, a, a,

18 -2z -- and -~z -5,
( ) b, b, € €2
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where 0, =(ay, by, ¢,) and 0,=(a,, b,, c;). And it is casy to sec ¢hat (18)
holds only when (4, is inside e triangle 0,23. If 0, is outside that
(riangle, then the sccond postulate will permit PL, .. ({0, 05})>

>PLA¢urc({ol})‘
3. BeLltr

Our theory of statistical evidence seems promising, but it has reached an
impassc. [ have adduced scveral general rules for support functions,
and 1 have added two postulates that are specific to statistical evidence.
Yet all of these conditions together fuil to determine a unique real
function S :2°— [0, 1] that can be regarded as measuring the degress
to which the statistical cvidence x suppor(s the different statistical
hypotheses in 2°. We cvidently need yet further conditions on the
function S.

I proposc Lo scarch for some of these conditions tn a theory of partial
betief. I am going to adduce general rules governing a function Bel:
29 - [0, 1] that purports to measure a person's degicees of belief in the
various propositions in 2%, and then I am going to requirc fhat the
support functions S, ilso obcy these rules. As we will sec in §4, this
requirement will still fail to determine the support functions S, uniquely,
but it will considerably narrow the range of possibilitics.

Why do T want to cross our theory of evidence with a theory of partial
belief? Since the degree of support for a proposition ought to determine
one's degree of beliel in it, I might excuse myself by claiming that degeces
of support should obey rules applicable to degrecs of belief, But this
would be at most a partial justification; for the fact that the degree of
support ought to determine one’s degree of belief hardly implies that the
first should obey any rule applicable to the second. The rcal reason for
turning Lo a theory of partial belicf lies in the differcnces rather than in
the similarities between the notions of support and belief. The fact is that
the subjeetive notion of pactial belicf has a stronger structure than the
fogical notion of partial support, so that it is possible to adduce rulcs for
degrees of beiiel that cannot be adduccd so naturally for dezrecs of
support. Indeed, it is natural to think not only that partial belief is related
to complete belicf as a part is to a whole, but also that the partial beliefs
accorded (o different propositions correspond to parts of the same
whole. This amounts to reifying ‘our total belicf” — to thinking of it as a
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fixed snbstance that can be divided up in various ways. [t is not nearly so
natural to reify ‘the total support’ in this way.

This scction oullines a theory based on the notion thal we have a
czriain degree of belief in a proposition when we have committed to it
that proportion of our total belief - or if you prefer, that propoction of
our total ‘probability’. A fuller account of this theory can be found in my
Allocations of Probability: A Theory of Partial Belief.

3.1. BELJEF FUNCTIONS

A function Bel: 22— [0, 1] purporling to give a person’s degrecs of
belief is called a belief function if it obeys these three axioms:

(1) Bel(9) = 0.

(n Bel (@) = 1.

(1) Bel(4, U...uA,) 2 T Bel(4,) — T Bel(4, 0 4,) +
. i i</

+ =+ (1) Bl (A~ 0 A
whenever
Ay, .., 4,25

These axtoms imply all the rules for support funuwions listed in Table [
Henee any beliel function will formally qualify as a support function.
On the other hand, these axioms are more restrictive than the rules for
support functions, and hence not every function satisfying those rules
necessarily qualifies as a belief function. Nevertheless, afl the support
functions for the case of two alternatives — i.e., all the support functions
described in Table V - do qualify as belief functions. Other suppoct
functions that qualify as belicf functions include the vacuous ones, all
consonant ones, and many dissonant ones.

3.1.1. Deriving the Axioms

The axioms for belief functions follow naturally from the idea that
Bel(4), as our degree of belief in A, is the measure of that portion of
our belief that is committed to A.

Axioms (1) and (IJ) are unexceptionable; we already adduced them
fer support functions. But here ihey acquire a stronger intuitive meanine,
The statement that Bel(@)=0 reflects the fact that none of our Geiict
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cught te be commilted to the impossible proposition . And the statement
thiar Bel(@)=1 reflects the fact that all cf our belief ought to be con-
mitted to the sure proposition © and the convention that the measure
of our total belief is equal to one.

Axiom (I11) looks a little more formidable. To begin with, it is really
an infinitc number of axioms, one for each natural number n. Before
asking you to swallow it whole, I will ask you to consider some of its
simpler consequences. For n=2, the axiom becomes

(19)  Bel(d, U A;) > Bel(4,) + Bel (4;) — Bel(4, A A4;)

for all pairs 4, A, of subsets of ®, Now when 4, and A, arc disjoint,
or Ay A, =0, Bet{A4, n A,)=0. So one conscquence of (19) is:

(20) If A,nA; =0, then Bel(4,uU4d,)> Bel(A4,)+ Bel(4,).

Now supposc Ac B and set A,=B— A, Then B=AU A, and AnA,=0.
Hence (20) will give Bel(B)=B(4uUA,)=Bel(A4)+Bel(4,). And hence
B:A(8)>Bel(4). So one consequence of (20) is our familiar rule of
monotonicity:

(21 If AcB, then Bel(A)< Bel(B).

Let us develop the intuitive arguments for (19), (20), and (21), beginning
with (21) and working backwards.

1 would argue for (21) as follows: Since A< B, the proposition 4
implies the proposition B. Hence any belief I commit to 4 I must also
commit to B; and the total portion I comnmit to B will therefore include
the total portion I commit to 4. And hence Bel(B), the measure of the
total portion of belief committed to B, will be at least as great as Bel(A),
the measure of the total portion of belief committed to A.

The delense of (20) is similar, First we note that any belief committed
10 A, must also be committed to A4, U A,, since Ajc A4, U A,. Similarly,
any belief committed to A, must also be committed 1o 4, U A4,. And
there can be no overlap between the belicf committed to A4, and the
belicf commilted to A,; the relation A; N A, =0 means that as proposi-
tions A, and A4, are incompatible, and a single portion of belicf can
hurdly be committed to both of two incompatible propositions. Hence
the total beliel committed to 4, U A, will include the two disjoint portions
that arc committed to A, and A,, respectively; and its measure will be
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at least as great as the sum of the measurcs of these two disjoint portions.

When the two propositions 4, and 4, are compatible (i.e., 4, " 4, #0),
there may be some overlap between the portion of belief committed to
A, and the portion of belief. committed to A,. In fact, the overlap — or
the belief that is committed both to A, and to A, — will consist précisely
of the belief that is committed to A4, N A,. This fact provides the basis
for (19). For it means that the quantity Bel(4,)+ Bel(A,)~Bel (4, N 4;)
measures the total belief that is committed either to A,, to 4, or to both;
and all that belief must be included in the total belief committed to
AU A,, which is measured by Bel(4; U 4,).

The versions to Axiom (IIT) for other values of n can be justified by
similar, but progressively more convoluted arguments.

3.1.2. Allocations of Probability

The axioms for belief functions arc based on an intuitive picture wherein
various portions of our belief, or various of our probability masses, are
committed to various propositions. This intuitive picture can be made
more precise by the notion of an allocation of probability.

The first siep in formalizing the intuitive picture is the assumption that
the sct M of probability masses has the mathematical structurc of a
complete Boolean algebra. Let me outline roughly what this means.
First we suppose that for every pair M,, M, of probability masses
in M there is another probability mass M, v M, in M, which is
their ‘union’, and yet another, M, A M,, which is their overlap or
‘intersection’. Of course, M, and M, may be disjoint, in which case the
probability mass M; A M, will be null — there will be no probability in it.
We can use the symbol A to represent the null probability mass and the
symbol ¥ to represent the probability mass consisting of all our prob-
ability. Besides unions and intersections for pairs we also require unions
and intersections for larger collections of probability masses. For any
collection {M,} of clements of M we require the existence of a union

-V M, and an intersection A M,. And for each MeM we require the

existence of a probability mass in M that consists precisely of all the
probabilily not in M. This probability mass is called the complement of M
and is denoted M; M and A always obcy MAAM=A and Mv Al=V,
Finally, we write M, <M, to indicate that all the probability in M, is
also in AM,.
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The sccond step is to assume there is a mieasure on M - a tunction
ji: M= [0, 1] such that (A7) is the measure of the probability mass A/l
This function must ovey the following rutes:

(1) pu(A)=0.
(i1) If M#A4, then p(M)>0.
(iit) u(Vy=1.

(v) It {M,} isdisjoint, then u(V M,)=Y u(M,).

Notice that {iv) applics to both finite and infinite collections; the measurcs
of disjoint probabiltty masses always add.
Finally, we specify a mapping p: 2% - M whiclt satisfics three rules:

(N p)=4.
(i) Oy =V.
(iii) p(Ar N Ay =p(A) A p(4,) forall A, A,€2°.

This function is called the allocation of probabifity: for each Ae2?, p(4)
15 the total probability mass commiltted to A,

The allocation p: 2% - M does two things. Tt tells which probability
masscs are comntitted to which proposttions, and it tells the depree of
belicf in each proposition. In order to tell whether a probability mass M
is committed to a proposition 4, we need only check whether M is in-
cluded in the total probability commiticd to A; i.e., whethee A< p(A).
In order to find the degree of belicl in a proposition 4, we need only find
the measure of p(A). 1o other words, Bel(A4)=pu(p(4)) for all 4€2°, or
Bel=yji0p.

As it turns out, this formalization corresponds exactly to the structure
of belief functions. Tn other words, whenever p: 2° - M is an allocation
of probability, the function pep is a belief function on 2% Aud any
belicf function on 29 can be represented in this way by some coniplote
Boolean algebra ™M, some measure y on M, and some allocation
p:22-> M.

3.1.3. Upper Probabilities

Since the degree of belief Bel(A) corresponds to the degree of support
for A, it is natural to think of the quantity 1— Bel(A) as corresponding to
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the degree of plausibility of A. In other words, | — Bel(A) should measurs
the degree to which oae finds A to be plausible, or the extentl to which
one regards A as plausible. This interpretation fits Lthe intuitive picture
of probability masscs, for since Bel(A) measurcs the probability mass
commitied to A4, 1 —Bel(4) mecasures the portion of our probability
that is not committed to A, i.c., is not committed against A.

Following A. P. Dempster, 1 will call the quantity | —Bel({A) the upper
probability of 4, and denote it by P*(A4). And I will call a function
P*:2°10, 1] an upper probability function if and only if the function
Rel: 28— [0, 1] defined by Bel(A)=1—P*(A) s a belicf function.

Notice that alongside the logical vocabulary of support, we now huave
2 subjective vocabulary. The [ull correspondence between the two
vocabularies is shown in Table [X.

TABLE IX

The two vocabularics

Subjective Logical

Dcgree of Belicf in A. Bal(A) Degree of Support for A. S(A)
Degree of Doubt for A.  Bel(A) Degree of Dubicty of /L. S04
Upper Probability of 4. 1 —Bel(A) Degree of Plausibility of 4. | —S(A)

3.2. CONDENSABILITY

In §1.4, I argued that a plausibility function based on empirical evidence
should be condensable. The same should evidently apply to an upper
probability {unction P*:2°-[0, 1] based on empirical evidence; it
ought to obey

P*(4) =sup {P*(B)| B< A; Bis finite}

for all 4€2°.
Remarkably enough, an upper probability functicn £ * will obey this
rule if and only if the corresponding allocation p: 2% — M obeys

P(m Ay) =A /)(Av)

for all collections {A,} of elcments of 29. In other words, the requircment
of condensability corresponds to the requirement thet p should prescrve
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all intersections - infinite as well as finite. (Any allocation preserves all
finite intersections.)

The requirement that p should preserve all intersections scems to be
natural and oecessary if p is to faithfully represent the intuitive picture
underlying the axioms for belief functions. For it corresponds to the
intuition that a probability mass committed to each of a collection {4,}
of propositions should also be committed to their logical conjunction
() A,. Hence condensability emerges as a condition both appropriate to
empirical evidence and natural to our notion of partial belicf.

3.2.1. A Geomelric Intuition

A condensable altocation lends itself to a very vivid geometric intuition.
Think of © as a geometric set of points, and think of our probability as
being spread over the set @, But instead of requiring that it be distributed
in a fixed way, as in the picture associated with a ‘distribution of prob-
ability®, let us permit it a limited freedom of movement. Indeed, each
time that a probability mass is ‘committed’ to a set A, let us say that it is
‘constrained’ to 4, meaning that even though it may enjoy some {recdom
of movement, none of it can manage to escape from A.

This picture fits our rules for the commitment of probability masses
to propositions perfectly. For example, a probability mass that is con-
strained to stay within a subset A4 is obviously constrained to stay within
any subset B such that A<B. And any probability mass that is con-
strained to stay within each of a collection {A,}, ., of subsets must stay
within () A4,.

Furthermore, the belief function and the upper probability function
can be inlcrpreted very simply in terms of this picture: the degree of
belief in A is the meusure of all the probabhility that cannot get out of 4,
while A’s upper probability is the mcasurce of all the probability that can
getinto A.

The word ‘condensability’ itself acquires a vivid meaning in this
picture, The fact is that no mafter how difTuscly the probability that can
get into a set A4 might spread itself out over A, it is always possible to
‘condense’ it into a (possibly countably infinite) number of discrete
picces, each of which can get into some singleton {0}, where OeA.

A simple cxample will show how this picture can help develop our
intuition for belicl functions. Consider IFigure 11, where o subset Ac©
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is shown with disjoint subsets 4, and A4, of A4 such that 4, uA4,=A4.
When we think of our probability mass as being semi-mobile over 0,
we can eacily see how it might happen that Bel(4,)=0, Bel(A,)=0 and
yet Bel(A4; UA,;)>0. And more generally, we can see how there might
often be some probability that is constrained neither to 4, nor to 4,
yet is constrained to 4, U 4,. Indeed, this will happen whenever a prob-
ability mass M is free to move back and forth from A4, to A, but is not
free to move outside of A4, U A, =A.

Fig. 11.

3.2.2. Comnionality Numbers

Consider a finite collection M,,..., M, of probability masses. If one
knows the measure of each of the M|, and also how much overlap there
is between each pair, among cach triplet, etc., then one can deduce the
measure of M, v ... v M, by the formula

B(Myv..v Mn)‘_')‘:l‘(Ml)"'%.“(Ml A M;) +
(22) » +— (1) u(M A AM,).

A similar formula enables one to obtain the measure of an intersection
from the measures of unions:

(23) p{My AA M) =Z‘:;1(M,) - ,Z, p(M;v M)+
=t (=D p(My vV M),

These two relations play an tmportant role in the theory of condensable
allocations,
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mass that can get into the singleton {0}, and consider (he fntuitive
significance of unions and interscctions of the probability masses £(0).
The intvitive significance of 2 union is obvious; {(0,)v ... v {(0,) is the '
total probability mass that can get into the finite set {0,,..., 0,}. The
intuitive significance of an intersection is a bit more subtle, though,
L(0) A ... AL{0,) is the total probability mass that can get to each and
every one of the points 0y, ..., 0, - i.c., the total probability mass that
has complcte frecdom of movement within the set (0,...,0,}. Tt is
convenient to speak of £(0))A ... AL(0,) as the probability mass that
is ‘common’ to the points 0y, ..., 0,.

Now st(£(0)), being the measure of the tolal probability that can get
into {0}, is simply P*({0}). Similarly,

P¥({0y, ..., 0,))=n(L(0) v ... v [(0,)).

The quantitics #({(0)A ... A{(0,)), on the other hand, are new to us.
[ will denote

({04, -, 0,)) = 1 (L (0) A ... A L(0,)),

and I will call Q({0,,..., 0,}) the conmonality number for {0,,..., 0,}.
The rclations (22) and (23) provide us, of course, with the connections
between upper probabilities and commonality numbers:

PH({0, - 0D =T Q0N = T 0((0,0) + —+
(= rrtodo, .0,

({01, 0 =2 PT({0]) ~ L U0 O] + — ot
+ (= 1)U PH ({0, 0.)).

Or, in a notation that is sometimes more convenient:

() =T (=0T (T
and e '
Q(A) — Z (_ 1)[+c:rdTP$ (T)

TeA
T#0

Returning to our geometric picture, let £(0) denote the total probability i
i
|

and

for al! finitc subscts A of @.
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Formula (24) means in particular that the upper probabilities of finile
subsets are determined by the commonality numbers. In the condensable
case this implies that the entire upper probabilily function is determined
by the commonality numbers. In fact a condensable upper probability
function wilf obey

PS(A)= sup P*(B),

Bca
B linite
or )
PH(A)= sup T (= 1D)F=TQ(T)
NcAd Te<n
Ilinite T+0
for all A€2°.

. So commonulity numbers provide us with yet another way of specilying
acondensable belicl function. As it turns out, they provide the casiest wiy
to specify many important condensable belict functions. And they also
provide the simplest way of cxpressing Dempster’s rule of combinaiion.

3.3, DEMPSTER'S RULE OF COMBINATION

In §1.2, [ illustrated Lambert's rule for combining support functions
over two alternatives, and [ mentioned a more gencral rule, duc to
A. P. Dempster, which applics when @ is larger provided the support
[unctions satisfy certain auxiliary conditions. As it turns out, these
auxiliary conditions are preciscly the rules for condensable belief functions.

The felicitousness of thicse rules is hardly surprising. For the crucial
step i applying Lambert’s rule is the represcatation of cach support
function by an imaginary mass, somec of which is committed to cach
alternative. And as we have seen, the rules for condensable belief functions
are precisely the rules that make an effective representation by imaginary
‘probability masses' possible.

The actual derivation of Dempster’s rule is rather coniplicated. After
establishing the existence of a ‘Boolean algebra of probubility masses’
representing each belief fuaction, cne must ‘orlhvgonally conibine’ the
two Boolean algebras of probability masscs in sonie way analogous to
the orthogonal combication of the two line scgments in § 1.2, One must
then determine which of the resulting probability masses arc committed
to which elements of 2%, and which are committed contradiclorily and
hence cannot be counted.

Let me describe the result that finally emierges from this process.



{08 GLINN SHAPER

Suppose one combines the two condensablc belief functiqns .Bcl{:
295 [0, 17 and Bel,: 2° - [0, 17. Then the result of the combination 1§
. condensabls belief function Bel: 22— [0, 11 given by

A) —c(0)
(29) Bcl(A)=c(Tz—c(%)—,

wliere

c(4)=sup {}: Bel, (4,) Bel, (B) —
— Y Bel, (A, n A4;) Bely (B,nB)+—...

t<J
+ (=1 Bel (4, 00 A)Bel, (Byn...n B,,)},

the supremum being taken over all ;ofl.lcctionhs .A,,..., A, and By,..., B,
® such that A4,n B,c A4 for each .
Of;';\:;n(‘::]t; 2:.326 iiuwhich twc‘» condensable bclielf functions Be],'and thl;L
cannot be combined is when they flatly contradict each other —1.e., wheL;
there exists 4628 such that Bel((4)=1 and Bclz(/f?=1. When suc :
contradiction occurs, ¢(@)=1, and (25) cannot be applied. As longas slx‘lcd
a contradiction does not occur, however, c(@)<1and (25) can be applied.
The derivation of the commonality numbers for Bel from the commtor;}
ality numbers for Bel, and Bel, is quite simple; extfcpt f(?r a constan !
renormalization, one simply multiplies. More precisely, if the cox:mand
ality numbers for Bely, Bel, and Bel are denoted by 0,(4), 1(4)

0(A), respectively, then 4
Q(A) = k0, (4) Q2(4) '
for all A€29, where
1
= 1——Jc(0) |
The constant k is also determined by the requirement that
Pr(@)= sup 3 (= 1)o7 Q(T) =

AcO TcA
Afinlie T#6

—k sup Y (=DUT (M) (M) =1

Aca Tc4
Aflnite T+O0

Kk

The actual computation of k is often quite dificull.
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Although I have presented (25) as a rule for combining condensable
belizf functions, it can sometimes be applied in the noncondensable case.
Unfortunately, its general usefulness in the noncondensable case is
questionable. It cannot always be applicd, for the lack of condensability
will sometimes allow ¢(@) =1 even when there is no apparent contradiction.
And even when it can be applied, the interpretation of the results may be
problematic.

3.3.1. The Murder of Mr Green

A simple example will do more to convey the nature of Dempster’s rule
than the preceding formulae,

Mr Green has been murdered, and we are certain that the murder was
committed by either Dr Black, Dr Gray, or Mr White. Besides the
evidence that allows us to narrow the field to these three suspects, we
have evidence based on the mode of the murder, and evidence based on
motives for the murder.

Mr Green was poisoned by a rare chemical. This fact provides
Mr White’s strongest defense, for there seems to have been little way he
could have obtained the chemical. But as physicians, both Dr Black and
Dr Gray had access to the chemical. Of these two, Dr Black is parlic-
ularly implicated, for chemicals seem to be tightly controlled at the
hospital wherc Dr Gray works. ‘

When we consider motives, we obtain quite a different picture. There
15 no apparent motive that can be ascribed to Dr Black. On the other
hand, both Dr Gray and Mr White are aileged to have been Mrs Green’s
lovers, and hence might have plotted with Mrs Green to inherit Mr
Green’s fortunc. The evidence is weaker in the case of Dr Gray, but
Mrs Green’s involvement with Mr White was practically public knowledge.

In order to apply our theory to this example, we must set @ = {Black,
Gray, White} and postulate support functions S; and S, based on the
two separate sources of evidence.

Committed to Committed to : Uncommilted

{Bluck] {Black,Gray} f

b—— } 2

0 114, 314 1
Fig. t2.
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The support function Sy, deri-vcd ['rom the modi o? tlLl: T;;ig)“tl;
represeated in Figure 12, According to this figure, 3/4 0 0\r -;mt oy
is committed to the cuitt of one of the doctors, ant'j Pm_'tl of t
mitted more specifically to the auitt of Dr Black. Gxplicitly,

s, ({Rlack)) = 1f¢  Sy((Black, Gray}) = 34

s, ({Gray}) =0 s, ({Black, Whiic}) = 1/4

S, ({White}) =0 S, ({Gray, White}) = 0.
And hence |

PE, ({Gray, White}) = 3)4  PL,({White}) = /4

PL, ({Black, White}) = 1 PL, ({Gray}) = 3/4

L, ({Black, Gray}) = | PL, ({Black}) =

The support function Sy, derived from the consideration c:f mOtI'Vf:s‘,
i 1 ] 1 ;ible motives,

is simi c Fizure 13. 1n view of their posst

is similarly represented in Fig Iy S i

we have commited 2/3 of our probability to (he proposition that cither

i itted
itted to Commiltted to Uncornmi
Com{ﬁ\/:llhite} {Gray,White] f
o ., ‘
 — ] !
0 113 213
Fig. 13.

Dr Gray or Mr White {s the murderer. One-half of t_his, or ”3. of {)ur
probability, 1s committed more specifically to Mr White, whose involve-

ment with Mrs Green is certain. Explicitly,

= Gray}) =0

S, ({Black}) =0 S, ({Black, Gra

52 ((gGray}) =0 S, ({Black, White}) = 1/3
2 te) =

Sz({White}) =1/3 S, ({Gray, White}) =2/3.

And hence N
PL,({Gray, White}) = | PL,({White}) =21..‘
P L, ({Black, White}) = PL,({Gray}) = {/;3
pL,({Black, Gray}) = 2/3 PL,({Black}) = 1/3.

The combination of Sy and S5, as illustratcld in Figure 14, 1s qtfln:c
analogous tc the application of Lambert’s rule in §1.2. The only novelty
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1
2| [Black}| {Black,Gray| 2

2
3

'{Groy,l

{Gray,White) {Gray]} White
1
3

(White} {white)

0 {Black] L {Black Gray} + 2 1

Fig. 14.

occurs in assigning the central rectangle in Figure 4. .S, commits that
rectangle to the proposition that either Black or Gray is the murderer,
while S, commils it to the proposition that either Gray or Whilc is the
murderer; so together they commit it to the conjunction of these two
propositions — the proposition that Gray ss the murderer.

Thesupport function Sbased on this combined cvidence is thus asfollows

S(Black) = 1/8 S(Black, Gray) = 5/8
S{Gray) =1/4 S (Black, White) = 1/4
S(White) = /8 S{Gray, White) = [/2.

And the corresponding plausibility function is given by

PL(Gray, White) = 7/8 PL(White) = 3/8
PL(Black, White) = 3/4  PL(Gray) = 3/4
PL(Black, Gray) = 7,8 PL(Black) =1/2.

Notice that Dr Gray is the most seriously iinplicated suspect on the
basis of the combined evidence, even thouzh neither of the scparate
scurees o cvidence gave positive stpport (0 his guilt. 1t is the combina-
tion of means and motive that points strongly in his direction.

Notice that both PL, and PL, atc consonant, while PL is dissonant,
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3.3.2. The Comnbination of Evidence

Dempster’s rule of combination is best understood as a rule for comn-
bining separate bodies of evidence. For reasons that are now evident,
I have presented it as a rule for combining ‘belief functions’, but I do
not want to suggast that the rule provides a method for ‘pooling beliefs’.
Evidence can be pooled; beliefs cannot be.

If two individuals’ belicf functions are based on separate sources of
evidence, then those individuals can pool their evidence by using Demp-
ster’s rule to combine their belief functions. But if the two belief functions
are based even partially on the same evidence, then Dempster’s rule is
inappropriate and will give misleading results. For it always treats the
separate belief functions it combines as if they were based on separate
sources of evidence.

Suppose, for example, that @={6,, 0,} and that the two individuals
have exactly the same belief function, namely Bely: 28— [0, 1], where
Bely({6,})=2/10 and Bely({0,})=1/10. Now i{ we combine Bel, with
1self we will obtain a belief function that indicates, roughly speaking,
twice as much evidence in both directions as Bel, indicates. Indeed, the
belicf function Bel obtained by combining Bel, with itsell is given by
Bel({0,})=32% and Bcl({0,})=4+¢. Clearly, the two individuals should
retain the beliel function Bel, rather than adopt Bel.

3.4, CONDITIONING BELIEF FUNCTIONS
Suppose we begin with a belief function Bel: 22 — [0, 1] and then obtain
new evidence showing that the true value of 0 is not only in @ but also
in some proper subset @, of ©. Can we use Dempster’s rule of combina-
tion to combine this ncw knowledge with the evidence underlying Bet?
We can, provided that we can represent the new evidence by a belief
function. But that can be done quite simply; the knowlcdge that the truc
value of D isin O, is conveyed by the belicf function Bely: 29 — [0, 1], where

Belo (A) = {1 if @4

0 otherwise
So we should use Dempster’s rule to combine Bel, and Bel.
This combination results in the belief function Bel(-| @), given by
Bel(A L B,) — Bel(8,)
1= Bel(Gy)

(26)  Bel(4|6,) =

P ————
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for alt 4;29. A more succinct formula can be given in terms of the upper
probability functions. If we denote the upper probability functions

corresponding to Bel and Bel(+| @,) by £+ and P+ € '
then (26) becomes Cloo® (100 respectively
P*(Ane6
P*(A]0,) = \(* o)
P*(00)
for alt £4€2°.

This rule for obtaining Bel(-| @) from Bel is called Dempster’s rule

of conditioning, and the symbols ‘Bel(4 | ©p)’ m
. . ’ a b ‘
belief in 4, given 0, l ° b ead the degree of

Since this rule is a special case of Dempster's rule of combination, it
can also be expressed in terms of the commonality members Indc::d
if the commonality numbers for Bel are denoted by Q(4) and ;hosc for'
Bel(-| @) are denoted by Q°(4), then Q(4) and Q°(4) will be related by

. LU p sco
0 (A)= P*(Qo) “ °.
0 otherwise
3.4.1. The Analogy with Bayes' T, heory

’I;he gcnera[lnf)tion of conditioning, and formula (27) in particular, is
strongly reminiscent of Bayes’ theory. That theory explores the possibility

of expressing degrees of belief or su .
ort by . 78 )
obey the rules pport by functions £: 29~ [0, 1] that

(i) @) =0,

(i) PO)=1, _

(isi) ]’(AuB):P(A)+P(B) whenever AN B =@;
gr;du-li;t}lri:;ca::;;sd?:re a rule of confiitioning closely analogous to (27).
(i) éivcn b;olr:]x:%;r’nczzlfo will produce another function obeying
P(An By)

(28) P(A]0,)= 7 (0g)

for all Ae2°,
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Actually, Bayes® theory can be reparded as a special case of our theory
of belief, and (28) cun be regarded as the corresponding special cuse of
(26). For any furiction satisfying (i)}-(iii) will qualify as a belicl function,
and in Lhe case of a belief function P obeying (iii), (26) reduces to (28).
Actually, a belief function obeying (iii) is idcntical with its upper prob-
ability function, so both (26) and (27) reduce to (28).

Students of Bayes’ theory have explained (28) in various ways, but one
of the most appcaling cxplanations is in terms of probability masses.
In these teoms, rule (iii) corresponds to the situation where our prob-
ability, instead of being allowed some (rcedom of movement, is dis-
tributed in a fixed way over @. In such a situation, conditioning on O,
can be thought of as discarding the probability that is distributed over
B, and ‘renormalizing’ the measure of the rest.

We can verify that such a procedure produces (28) by studying Figure
15. Relerring to that figure, we sec that when the probability distributed
over O, is discarded, part of that which was distributed over A wilt be

I

Fig. 15.

included in what is discarded, so that only the probability that was
distributed over 4 @4 will remain. This accounts for the numerator in
(28). The denominator results from the ‘renormalization’. The difficulty
is that when the probability mass over & is discarded, the total remainder
will have a measure of only 1—P(@y)=P (0,). Since we want our
probability to have total measure 1, we must multiply the measures of
all our probability masses by (P (Og)) ™"

3.4.2. The Geometric Argument for (26)

This intuitive argument can be generalized to explain our rule of con-
ditioning. Tndeed, when we condition a belicl functicn Bel: 22 - [0, 1]
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on O, how must we treal our scmi-mobile probability masses? Clearly,
we should eltminate the probability thatl is commilted to @4 and re-
normalize the measure of the remainder. The measure of the probability
thus climinated will be Bel(B,), so the constant of renormalization wil
be (L —Bet(O,)) ™", There is only one further idea that must be introduced :
since our probability is allocated in a semimobile way over @ rather than
being distributed in a fixed way, we musl recognize thal the restriction Lo
O, may further restrict the mobility of some of our probability without
climinaling it entirely. This means that some of our probability that wis
not commiticd to A before may become commiticd to A by the restriction
to O,.

In fact, any probability that was committed to 4 LB, before will now
be commiitted to A, unless it is eliminated. In general, then, the amount
of probability committed to / after conditiontng will be the measure of
the probability previously comunitted to A U O, less the measure of the
probability eliminated, or

Bel (4 U 8,) — Bel(9,).
But of course this must be renormalized, so we oblain

Bel(4 U O,) — Bel(B,)
1- BE](@O)

Bel (A | O,) =

for all A€2°.
4, STATISTICAL SUPPORT

Our present goal is to dcfine statistical support finctions thal obey both
the postulates of plausibility and the rufes for condensable belief Functions.
Tn tiis section, T will present two dificrent methods for doing so. These
two methods arc based on quite dilferent rationales, and produce
different sysiems of support functions.

The first method is based on the assumption that support functions
from single observations should be consonant. This assumption is con-
trary to the opinions 1 expressed ia §2, but it decs not contradict the
pestulates of plausibility. Lo leads to the linear support functions.

The second method is based on a theory of partial betief that cmbrices
aleatory laws. Tt leads to the simplicial support finctions, which ars coth
more inleresting and more dificult to study than the linear gnes.
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In §2, I distinguished betwecn elements of the set @ and the alcatory
ws {P,}gee corresponding to them. Such a distinction serves to en-
hasize that the true value of 0 may have a broader substantive signific-
nce than the aleatory law P, that it associates with the particular
xperiment at hand. In particular, it serves to remind us that two distinct
alues 0, and 0, might have P, = P,. Unfortunately, thougl, the distinc-
ion complicates our notation. In this section, I will dispense with the
listinction and think of each element 6 of © as an alcatory law
): X - [0,1].

In this notation, the postulates of plausibility read as follows:

Suppose O is the complete statistical specification on the discrlete
spacc X, and suppose PLy: 29 [0, 1] is the plausibility function

based on the single observation xeX. Then

(1 PL,({0}) = ¢(x) 0(x), where e(x) depends on x but not on 0.
And

I PL, ({0,, 0,})= PL,({0;}) whenever
() 0, (x)_ 0:(<)

0,(y)” 0:(»)

And the stronger versions of these postulates become: .
Suppose @ is a statistical specification on the discrete space X, and
suppose PL.: 2%~ [0, 1] is the plausibitity function based on the
ohservations x=(xy, ..., x,). Then

for all y.

(1) PL.({0))=¢(x)0(x,)... 0(x,,.), where c{x) depends on x but
not on 0. And

(1) PL.({0,,0,))=PL({0,}) whenever
0y (%) ... 0, (%a) . Dy (x1)... 0, (x.)
0, (31).-61(x) g 0, (r1) - 0, (ya)

for all y, from X.

4.1. THE THREE POSTULATES OF SUPPORT
When I say thal our statistical support functions should obey the rul;s
for condensable belief functions, I mean both that lhcy should qualify
a1s condensuble belief functions and that they should obey Dempster's
rules of combination and conditioning.
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The relevance of Dempster’s rule of combination is obvious. If
x=(xy,..., x,), then the support function S, resulting from the n obscrva-
tions ought to be the same as the support function obtained by combining
the n support functions S, ,..., S, by Dempster's rule of combination.

Dempster’s rule of conditioning is relevant because some statistical
specifications arc subsets of others. Suppose, indeed, that © is the com-
pleie statistical specification on X and we obtain a support function
S,: 2° 10, 1] bascd on the observations x. And suppose that we then
change our minds and want to consider the restricted specification
©,< 0. Then according to our theory of partial belief, we should obtain
our support function on 29° by conditioning S, on ©,.

Notice that Dempster’s rules reduce our problem to that of finding
support functions in the special case of a single obscrvation {rom a
complete specification. It is for this reason that 1 have stated our two
postulates of plausibility, (1) and (II), in tcrms of this special case.

So in addition to (1) and (I}, we now have three postulates of support:

(rm The First Postulate of Support. Suppose @ is the complete
statistical specification on a discrete space X. Then the
support function Sy:2°- [0, 1] based on an observation
x€X must be a condensable belief function.

1v) The Second Postulate of Support. Suppose © is the complete
statistical specification on a discrete space X, and S,..., S,_
are the support functions on 29 based on the observa-
tions Xx,..., x, rcspectively. Then the support function
Sy:2°+- [0, 1] based on ail the observations x=(x,..., x,)
must be the belief function obtaincd by combining S,,,..., S,
by Dempster’s rule of combination.

(V) The Third Postulate of Support. Supposc @ is the complete sta-
tistical specification on a discrete space X, and S,: 2° — [0, 1]
i5 the support f{unction based on the observations
x=(xy,..., X,). Then the support function $2:2% - [0, 1]
based on the observations x and the restricted specification
@, < 6 must be the belief function obtained by conditioning
S, on O, by Dempster’s rule of conditioning.

These are the further postulales that T promised in §2; they allow one to
deduce (1) from (1) and (II') from (11).
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They also allow one to strengthen (1) so as to apply to larger subsets
than doubletons:

(11").  Suppose A<=Dc@, and suppose that for every 0,eB there
cxists 0, e A such that

06 02 ()
0.(») " 02(»)
for all ye X. Then PL,(B)=PL.(A).

In other words, the enlargement of a hypothesis cannot increcuse iis
plausibility as long as for each now simple hypothesis added there 1
already a simple hypothesis present under which the acival observation
has greater likelihood relative to every other possible observation.

4.1.t. The Dissonance of Statistical Evidence

In general, our five postulates do not suffice to completely determine the
support functions S, and S,. They are obeyed, for example, by both the
linear and the simplicial support functions, and as we will see below, these
differ in important respects. But any method of computing support
functions that obeys the five postulates will emphasize the dissonant
nature of statistical evidence.

It is Dempster's rule of combination that is responsible for this
prominence of dissonance. As more and more observations are accumu-
lated, this rule will operate to produce more and more dissonance. And
eventually it will lead to a support function indicating strong evidence
against cach possibility — i.e., against each possible aleatory law. In
other words, the plausibility of every simple hypothesis will decline;
typically, the plausibility of the most plausible simple hypothcsis will
tend to zero as the number of observations grows,

In this respect, the present theory contrasts sharply with some other
methods of assessing statistical evidence, which seem to treat it 2s coa-
sonant. The method of nested confidence regions provides a case in point.
The theory of confidence regions i3, of coursc, an operationzl rather than
an cpistemic theory. But nested confidence regions corcesponding fo
different confidence cocficients are often used informally to summarize
statistical evidence. (Cf. p. 62 of Erich Lehman’s book.) Such a nested
family can sometimes be interpreted as defining a support function: the
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degree of support for a given subsct A of @ will he the largest corihdence
cocflicient such that A conrtains the confidence repion with that cocllicient.
A support function so defined will be consonanl, no matler how con-
icting the evidence may appear to be.

4.1.2, The Binomial Specification

While our five postulates do not uniquely determine the support funclions
S, and S, in general, they do uniquely determine them in the case where
X has only two clements.

Suppose, indeed, that X has two clements and that @ 1s the complete
specification on X. Then it may be deduced from (1) and (1) that PL,
must be given by

PL(4) = 5up0(x)

for all 4228, The plausibility functions for restricted specifications and/or
many obscrvations can be obtained, of course, by combination and
conditiontng; they are the upper probability functions for which A. P.
Dempster gave detailed formuiae in Lis 1966 article.

4.2, THE LINEAR PLAUSIBILITY FUNCTIONS

In §2.1, [ argued that statistical evidence can be dissonant cven when it
consists of only a single observation. It is possible, however, to take the
opposite view and insist that plausibility functions based on a singic
observation should always be consonant. It turns out that this assump-
tion of consonance suflices to completely determine the plausibility
function based on a single obscrvation xe X and a complete specification
© on X. Indeed, that plausibility function will be given by
(29) PL,(A)=sup0O{x)
OcA
for all 4€29, just as in the special case of the binomial specification.
In the case of a restricted specification, @4, we must condition (29),
obtaining
sup0(x)
fNed
(30)  PL.(4)= p 00
0c 0

for all 429, This too will be a consonant plausibility fuaction.
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Using Dempster’s rule of combination, we can also obtain the plausi-
ility functions based on many observations. Hence the assumption of
ciasonaice for single observalions, together with our five postulates,
iclerimines a complete system of plausibility functions. T call them the
inear plausibility functions.

The simplicity of (29) and (30) is a strong point in favor of the lincar
slausibility functions. The linear plausibility functions for multiple
ybservations are somewhat more complicated, but still manageable. This
implicity contrasts with the complexity of the simplicial plausibility
‘unctions, described in §4.3 below. The stmplicial plausibility functions
ire theoretically more attractive than the linear ones, but they present
‘ormidable computational difficulties.

§.2.1. The Contirous Case

Thus lar T have dealt exclusively with aleatory laws on discrete spaces.
tt is possible, however, to define the linear plausibility functions for the
continuous case as well.

A continuous statistical specification on a space X is usually described
with reference to a fixed measure on X; each alcatory law is given by a
density with respect to that measure. In the simplest case, X is the real
line and the reference measure is Lebesque measure., In that case, an
aleatory luw given by a non-negative function 0 such that

jf 0(x)dx=1;

0 is called a probability density, and it is understood to assign probability

fo(x)dx

to any (measurable) subset A4 of the real line.

This 'descriplion makes no reference to any topology on X. On the
other hand, it is commonly and quite correctly argued that continuous
statistical specifications are extremely idealized and should be understood
as limiting cases of discrete specifications. And the notion of approx-

imating a continuous specification by a discrete one can be made in-
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telligible only in the confext of a topology on X and some requircments of
continuity on the densities in the specification.

It Is not clear just what requirements of continuity should be imposed,
but in the case of the real line, we might require each density to be
continuous, with the moduli of continuity for the dificrent densities -
bounded at each point. More precisely, we might say that a sct O, of
funciions on the real line X is a statistical specification on X provided
that

) 8(x)>0 forall xeX and 0eO,.

(ii) f 6(x)=1 forall 0e0,.
(i) For each xe X there exists K< oo such that
[0(x") = 0(x){ <K|x—x'| forall x'eX and 0e0,.

Onc consequence of these requirements is that sup see, 0(x)< o0 for
each xeX. So whenever these requirements are met, (30) can be used to
define the plausibility function PL,: 20— [0, 1] bascd on the observation
x€X. And plausibility functions based one many observations can then
be obtained by combination.

4.3. THC SAMPLICIAL PLAUSIBILITY FUNCTIONS

As I mentioned above, the simplicial support functions can be justified
by a thicory of belicf that embraces alcatory laws. In this section, T will
sketch this theory of belief and then bricfly describe the simplicial
plausibility functions.

4.3:1. Alcatory Laws and Degrees of Belief

The idea of an aleatory law has been intertwined with the idea of degrees
of belief throughout the history of both ideas, but the connection can be
perplexing. For though an aleatory law can always supply us with degrees
of belicf, it is appropriate to adopt those degrees of belief only when we
know the law to hold. And such knowledge is rarely available.

Let me be more precisc. If an experiment has outcomes in X, and we
know 1t is governed by the aleatory law 6: X — [0, 1], then we will
naturally adopt 0(x) as our degree of belicf that the experiment will
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result in xeX. And morz gencrally, we will adopt ), 0(x) as our
deeree ol beliel that the experiment will result in one of possible out-
coines in a subscl ./ of X, Tn other words, we witl adopt the belief function
Bely: 2¥ [0, 1] given by Bely(A)=) raa 0(x). In fact, though, we can
never really be certain that the cxperiment 18 governed by the aleatory
Iaw 0. So the belicf function Bel, is appropriate only conditionally upon
knowledge that we do not arnd cannot have,

This perplexing situation coutd be made intelligible within our Uwory
of belief if we comld somehow represent our knowledge by another belief
function which produces Bel, only when conditioned on the fact that 0
is the true alcatory law governing the experiment. Is this possible?

The belief function Bel, applies to propositions about the outcome of
a forthcoming trial, and we wish to obtain it by conditioning another
belicf function, say Bel, on the proposition that the aleatory law 0 governs
the cxperiment. Hence Bel must apply both to propositioas about the
outcome of the trial and to propositions about what alcatory law goverus
the experiment. And it must also apply to propositions that simulta-
neously assert something about the outcome of the trial and something
about which aleatory law governs the experiment,

We are led, then, to postulate the existence of a belief function
Bel: 29 ¥ - [0, 1], where O is the coliection of all possible aleatory laws
on X, © % X is the Cartesian product of @ and X, and 4e2®* ¥ js taken
to be the proposition that the pair (0, x) is in A= © x X, where 0 is the
true aleatory Jaw governing Lhe experiment and x is the outcome of the
forthcoming trial. Such a belief function Bel can indeed be conditioned
on tlic proposition that a given aleatory law (0e® is the truc one; we
simply condition Bel on the subset {0} x X of @ x X, obtaining a belief

fanction on 219 ¥ ¥_ A helief functionon 219 * ¥ amounts to the sainc thing

as a belief function on 2%, so we can require this belief function to be
Bel,, as given above,

The notiou of such an overall belief function Bel is very fruiiful, for
we can express many of our other ideas in terms of Bel. Lack of any
prior opinion about the identity of the truc aleatory law can be expressed,
for example, by saying that P*({0}x .¥)=1 for all 0eO. And most
importantly, it beccomas natural to obtain our support function S, based
on the observation x by conditioning Bel on x -1i.c., on @ x {x}. Hence
conditions on the support functions S, become conditions on Bel.
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So for every discrete space X, we find oursclves demanding a [unction

Del: 22 * % [0, 1], where @ is the scl of all aleatory laws on A, and Bel
satislics at least the following four conditions:

(1) Bel is a condensable belief function.

(2) P*({0} % X)=1forall 00, where £* is the upper probability
function corresponding to Bel.

(3) For cvery 0=0, conditioning Bel or 0 results in the belicf
function Bely: 2X [0, 1] given by Bely= cca 0(x) for all
Ae2*.

4) For every xeX, conditioning Bel on x results in an upper

probability function on 29 that satisfies the second pgsluia(»c
of plausibility for the observation x. (More ‘prccnscl){, if
PL,:2° [0, 1] is the upper probability function obt:ur)ccl
by conditioning Bel on {x} x O, then PL_ shculd SZEUSf)O’
PL.({0y, 0,})=PL.({0,}) for all doubletons {0,, 0,}€2
such that 8, (x)/6,(y)= 0, (x)]0,(y) for all veX.)

It wurns out that for every discrete space X there is one and only one
belief function Bel: 2°* X = [0, 1] satisfying these four rcquircmcnt.s._ I
will not prove this fact here, but I will describe the upper probabll{ty
functions {PL.}..x that result from conditioning this unique belicf
function Bel on the various possible cbservations xe X. These up_p.cr
probability functions PL, are, of course, the simplicial plausibility

Junctions.

4.3.2. Some Formulac

Let-mc begin my description of the functions PL, by supplying sgme

formulae. I will then turn to a more illuminating geometric description.
I continue to denote by O the set of all aleatory laws on the discrete

space X. Fix x& X, and for each {inite non-empty subset 4 of O, set

1
(31)  0.(4)= S a2 if g(x)>0 foran e,
’ . De h x)
yeX '
0 otherwisc.
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icse are the commonality numbers for the simplicial plausibility func-
n 22L,. In other words,
PL(A)= Y (=17 0.(T)
140
r all finite non-empty subsets 4 of ®. And, of course, the values of
L.(A) for infinite subsets 4 are given by condensability:
PL,(A)= sup PL(A").

A'cA
A’clinlie

The commonality numbers Q%(4) and the plausibility function PL?
)r a restricted specification ©,< @ can be obtained {rom these formulae
y the rule of conditioning. The commonality numbers 0°(4) for finite
1bsets A of O, will be given, for example, by

k
(32) 03 (A)= Zmax@ if 0(x)>0 forall Oed,
dec A 0(
yeX
0 otherwise,

vhere the constant & is equal to (PL.(Qg)) ™"

1.3.3. The Geomelric Representation

n the case where X has three clements, the function PL that we have just
Jefined can be described in terms of the geometric picture developed in
12.3.

Suppose, indeed, that X'= {1, 2, 3}. Then as we saw in §2.3, the alcatory
laws on X arc in a one-lo-one correspondence with the points of an
zquilateral triangle of unit area. Let me review that one-to-one corre-
spondence, using a slightly different notation.

First, denote by M the set of measurable subscts of the tnang]c and
by p(M) the measure of a subset M e M. Then note that the point 0 of
the triangle determines three smaller triangles ay, f and y,, as in Figure
16. The barycentric coordinates of 0 are then

(l‘ (ao)» H (180)) K (')’g)) ;

these three numbers are always non-negative and add to onc. Finally,
the alcatory law 0: X'— [0, 1] corresponding to the point 0 of the triangle
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8
g
2 ' 3
Fig. 16.
is given by
0(1) = u(uy),
0(2)= #(ﬂo),

0(3) = 1(va).

Now suppose our single observation x is cqual to I, and let us use this
picture to describe the allocation of probability corresponding to PL,.
The key is to think of M as the collection of our probability masses, and
to think of o, as the probability mass than can get into the singleton {0}.
Hence

Vda

OeA
is the total probability mass (hat can get into A4€2¢, and
PL,(A)=/4( \ ‘10)-
0c A
The probability mass V. 4 @ is shown {or several dilferent [inite subsels

in Figure 17.
Now consider a finite subset- 4 of @, and consider the probability mass

A ap.

Oed
This will be the total probability mass that can get into cach and every
point of A. Its measurc will be the commonality number for 4:

(33) Q(A4)=un (oé\,{ a,,).

Can we compute Q, (4) from our geometric picture?
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2 3 3

Fig. 17. In cach cxample, the clements of A are represented by dots, and the prob-

ability mass V oe 1 oo is shaded. In the last examiple each of the three elements @ of 4

has 0(1)=0 and hence lies on tiw base of the trinngle; the probability mass Voea a0
1s thercfore cmpty.

3

Fig. 18. 1In cach example, the clements of A are represeated by dots, znd the prob-
ability mass Agea e is shuded. In the last two examples, there is an element 8 of A
with 0(1)=0; hernee the probability mass Aoe a @o is emply,
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The probability mass Age 4 ¢ 18 shown for & [ew finile scts -+ in
Figure 18. From these pictures, it is evident that we need to consider two
cases: the casc where 0(1)=0 for some 0e 4, and the case where 0(1)>>0
for all Oe A. In the first case,

G4 oAM= u(axc\A ao) =0.

In the second case, there will be a unique point 0, of the triangle
such that

(35) Uy, = A dy,
S0 _ o)
GO )T ey
and
0.() _0(1)
RO RIOY

(0, may be one of the points of A, as in the first and third examples of
Figure 18, or it mzy not be, as in the second and fourth examples therc.)
From (33) aod (34), we find that

0, (4) =i Aso) = n0,) = 04(1).

Can we compute 0,(1) from (36) and (37)?
We can. Inverting these two relations gives

0(2) _0.(2)

nax —— =
et 0(1) (1)
and
0(3)_0,(3)
max -—- = .
oca 0(1)  J.(1)
Of course,

max Qﬁ)—oA(l)

e RN I
ver 0(1) OA(I)
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) Z nax 0(y) Z 0.y _ !
L 0ea 000 L 0D 7 0,0)
nd ”
i
(38) 0,(A)=0,(1)= =——F——-
Z vea 0(1)

yex

Jotice that (34) and {38) do indeed agree with (31).

Scveral of the properties of PL, should be cvident from this geometric
epresentation. Condensability, for example, means that the area of
V oe 4 8o can always be approximated arbitrarily closely by the area of
V o« 4+ & Tor some finite subsct subsct A’ of A. The second postulate of
slausibility is satisfied, for whenever

0,(1 0,(1)_ 0,(1
SR ™ G
we have oy, <a,, Whence
PL ({0, 0,}) = n{ay, vag) = ()= PL({6,}).
And the first postulate of plausibility is also satisfied, for
PL, ({0}) = u(xg) = O(1).

I have devcloped the geometric representation for x=1, but the analo-
gous development for x=2 and x=3 should be obvious. We would

have, for example,

PLy(4) = (O\E/A ﬂo>

and

PLy(4) = (o\e/A ?o) .

Finally, I should remark that an analogous gecometric representation
is possible when X has any number of elements. In this case, we have
uscd a triangle, but in the general case we would use a (k —1)-dimensional
simplex, where k is the number of elements in X. Jence the name

‘simplicial’.
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4.3.4. The Continuous Case

The simplicial method of defining plausibility functions can also be
extended to the continuous case, though the extension is more proble-
matic than in the linear case. The ey to the extension is formula (32).

Suppose, indeed, that ©4 1s a specification on a continuous space X,
Then the division of X into discrete categorics will result in commonality
numbers

(39) QA= ‘

y
Jo(yydy’
max ————
gey Bed Ira(y) dy
go

where y consists of all the categories and g, 1s the category containing x.
As the categories are made finer and finer, we might expect (39) to tend to

(40)

for some constant k. Such a convergence does occur in many cases,
and if the constant k is not zero, then the quantitics defined by (40) can
be taken as the commonality numbers for a plausibility function
PL.: 2% 0, 1].

5. THE HISTORICAL BACKGROUND

I have cxposited the ideas in this essay as directly as possible, avoiding
extensive historical references lest they evoke controversies or pre-
conceplions. But I will now bricfly review a few of the more prominent
features in the historical background of these ideas.

5.1. DEGREES OF BELIRF

The notion of degrec of belief has roots in the seventeenth and eighteenth
centuries. The writers of that period usually used the terms ‘degree of
certainty’ or ‘degree of probability’ rather than ‘degree of support’ or
‘degree of belief’, but they were concerned with the same questions and
rcached some of the same answers as I have discussed here. Notable
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cxamples are James Bernoulli, in his Ars Conjectandi (publishzd post-
homously in 1713) and J. H. Lambert in his Neves Organon (1764). Both
of these writers considered degrees of probability for the casc of two
alternatives that took the gencral form exhibited in Table 11, but Lambert
scems to have had the clearer view of the matter, for it was in the process
of correcting Bernoull’s faulty and less general rule (hat he arrived at the
rule described in $1.1.

The modecn student of probability, whether statistician or philosopher,
may find it stranpe to hear numbers fike those in Table 1T called prob-
abilitics. For we have beea indoctrinated in (he view that probabilitics
must be additive. In other words, the numbers s and &, in Table I are
nowadays required to add to one before they can be called probabilitics.
But no such doctrine appears to have been known to Bernoulli or Lam-
bert, for they discuss non-additive examples of probabifitics without
apology.

How then did the rule of additivity come to be applicd to probabilitics? -

The answer to this question is surely to be found in the fact that there are
two kinds of probability. On the one hand there is the aleatory kind -
the objective probabilities that are given by aleatory laws. And on the
other hand there is the epistemic kind — the degrees of certainty, of
support, of beiief, or what-have-you. Bernoulli scems to have regarded
the first kind as a special case of the sccond, and I took a similar view
in §4.3. But in any case, the first kind incontestably must obey the rule of
additivity; whereas, contrary to some contemporary opinion, it is highly
doubtful that the second kind ought always to obey the rule of additivity.
But it is easy to confuse and plausible to identily the two kinds of prob-
ability and thus apply the rules for aleatory probabilities to cpisicmic
probabilities. Unfortunately, Laplace rather deliberately made precisely
such an ideutification. Perhaps he wanted to deal with aleatory proo-
abilities but found it suited his determinism to call them cpistemic
probabilities. Whatever his motivation, one effect of his great synthesis
?v‘as the suppression, for a century and a half, of non-additive probabil-
ities.

Indeed, it is remarkable how thoroushly Laplace’s successors, and
students of the kListery of protability down to this very day, have ignored
Bernoulli’s and Lambert’s work on non-additive probabilities, Lambert's
ideas were cxposited by Prevost and Lhuilier in 1797, but since then they

A THEORY OF STATISTICAL EVIDENCE 431

scem to have plunged into almost total obscurity. Issac Todhunter did
discuss Prevost and Lhuilier’s article in his {fisiory in 1865 (pp. 461-463),
but apparently with little comprehension; and T know ¢t no further
reference to these ideas by any student or historian of probability during
the past century.

5.2. STATISTICAL INFERENCE

I have spoken in quite general terms in the preceding exposition, and [
may have left the impression that my subject has been the whole field of
statistical inference. 2ul my sobjeet has been much smadler than that.
It has been the problem of statistical support — the probiem of measuring
the support for various subsets of ® when u siatistical specification
{Py)seo 18 taken as known. In practice, the statistical specification may
he far from known; and the problem of providing a specification — or
of assessing the adequacy of a proposed one — scems to be the harder part
of the theory of statistical inference.

TFifty years ago, R. A, Fisher distinguished between the problems of
specification and the problems of ‘estimation’, declaring that the problenis
of specification were entirely ‘a matter for the practical statistician’. For
Fisher, it was the problem of estimating the correct value of 8 on the
basis of the specification {P,},.o and the observations x that was central
to theoretical, as opposed to practical statistics. Today we would probably
modify Fisher’s judgment in several respects. First of all, his notion of
estimation turncd oui to be too narrow, for the evidence about 0 often
cannot be summarized by an estimate and a measurc ol the estimate’s
accuracy. Hence many of us would replace the ‘problem of estimation’
with the ‘problem of support” in 2 general description of the business of
theorctical statistics. Secondly, we have come to see the problem of
specification as a quitc theorctical problem. As we have come to admit,
the practical statistician’s struggie with dala is not only antecedent to the
statistical specification ~ it is also antecedent to the specification of an
‘observation space’ X and eveun to the notion that anything is being
governed by an aleatory law.

So in a modern view of theoretical statistics we might distinguisih twc
broad problzins — the nroblem of suppoct and the problem of specifica
tion. The problem of supyort, which is the subject of this exposiiion
is prebably the more modest and manageable of (the two.
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5.3. APOLOGIA

Tlus essay is in part a defense and in part a reformulation of earlier work
by A.P. Dempster. Theideas in it were inspired by my study of Dempster’s
work — a study that began when I attended his seminar on statistical
inlcrence at Harvard in the spring of 1971; and it culminates, in §4, with
a jusiification of some of his methods of assessing statistical evidence.
But, quite naturally, it differs in important respects from Dempster’s work.

Most importantly, my philosophical account differs from Dempster’s
own. For far from rejecting the Laplacean synthesis, Dempster saw it
as the source of ‘much of the motivation and fascination of the modern
science of probability’. (Rescarch Report S-3, Harvard University, p. 8.)
And instead of thinking of his lower probabilitics as degrees of belicf or
degrees of support, he preferred, at least originally, to think of his upper
and lower probabilities as bounds for some true but somehow unknow-
able probabilitics, thus retaining the identification of degrees of belief
with additive probabilitics.

The mathematical account in §3 also differs from Dempster’s carlier
account. The differences derive mainly from the replacement of multj-
vialued mappings by allocations of probability and from the isolation of
the notion of condensability ~ innovations that permit the role of (he
commonality numbcrs to be fully developed.

Finally, the degrees of plawsibility adduced in §4 overlap with but are
not identical with the upper probabilitics adduced in Dempster’s papers.
Those obtained by the simplicial method 1n §4.3 are identical with the
upper probabilities produced by Dempster’s ‘structures of the sccond
kind’, (sce p. 349 of his 1966 article.) Thosc obtiuined by the linear
method in §4.2 are not discussed in any of Dempster’s published work,
though hc has privately cncouraged intercst in the method. And the
upper probabilities that result from Dempster’s ‘structures of the first
kind’ bear no relation to the present essay ~ the arguiments given here
provide no justification for them,

Jt is the new understanding of the meaning of Dempster’s upper
probabilities that I offer as the primary contribution of this essay. Since
Dempster’s own interpretation has not proven widely appealing, 1 hope
that the more radical understanding of the present essay will inspire a
wider interest,
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Whether or not this hope is fulfilled, I must express my gratitude to
my wife Terry and my many other friends, teachers and fellow students
who have helped me with these ideas.
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DISCUSSION

Commentator Good: Suppos= the evidence arises in two experiments with
a thousand heads in on¢ and a thousand tails in the other. Would the
order in which the data are obtained effect the results?

Shafer: No, the order docs not matter. Dempster’s rule of combination
is symmoctric.

Lindley: This theory owes much to Dempster’s work. My own view of
that theory is that it is upset by Ailchison’s counter-example. (This was
presented in the discussion to Dempster’s 1968 paper: J. Roy. Statist.
Soc. B, 30, 205-247 on page 234.) Essentially Aitchison considers two
trinomial distributions with probabilities (0.4, 0.5, G.1) and (0.4, 0.1, 0.5) ~
the essential point being the equality of the probatilities for the first class.
He then shows that, according to Dempster’s theory, a single observation
falling in the first class can change our opinions about which trinomial
obtains. This is very counter-intuitive since the obscrvation would appear
to contribute nothing to this question. My question to tonight’s speaker
is: does the same criticism apply to Lis theory?

Shafer: Aitchison’s criticism applies to the simplicial method, which
is indeed the same as the method jin Demnpstec’s 1968 paper. The criticism
docs not apply to the lincar method.

Perhaps I should take a paragraph to cast Aitchison’s example in the
vocabulary of the preceding essay. The statistical specification consists
of two aleatary laws: @={0,, 0,}. The sct of possible outcomes is, say,
X={Avnre, Brown, Crimson}. Both aleatory laws assign Azurc a chance
of 0.4, but they disagree on Brown und Crinson. Oac begins, presumably,
with the vacuous bhelief function: Bel({0,})=Becl({0,})=0. But what
support function over © should onz have after a single obscrvation
x=Azure? (1) Following the simplicial incthod, onc obtains the support
function S over @ given by S({0,})=8({0,})=4%. (2) But following the
linear method, one obtains S({¢,})=S({0,})=0 - i.e., there is no
change from the vacuous support function with which one began.

Choosing between the lincar and simplicial methods in this example
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nbvicusly amounts to deciding whether the observation x = Azure shouid
be treated as no zvidence (linear solution) or as precisely bulanced cor-
flicting evidence (simplicial solution). In defense of the simyiicial solution,
one might argue that the singie observation x == Azure is indeed internally
conflicting: the observation of Azure rather than Crimson siupports 4,
while the observation of Azure rather than Brown supports 8,. But this
1s not very convincing, and I now agree with Mr Ailchisnon and Mr
“Lindlzy that the linear solvtion is preferable.

Writing 1n January of 1975, I should peint out that thc original] essuy
and talk that inspired Mr Lindley’s quesiton argued vyor the simplicial
methiod and did not maention the linear method. The essay printed above,
which gives equal Lilling to the two micthods, was writien in the summer
of 1973. My presert preference for the linear method s based priraarily
on its adaptation fo Lhe notion of ‘weight of cvidencs’, & notion which
allows a maach deeper understanding of Dempstei’s rule of combination.
(See my forthcoming book 4 Muthematical Theory of Evidence.)
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