CHAPTER 7
BELIEF FUNCTIONS

INTRODUCTION
b
Glenn }éhafer

The theory of belief functions provides a non-Bayesian way of using mathematical probability to
quantify subjective judgements. Whereas a Bayesian assesses probabilities directly for the answer to
a question of interest, a belief-function user assesses probabilities for related questions and then
considers the implications of these probabilities for the question of interest.

Though antecedents for belief functions can be found in the seventeenth and eighteenth centuries,
the theory in its present form is due to the work of A.P. Dempster in the 1960s and my own work in the
1970s. For this reason, it is sometimes called the “Dempster-Shafer theory.” It came to the attention
of workers in artificial intelligence in the 1980s, in part because of its resemblance to the less
systematic calculus of certainty factors developed for MYCIN by Edward Shortliffe and Bruce
Buchanan (see Chapter 5).

My 1976 book, A Mathematical Theory of Evidence, remains the most comprehensive single
reference for the mathematical theory of belief functions, but it has been followed by a large literature
on interpretation, application, and computation. This chapter presents a selection from that literature.

The first two articles in the chapter represent recent thinking by Dempster, myself, and our co-
workers. The article by Rajendra Srivastava and me introduces the belief-function formalism and
compares it with the Bayesian formalism in the context of an important application, financial
auditing. The article by Dempster and Augustine Kong illustrates how belief functions can be used in
belief networks.

The third and fourth articles, the article by Jean Gordon and Edward Shortliffe, and the article by
Judea Pearl, provide alternative introductions to belief functions. Gordon and Shortliffe present the
theory in the context of a medical application, and they compare it with the framework and rules of
combination of MYCIN. Pearl's article takes a more critical look at belief functions.

The fifth article, by Prakash Shenoy and me, extends to belief functions the methods of local
computation in belief networks that are presented for Bayesian networks in Chapter 6. Shenoy and I
show that these methods apply to a broad class of formalisms, including the Bayesian formalism,
belief functions, Wolfgang Spohn's natural conditional functions, and any other formalism that has
operations of combination and marginalization that satisfy certain simple axioms.

The last two articles describe consultation systems that help users represent and combine belief
functions. The article by John Lowrance, Thomas Garvey, and Thomas Strat describes an early
version of the Gister system, which helps users build up belief networks graphically. This article is
significant not only because of Gister itself, but also because Lowrance and his co-workers at SRI
International were influential in bringing belief functions into artificial intelligence. The article by
Debra Zarley, Yen-Teh Hsia, and me describes DELIEF, a system developed at the University of
Kansas. This system goes beyond the early versions of Gister by using the mathematics of belief
networks to carry out the combination automatically.

This introduction surveys some of the issues in the belief-function literature and provides
references for further reading. For a fuller survey of current issues, see Shafer (1990).

1. The Basics of Belief-Function Theory

The theory of belief functions is based on two ideas: the idea of obtaining degrees of belief for
one question from subjective probabilities for a related question, and Dempster's rule for combining
such degrees of belief when they are based on independent items of evidence.

These ideas are illustrated by example in several of the articles in this chapter. The simplest,
perhaps, is the example of testimony discussed by Srivastava and me. We can derive degrees of
belief for statements made by witnesses from subjective probabilities for the reliability of these
witnesses.



Degrees of belief obtained in this way differ from probabilities in that they may fail to add to
100%. Suppose, for example, that Betty tells me a tree limb fell on my car. My subjective
probability that Betty is reliable is 90%; my subjective probability that she is unreliable is 10%.

Since they are probabilities, these numbers add to 100%. But Betty's statement, which must be true if
she is reliable, is not necessarily false if she is unreliable. From her testimony alone, I can justify a
90% degree of belief that a limb fell on my car, but only a 0% (not 10%) degree of belief that no
limb fell on my car. (This 0% does not mean that I am sure that no limb fell on my car, as a 0%
probability would; it merely means that Betty's testimony gives me no reason to believe that no limb
fell on my car.) The 90% and the 0%, which do not add to 100%, together constitute a “belief
function.”

In this example, we are dealing with a question that has only two answers (Did a limb fall on my
car? Yes or no.). Belief functions can also be derived for questions for which there are more than two
answers. In this case, we will have a degree of belief for each answer and for each set of answers. If
the number of answers (or the size of the “frame”) is large, the belief function may be very complex.

Dempster's rule is based on the standard idea of probabilistic independence, applied to the
questions for which we have subjective probabilities. I can use the rule to combine evidence from two
witnesses if I consider the first witness's reliability subjectively independent (before I take account of
what the witnesses say) of the second's reliability. (This means that finding out whether one witness
is reliable would not change my subjective probability for whether the other is reliable.) The rule uses
this subjective independence to determine joint probabilities for various possibilities as to which of
the two are reliable.

Though it begins with an initial judgment of independence, Dempster's rule goes beyond this
independence. After using independence to compute joint probabilities for who is reliable, I must
check whether some possibilities are ruled out by what the witnesses say. (If Betty says that a tree
limb fell on my car, and Sally says nothing fell on my car, then they cannot both be reliable.) If so, I
renormalize the probabilities of the remaining possibilities so they add to one. This is an example of
probabilistic conditioning, and it may destroy the initial independence. (After I notice that Betty and
Sally have contradicted each other, their reliabilities are no longer subjectively independent for me.
Now finding out that one is reliable would tell me that the other is not.) Then I determine what each
possibility for the reliabilities implies about the truth of what the witnesses said, and I use the
renormalized probabilities to get new degrees of belief.

The net effect of Dempster's rule is that concordant items of evidence reinforce each other (two
independent witnesses for a limb falling on my car make me believe it more than either alone),
conflicting items of evidence erode each other, and a chain of reasoning is weaker than its weakest
link. Section 2.3 of the article by Srivastava and me illustrates all these points by example.

Bayesian probability measures qualify as belief functions; they represent, in effect, the special
case where the unreliable witness always lies. Another special case is that of categorical, completely
non-probabilistic information. This is the case where we are 100% confident in the reliability of a
witness or other evidence, yet this evidence does not completely answer our question. I might have
conclusive evidence, for example, that I lost my wallet in one of three places, without any clue as to
which one. This calls for a belief function that assigns a degree of belief of 100% to the three places
as a set, but a degree of belief of 0% to each of the three individually.

As Dempster and Kong emphasize in their article in this chapter, the ability to represent both
probabilistic and categorical information makes belief functions a bridge between Bayesian and
categorical reasoning. Bayesian conditioning itself can be understood in terms of this bridge.
Conditioning a Bayesian probability measure on given information is equivalent to combining it, by
Dempster's rule, with a categorical belief function representing that information (Shafer 1976, pp. 66-
67).

2. Belief Functions Do Not Express Lower Bounds on True but Unknown Probabilities

Mathematically, the degrees of belief given by a single belief function can be related to lower
bounds on probabilities, but conceptually they must be sharply distinguished from such lower bounds.
If we make up numbers by thinking of them as lower bounds on true probabilities, and we then
combine these numbers by Dempster's rule, we are likely to obtain erroneous and misleading results.

It is easy to see the temptation to interpret belief-function degrees of belief as lower bounds on
unknown true probabilities. Consider again my 90% belief that a limb fell on my car, and my 0%
belief that no limb fell on my car. These degrees of belief were derived from my 90% and 10%



subjective probabilities for Betty being reliable or unreliable. Suppose these subjective probabilities
were based on my knowledge of the frequency with which witnesses like Betty are reliable. Then I
might think that the 10% of witnesses like Betty who are not reliable make true statements a definite
(though unknown) proportion of the time and false statements the rest of the time. Were this the case,
I could think in terms of a large population of statements made by witnesses like Betty. In this
population, 90% of the statements would be true statements by reliable witnesses, x% would be true
statements by unreliable witnesses, and (10-x)% would be false statements by unreliable witnesses,
where x is an unknown number between 0 and 10. The total chance of getting a true statement from
this population would be (90+x)%, and the total chance of getting a false statement would be
(10-x)%. My degrees of belief of 90% and 0% are lower bounds on these chances; since x is anything
between 0 and 10, 90% is the lower bound for (90+x)%, and 0% is the lower bound for (10-x)%.

As this example suggests, there is a sense in which a single belief function can always be
interpreted as a consistent system of probability bounds. It is always possible to find a probability
distribution such that each probability is greater than the corresponding degree of belief given by the
belief function.

The fallaciousness of the probability-bound interpretation of belief functions becomes clear,
however, when we consider two or more belief functions addressing the same question but
representing different and possibly conflicting items of evidence. The disagreements that such belief
functions represent are not disagreements about the values of true probabilities. When Betty says a
limb fell on my car, and Sally says nothing fell on my car, they are disagreeing about whether
something fell on my car, not about the true probability of something having fallen on my car.

Were we to insist on a probability-bound interpretation of belief functions, then we would only be
interested in groups of belief functions whose degrees of belief, when interpreted as probability
bounds, can be satisfied simultaneously. When belief functions are given their proper interpretation,
however, it is of no particular significance whether there exist probabilities that simultaneously satisfy
the bounds defined by a whole group of belief functions. Consider two cases that might arise when we
use belief functions to represent contradictory evidence from Betty and Sally:

Case 1. Before hearing their testimony, we think highly of the reliability of both
Betty and Sally. We represent Betty's evidence by a belief function that gives a
95% degree of belief to a limb having fallen on my car, and we represent Sally's
evidence by a belief function that gives a 95% degree of belief to nothing having
fallen on my car. In this case, the two belief functions are contradictory as
probability bounds; if the true probability of a limb having fallen on my car is greater
than 95%, then the true probability of nothing having fallen on my car cannot also be
greater than 95%.

Case 2. Before hearing their testimony, we think that both Betty and Sally are
fairly unreliable. So in both belief functions, we assign a 35% degree of belief rather
than a 95% degree of belief. In this case, the two belief functions define consistent
probability bounds; the true probability of a limb having fallen on my car and of
nothing having fallen on my car can both be greater than 35%.

From the belief-function point of view, there is no conceptual difference between these two cases. In
both cases, we can combine the two belief functions by Dempster's rule. In both cases, there is
conflict in the evidence being combined, and normalization is required.

It can be shown that if no renormalization is required in the combination of a group of belief
functions by Dempster's rule, then there do exist consistent probabilities that simultaneously bound all
the belief functions being combined as well as the belief function that results from the combination.
We cannot count on this, however, when renormalization is required. Consequently, authors who
favor a probability-bound interpretation of belief functions are uncomfortable with renormalization
(see, e.g., Zadeh 1986).

Probability bounds provide the basis for yet another mathematical theory of evidence, which I
have called the “theory of lower probability” (Shafer 1981). In this theory, an analogy is drawn
between actual evidence and knowledge of bounds on unknown true probabilities for the question of
interest. This theory is not always useful, because unknown true probabilities exist only if a
population and sampling scheme are well defined. An unknown true probability for the truth of Betty's
statement, for example, exists only if a the population of true and false statements of witnesses like
Betty is well-defined. In a problem where a reference population for the question of interest is well-
defined, the theory of lower probability may be more useful than the theory of belief functions. But in
other problems belief functions may be more useful.



As Shafer and Tversky explain in our article in Chapter 2, both Bayesian and belief-function
arguments involve analogies to sampling situations. But belief-function analogies are less complete
than Bayesian analogies. They are useful when it is reasonable to evaluate certain evidence (e.g.,
Betty's reputation) using a sampling analogy, but this evidence will not support extending the analogy
to all potentially relevant issues (what Betty would say were my good impression of her erroneous,
how often limbs fall from that tree, etc.).

There has been some confusion about the original relation between belief functions and
probability bounds, because some of Dempster's early articles hinted at a probability-bound
interpretation. But Dempster's “upper and lower probabilities” were not derived by bounding unknown
true probabilities. My 1976 book, in which the term “belief function” was introduced, explicitly
disavowed any probability-bound interpretation (p. ix). This disavowal was elaborated at length in
Shafer (1981) and seconded by Dempster (1982).

3. General Metaphors and Canonical Examples

The metaphor of the witness who may or may not be reliable can serve as a standard of
comparison, or canonical example, for judging the strength of other evidence. We can assess given
evidence by saying that it is comparable in strength to the evidence of a witness who has a certain
chance of being reliable.

A witness testifying to a specific proposition leads to a relatively simple belief function—one that
gives a specified degree of belief to that proposition and its consequences, and zero degree of belief
to all other propositions. Arbitrarily complex belief functions can be built up by combining such
simple belief functions (Shafer 1976, p. 200), but in some cases we may want to produce complex
belief functions more directly, in order to represent evidence that conveys a complex or mixed
message but cannot be broken down into independent components. This requires more complex
metaphors or canonical examples.

Two distinct general metaphors have been suggested. Shafer (1981) suggests the metaphor of a
randomly coded message. Pearl (1988) suggests the metaphor of random switches.

Shafer's randomly coded messages are explained in detail in the article by Shafer and Tversky in
Chapter 2. In this metaphor, we have probabilities for which of several codes was used to encode a
message. We do not yet know what the message says, but we know it is true. We have this message
in hand in its coded form, and we will try to decode it using each code, but the probabilities are
judgments we make before this decoding. When we do decode using the different codes, we
sometimes get nonsense, and we sometimes get a comprehensible statement. It seems sensible, in
this situation, to condition our probabilities for the codes by eliminating the ones with which we get
nonsense. The conditioned probability for each remaining code can then be associated with the
statement we get by decoding using that code. These statements may be related in various ways;
some may be inconsistent with each other, and some may be stronger than others. Thus we obtain the
complexity of an arbitrary belief function.

In this metaphor, the independence of two belief functions means that two different people
independently choose codes with which to send two possibly different (though both true) messages.
Our uncertainties about the codes in the two cases remain independent unless possible codes imply
contradictory messages. If s, is a possible code for the first person, and s, is a possible code for the
second person, and the first message as decoded by s, contradicts the second message as decoded by
s,, then it cannot be true that these were the two codes used. We eliminate such pairs of codes and
renormalize the probabilities of the remaining possible pairs. The probability of each pair is then
associated with the conjunction of the two implied messages. This is Dempster's rule.

The metaphor can be presented in a way that forestalls the interpretation of belief-function
degrees of belief in terms of bounds on probabilities. There is no probability model for the choice of
the true message sent. The probabilities are only for the choice of codes. We might visualize these
probabilities in terms of a repetition of the choice of codes, but since the true message can vary
arbitrarily over this population of repetitions, the idea of this population does not lead to the idea of a
true unknown probability for the true message or for the true answer to the question of interest. It
leads only to an argument about what the true message says or implies—an argument whose strength
can be represented in terms of the derived “degrees of belief.”

Pearl's metaphor of random switches is explained in detail in his article in this chapter. In this
metaphor, a switch oscillates randomly among propositions about the question of interest. Our



probabilities are probabilities for the position of the switch, but when the switch points to a certain
proposition, this indicates that the proposition is to be adopted as an assumption or axiom for further
reasoning. A given proposition about the question of interest may be implied by several of these
possible axioms, and its total degree of belief will be the total probability that an axiom implying it is
adopted—the total probability, to speak more briefly, that it is proven.

Pearl's metaphor seems well fitted for computer science, since it mixes the language of electrical
engineering with that of symbolic logic. I find it difficult, however, to construe the metaphor in a way
that completely avoids interpretation in terms of bounds on true probabilities. The random-code
metaphor allows us to interpret the probabilities for a related question in terms of a population of
repetitions completely unconnected with the question of interest. But since the switch positions in
Pearl's metaphor are defined in terms of axioms about the question of interest, it seems to me that
each repetition of the random selection of switch positions will generally constrain the true answer to
the question of interest. Thus the probabilities do bear directly on the question of interest, and this
leads to the objections to renormalization I discussed in the preceding section. In Pearl's view,
however, his metaphor is compatible with renormalization (section 5.2 of his article in this section).

4. Sorting Evidence into Independent Items

Dempster's rule should be used to combine belief functions that represent independent items of
evidence. But when are items of evidence independent? How can we tell? These are probably the
questions asked most frequently about belief functions.

The independence required by Dempster's rule is simply probabilistic independence, applied to
the questions for which we have probabilities, rather than directly to the question of interest. In the
metaphor of the randomly coded messages, this means that the codes are selected independently. In
the more specialized metaphor of independent witnesses, it means that the witnesses (or at least their
current properties as witnesses) are selected independently from well-defined populations.

Whether two items of evidence are independent in a real problem is a subjective judgment, in the
belief-function as in the Bayesian approach. There is no objective test.

In practice, our task is to sort out the uncertainties in our evidence. When items of evidence are
not subjectively independent, we can generally identify what uncertainties they have in common, thus
arriving at a larger collection of items of evidence that are subjectively independent. Typically, this
maneuver has a cost—it forces us to refine, or make more detailed, the frame over which our belief
functions are defined.

We can illustrate this by adapting an example from Pearl's “Bayes Decision Methods,” in
Chapter 6. Suppose my neighbor Mr. Watson calls me at my office to say he has heard my burglar
alarm. In order to assess this testimony in belief-function terms, I assess probabilities for the frame

S, = {Watson is reliable, Watson is not reliable}.
Here Watson being reliable means he is honest and he can tell whether it is my burglar alarm he is
hearing. I can use these probabilities to get degrees of belief for the frame

T = {My alarm sounded, My alarm did not sound}.
Putting a probability of 90%, say, on Watson being reliable, I get a 90% degree of belief that my
burglar alarm sounded, and a 0% degree of belief that my burglar alarm did not sound.

I now call another neighbor, Mrs. Gibbons, who verifies that my alarm sounded. I can assess her
testimony in the same way, by assessing probabilities for the frame

S, = {Gibbons is reliable, Gibbons is not reliable}.
Suppose I also put a probability of 95% on Gibbons being reliable, so that I again obtain a 95%
degree of belief that my burglar alarm sounded, and a 0% degree of belief that it did not sound.

Were I to combine these two belief functions by Dempster's rule, I would obtain an overall degree
of belief of 99.5% that my burglar alarm sounded. This is inappropriate, however, for the two items of
evidence involve a common uncertainty—whether there might have been some other noise similar to
my burglar alarm.

In order to deal with this problem, I must pull my skepticism about the possibility of a similar
noise out of my assessment of Watson's and Gibbons' reliability, and identify my grounds for this
skepticism as a separate item of evidence. So I now have three items of evidence—my evidence for
Watson's honesty (I say honesty now instead of reliability, since I am not including here the judgment
that there are no other potential noises in the neighborhood that Watson might confuse with my
burglar alarm), my evidence for Gibbons' honesty, and my evidence that there are no potential noises
in the neighborhood that sound like my burglar alarm.



These three items of evidence are now independent, but their combination involves more than the

frame T. In its place, we need the frame U = {u,,u,,u,}, where

u, = My alarm sounded,

u, = There was a similar noise,

u, = There was no noise.
(Let us exclude, for simplicity of exposition, the possibility that there were two noises, my alarm and
also a similar noise.) My first two items of evidence (my evidence for Watson's and Gibbons'
honesty) both provide a high degree of belief in {u,,u,}, while the third item (my evidence against the
existence of other noise sources) provides a high degree of belief in {u,,u,;}. Combining the three by
Dempster's rule produces a high degree of belief in {u, }.

A Bayesian approach to this problem would be somewhat different, but it too would involve
refining the frame T to U or something similar. In the Bayesian case, we would ask whether the
events “Watson says he heard a burglar alarm” and “Gibbons says she heard a burglar alarm” are
subjectively independent. They are not unconditionally independent, but they are independent
conditional on a specification of what noise actually occurred. I can exploit this conditional
independence in assessing my subjective probabilities, but in order to do so, I must bring the
possibility of other noises into the frame.

In the belief-function approach, one talks not about conditional independence of propositions, but
rather about the overlapping and interaction of evidence. For further explanation and more examples,
see Shafer (1976, Chapter 8), Shafer (1981), Shafer (1984), Shafer (1987) and Srivastava, Shenoy,
and Shafer (1989).

5. Frequency Thinking

A common but dangerous temptation is to use Dempster's rule to combine opinions that are really
fragments of information about a single probability distribution. This is usually inappropriate and can
give misleading results.

Suppose we are concerned with a bird Tweety. We want to know whether Tweety flies and
whether Tweety is a penguin. We decide to make judgments about this by thinking of Tweety as
randomly selected from a certain population of birds. We have guesses about the proportion of birds
in this population that fly and the proportion that are penguins. Should these guesses be represented
as belief functions over a set of statements about Tweety, and then combined by Dempster's rule? No.
Both guesses bear on the particular bird only through their accuracy as guesses about the population.
This means that they have in common the uncertainty involved in choosing Tweety at random from
the population. Depending on how we obtained the guesses, they may also have other uncertainties in
common.

Like every problem of dependence, we can deal with this problem within the belief-function
approach by sorting out the uncertainties and properly refining our frame. In this case, we must bring
the possible values for the population frequencies into the frame. We can then formalize the
connection between these frequencies and Tweety as one of our items of evidence. We must also
identify our sources of evidence about the frequencies, sort our their uncertainties, and use them to
assess belief functions about what these frequencies are.

This brings us into the difficult realm of statistical inference. Belief functions provide only one
of many approaches to statistical inference, and even the possible belief-function techniques are
varied and complex (Dempster 1966, 1967a,b, 1968a,b, 1969; Chapter 11 of Shafer 1976; Shafer
1982a,b). No statistical approach is likely to be of much value unless considerable frequency
information is available.

An alternative is the Bayesian approach, in which (according to the constructive interpretation)
we compare our hunches about Tweety to fairly precise knowledge of frequencies in a population.
One of the messages of Pearl's article on probabilistic semantics in Chapter 9, with which I agree, is
that many of the intuitions discussed in the literature on non-monotonic logic are best represented in
this way, in spite of the authors' protestations that their intuitions are not probabilistic.

In section 7 of his article in this chapter, Pearl gives a number of examples in which Dempster's
rule gives inappropriate results. I believe the intuitions in most of these examples are based on
frequency thinking, and I agree that Dempster's rule is not appropriate for such problems. If there is
sufficient evidence on which to base detailed probability judgments in analogy to frequency
knowledge, then the Bayesian approach will be far more useful. In some other cases, a lower



probability approach will be useful. Belief functions are not likely to be useful unless the focus can
be shifted from frequency thinking to the assessment of specific items of evidence.

6. Computation

It has often been pointed out that the computation involved in Dempster's rule can be prohibitive.
As the number of possibilities in the frame T grows, the computation required to combine arbitrary
belief functions on T grows exponentially.

Barnett (1981) was the first to address this problem; he showed how to compute Dempster's rule
in linear time in the special case where each belief function supports only a single element of T.
Unfortunately, this condition is not often met. Even if it is met in an initial formulation of a problem,
it may fail to be met in a more careful formulation. A more careful formulation may require us to split
elements of T. (In the example in Section 4 above, we split “My alarm did not sound” into two
possibilities, “There was a similar noise” and “There was no noise.”) Thus what appears as a single
element at one stage may appear as a set of elements at a later stage.

More recent work on computation has focused on exploiting patterns of interaction in evidence to
reduce computation on very large frames to computation on many smaller frames. This is completely
analogous to the Bayesian exploitation of conditional independence (see the articles in this chapter
by Dempster and Kong and by Shenoy and myself). The smaller frames involve variables that are
closely tied to one another, either by definition or by evidence. The results of “local” computations
involving one small cluster of variables can affect beliefs about distant variables, but only after being
“propagated” to them through other clusters. The clusters together form a belief network.

In both the belief-function and Bayesian cases, belief networks are more than merely
computational tools. They are also conceptual tools, tools that we use in sorting out our evidence. In
the Bayesian case, they provide a graphical representation of the conditional independence structure
that is needed to make probability judgments manageable. In the belief-function case, they provide a
representation of the sorting into independent uncertainties discussed in section 4 above.

Work on belief-function networks was initiated by the work of Gordon and Shortliffe (1985) on the
problem of combining evidence by Dempster's rule when different items of evidence are relevant to
different levels of specificity in a hierarchy of diseases, which they mention at the end of their article
in this chapter. Gordon and Shortliffe's method for approximating Dempster's rule in this case was
strengthened by Shafer and Logan (1987) to an efficient method of computing the exact results of the
rule. Pearl discusses the analogous Bayesian approach in his article, “On evidential reasoning in a
hierarchy of hypotheses,” in Chapter 6.

The belief network defined by a hierarchy is basically a tree, and the computations are simplest
in this case. The article by Shenoy and Shafer in this chapter is concerned primarily with propagation
in trees. The problem of belief networks that are not trees was addressed by Kong (1986), who
developed methods similar to those later used for the Bayesian case by Lauritzen and Spiegelhalter
(Chapter 6). As Dempster and Kong explain in their article in this chapter, these methods can be
thought of as representing the network as a “tree of cliques” and then applying propagation to this
tree.

7. Implementation

Belief functions have been implemented in a number of expert systems, and it is beyond the
scope of this introduction to evaluate or even list all these implementations. It should be pointed out,
however, that the implementations that are discussed in this chapter are designed for interactive use.
Neither Gister nor DELIEF is a fully automatic system for evidential reasoning. Instead, they are
systems that help human users build and evaluate belief networks. They require the user to make the
judgments of independence that justify the network and to provide the numerical judgments of support
based on each item of evidence.

Interactive systems seem appropriate to belief functions. As we saw in sections 2 and 3 of this
introduction, belief functions are appropriate to situations where the direct application of probability is
not useful—situations where different populations of repetitions, real or imagined, justify probability
judgments for different items of evidence, and these populations bear on the question of interest and
interact with each other in ways unique to each application. In the example of section 2, the relation
between the question for which we have probabilities (whether Betty is reliable) and the question of



interest (whether a limb fell on my car) is defined by the particular testimony given by Betty. So in
general, the belief network and the numerical judgments must be constructed anew for case.

In contrast, some probabilistic systems—such as the HUGIN system for medical diagnosis
described in Chapter 5—apply the same conditional independence structure and, for the most part, the
same numerical judgments (or frequencies) to each new case. In this case, we are relating the entire
structure of the evidence in each case to the same population of repetitions, and this is a process we
can hope to automate more fully.

8. Pearl's Critique

The article by Judea Pearl in this chapter provides a comprehensive critique of the belief-function
formalism from a sympathetic but ultimately skeptical Bayesian. In the end, Pearl prefers probability-
bound approaches. I conclude this section with a brief response to Pearl's critique.

One of the purposes of Pearl's article is to introduce his random switch metaphor for belief
functions. As I indicated in section 2, I do not find this metaphor helpful in explaining Dempster's
rule. I also doubt that calling the degrees of belief given by belief functions “probabilities of
necessity” will be helpful in delimiting the applications of the theory. By calling attention to the
necessity of logical relations, this phrase distracts from the contingent nature of the relation between
questions that is typical of belief-function applications.

The propositions

A = Betty is reliable

and

B = Betty says a limb fell on my car,
properly translated into a formal language, will make the proposition

C = A limb fell on my car

logically necessary. So if we think of B as fixed, we can say that A's probability contributes to C's
probability of being necessary. But it is best not to think of B as fixed. It is fixed for the particular
belief-function calculation, but as I emphasized in the preceding section, it is contingent relative to
the population that defines the probabilities for A, and we must bear this contingency in mind if we
are to avoid the fallacies that Pearl exposes in section 7 of his article.

Pearl's examples of illegitimate and misleading uses of Dempster's rule are extremely valuable.
They are not mere straw men, for they correspond to uses of Dempster's rule that have been suggested
and implemented. Pearl's discussion should clarify the general principles governing the use of
Dempster's rule that I discussed in sections 4 and 5 above.

Though Pearl and I agree on specific examples, I do not agree with his claim that the Bayesian
formalism is more useful than the belief-function formalism because it is concerned directly with
probabilities for questions of interest (this is my understanding of the remark, in section 5.2 of his
article, that we should be concerned with the probability of truth). While I do want to know about the
probability of the question that interests me when I think there is such a probability, I do not always
think there is. In order to define the probability that a person has a disease, we must either specify a
population or else specify other evidence and draw an analogy between that evidence and the
situation where we draw a person at random from a population. If we succeed in this, then we may
speak of the probability that the person has the disease; if we do not succeed, then there simply is no
probability.

Both the Bayesian and the belief-function formalisms are tools for the assessment of evidence.
Both draw analogies between actual evidence and certain idealized canonical examples. The
Bayesian analogy is more familiar, but this does not always guarantee its success.
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