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Jan von Plato’s Creating Modern Probability is a book to celebrate.
It will be a source of pleasure for probabilists and a stimulus for historians.
Combining a sweeping vision with a sympathetic and thorough marshaling
of sources, it brings to life the emergence of measure-theoretic probability
in the first third of the twentieth century, thus supplying a satisfying sense
of history to a field that has seemed, to too many of its practitioners, to have
sprung suddenly into existence with the publication of Andrei
Kolmogorov’s Grundbegriffe der Wahrscheinlichkeitsrechnung in 1933.
Von Plato’s mathematical precision will satisfy specialists, while his
success in organizing his sources with respect to larger questions will
provoke and enable a new cycle of historical research and debate.

The historiography of probability has flowered in recent decades.
After a long period in which the only history of probability was Isaac
Todhunter’s 1865 treatise, we now have a whole shelf of scholarly studies,
ranging from Ian Hacking’s Emergence of Probability (1975) to Lorraine
Daston's prize-winning Classical Probability in the Enlightenment (1988)
and Anders Hald’s History of Probability and Statistics and their
Applications before 1750 (1990).  This flowering has extended to statistics,
generally thought to be a distinct branch of knowledge after about 1820,
with Theodore Porter's Rise of Statistical Thinking, 1820-1900 (1986),
Stephen M. Stigler’s History of Statistics: The Measurement of Uncertainty
before 1900  (1986), and Ian Hacking’s The Taming of Chance (19--).  But
it has scarcely extended into the twentieth century.  One might imagine that
a treaty had been concluded between historians and mathematicians.  From
Kolmogorov onward, probability theory is mathematics, to be touched by a
historian at his or her peril.  But historians can say what they want about
what J.L. Doob has called the “vague nonmathematical context” of the
probability calculations of earlier times.
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With grace and finesse, von Plato has conquered the buffer period of
1900-1933 for history.   With grace, because his understanding of the
mathematics of the period cannot be faulted.  With finesse, because he has
honored fully the claims of contemporary probabilists.  For von Plato,
probability after 1933 is modern, truly mathematical because it has
infinitary concepts at its heart.  Before 1900, in contrast, probability is
classical, part of applied or “mixed” mathematics rather than pure
mathematics.  Why and how, von Plato asks, did probability become
modern?  His answer centers on two themes:  the demands of statistical
physics, which required that probability accommodate infinities with ease in
order to handle continuous processes and ergodic theory, and the struggle
over the foundations of mathematics, which ended with the triumph of
David Hilbert’s formalism, in probability as in other branches of
mathematics.

Von Plato’s method is exhaustive and didactic.  He summarizes
directly almost all the articles and books that constitute his original sources,
thus mostly dispensing with the need to cite the secondary literature, which
is scant in any case.  He does not even cite his own earlier historical articles.
The result includes long and sometimes meandering chapters on statistical
physics, Kolmogorov, and de Finetti, together with shorter but still
substantial chapters on quantum mechanics, the method of arbitrary
functions, and von Mises.  Fortunately, these large chunks are preceded by
two well-structured introductions.  The first chapter gives an overview of
the book.  The second chapter, entitled “Pathways to modern probability,”
describes the immediate mathematical and philosophical context of
Kolmogorov’s achievement.

Statistical Physics

Von Plato’s long chapter on statistical physics is the heart of the
book.  It guides us along the trajectory of probability in physics from the
work of Clausius (1857) until the advent of quantum mechanics, which has
a chapter of its own.  We begin with the development of the idea of
probability as a time average, especially in the work of Boltzmann,
Maxwell, and Gibbs.  We hear how these authors came to terms with the
reversibility of mechanics; since states of high entropy are vastly more
probable than states of low entropy, we are likely to see a increase in
entropy whether we look to the future or to the past from a state of low
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entropy.  We hear about ergodic theory:  how Boltzmann, Maxwell, and
Gibbs struggled to base it on mechanical laws, how Borel, Poincaré, and the
Ehrenfests gave it a more probabilistic turn, how von Mises called for a
purely probabilistic account, and how von Neumann and Birkhoff carried it
out.  We hear how Einstein dealt with these issues, how Einstein and von
Smolchowski dealt with Brownian motion, and how the theory of
continuous stochastic processes developed from this starting point.  The
chapter concludes with a discussion of the treatment of radioactivity before
quantum mechanics.

This is a broad and busy landscape.  Those who want to study it
carefully will find von Plato’s triangulation immeasurably valuable, but the
casual reader will find it difficult to see the forest from the trees.  It is here
that I most regretted von Plato’s reluctance to discuss secondary sources,
fancying that by debating the general theses advanced by others he might
have provided a more satisfying sense of the grand picture.  I would also
have been interested to hear more about how statistical physics related to
other work in statistics.  I was fascinated, for example, to hear about
Einstein’s treatment of spectral analysis in 1914, but I was left wondering
about its relation to the larger history of the statistical analysis of time
series.  But von Plato aims neither to settle debates about the historical
development of statistical physics nor to relate it to other branches of
statistics; rather, he aims to see how statistical physics contributed to
modern probability.

What did statistical physics contribute to the foundations of
probability?  Most superficially, perhaps, it raised the problem of the
mathematical representation of stochastic processes in continuous time.
According to Von Plato, the idea of a probabilistic law as a function of
continuous time was first put forward by Boltzmann, in 1872.  Von Plato
traces the development of the idea in ergodic theory and in the study of
Brownian motion, with a glance at Lundberg’s work on insurance and
Bachelier’s efforts to describe the stock exchange.  He remains puzzled that
the theory of stochastic processes in the modern sense did not finally appear
until 1929, in the hands of de Finetti, Hostinsky, and Kolmogorov.

In ergodic theory, von Plato finds a variegated array of influences.
Boltzmann introduced the idea of an ensemble of systems, although it has
been most associated with the later work of Gibbs.  The probability of a
state was the average fraction of the time a single system spends in that
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state, but talking about a single system makes is difficult to express the idea
that macroscopic properties of the system depend on the initial state only
through the total energy.  If you speak of an ensemble of systems with that
energy, you can say that a property holds with high probability.  According
to von Plato, such talk eventually left ensembles behind, evolving into talk
about probability one or measure zero, an idea previously at home only in
pure mathematics (as when we compare the rational to the irrational
numbers).  A landmark in this process was Poincaré’s recurrence theorem
for the three-body problem, in 1890:  from any state, except for exceptional
ones of measure zero, a system will eventually return arbitrarily close to that
state.

One recurrent theme in the evolution of ergodic theory is that
independence from initial conditions follows from slight uncertainties about
those conditions, compounded by similar uncertainties about minor external
disturbances.  According to Von Plato, this was Boltzmann’s original
argument for the “ergodic hypothesis,” the hypothesis that a system’s
trajectory would eventually run through all states that have the same total
energy.  This argument did not remain at the center of ergodic theory, but it
gained a life of its own, which von Plato charts in a separate chapter,
“Classical embeddings of probability and chance.”  The high point of this
story is Poincaré’s “method of arbitrary functions,” presented in his 1896
Calcul des probabilités.  Poincaré showed that in many mechanical systems,
the probability distribution of very small disturbances in initial conditions
has no effect on the probability distribution of the state much later, provided
only that the initial probability distribution is continuous.  This makes
precise a foundation for objective probability that was popular into the
1930s.  It was formulated in measure-theoretic terms by Hopf, but it has
been of less interest to later probabilists, perhaps simply because
Kolmogorov’s formulation seems to eliminate the need to worry further
about foundations.

Eventually, the mainstream of development of ergodic theory relied
not on uncertainties in initial conditions and external disturbances but on
the formulation of the ergodic hypothesis that Poincaré suggested in 1894,
slightly extending the idea of his recurrence theorem:  the trajectories of a
system should be dense except for a set of initial conditions of measure
zero.  By presenting this as a version of Maxwell’s thinking, Poincaré
opened the way to the views of von Mises, who was led by his own work on
the limiting behavior of Markov chains in the 1920s to believe that the
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ergodic problem was purely probabilistic, independent of mechanical
hypotheses.  Von Plato’s archival research leads to the conclusion that von
Mises influenced von Neumann and Birkhoff, who proved measure-
theoretic ergodic theorems in 1931-32.  In Birkhoff’s theorem, measure
theory was dominant in both the hypothesis and the conclusion; the ergodic
hypothesis is that no set of states of intermediate measure is invariant under
the motion of the system, and the conclusion is that time averages approach
unique limits except on a set of trajectories of measure zero.  The theory
was abstracted even farther from physics by Khintchine and Hopf in 1932.
Unfortunately, these purely mathematical theorems represented an
abandonment of the original goal of ergodic theory:  to demonstrate that
statistical behavior follows from mechanical laws.

In summary, we may say that statistical physics gave to the
foundations of probability the idea of continuous-time stochastic processes
and the conviction that “except for a set of measure zero” is a legitimate
trailer for empirically meaningful statements, a way of dispensing with the
more intuitive but ultimately confused idea of ensembles.  Most
importantly, statistical physics created a demand for a probability theory
that dealt rigorously with infinities, a demand compounded by the hope that
mathematical rigor might compensate for the physicists’ own confusion
about how macroscopic statistical behavior is related to mechanical laws.

From the Foundations of Mathematics to the Foundations of
Probability

The period at the beginning of the twentieth-century in which the
measure-theoretic foundations of probability were established was also a
period of intense debate over the foundations of mathematics.  One of this
book’s most striking accomplishments is that it places probability clearly in
this larger context.  For this we can thank von Plato’s training as a
philosopher of mathematics and his continuing interest in intuitionism; he is
a leader in the current effort to found mathematics on theory of types (see
von Plato 1995).

The dominant formalist understanding of mathematics, set in place by
Hilbert, is now most often contrasted with the views of those, including von
Plato, who follow Brouwer in objecting to the law of the excluded middle.
But the foundations of probability were more influenced by the earlier
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school of French intuitionists, which included Poincaré, Baire, Borel,
Lebesgue, and Lusin (see Largeault 1993).  As all probabilists know, these
scholars were most concerned with the legitimacy and the process of the
construction of the infinite from the finite.  Von Plato describes at length
Borel’s attempt to replace geometric (measure-theoretic) probabilistic
reasoning with what he hoped would be more meaningful reasoning with
“denumerable” probabilities.  It was in this context of concern about the
legitimacy of the infinite that von Mises formulated the idea of a collective,
Hilbert formulated his philosophy of mathematics, and Kolmogorov used
Hilbert’s philosophy to formulate an interpretation of measure-theoretic
probability.

Working before the triumph of quantum mechanics, the French
intuitionists did not feel the need for a radical concept of objective chance.
They were much more sympathetic with the view that probability arises
from the practical impossibility of prediction, as when the future depends
too delicately on initial conditions.  This meant, however, that the actual
random was a real puzzle for them; if the only meaningful infinite objects
are those we construct by finitistic means, then what can be meant by an
infinite sequence of random choices—or even worse, by a random choice
from a continuous distribution?  This was the question that von Mises
sought to answer, beginning in 1919, with his theory of collectives.  A
collective is a single random sequence (not an ensemble), say of 0s and 1s,
with the property that the proportion of 1s tends to a definite limit, say p,
not only in the sequence as a whole but in every infinite subsequence.
Today this idea is most often recalled merely to be ridiculed, for it is
obvious to us that if p is strictly between zero and one, then there is a
subsequence of all 1s and a subsequence of all 0s.  As but von Plato points
out in his chapter on von Mises, the ridicule is misplaced; it went without
saying, in the context of the times, that only subsequences that can be
constructed count; the subsequence of all 1s that leaps to our eyes need not
exist for a constructivist.  Von Mises’s enterprise was to legitimize the idea
of the random not by challenging constructivism but by shifting its focus
from the obviously self-contradictory task of constructing an actual random
sequence to the more meaningful task of constructing a description of such
a sequence.  This enterprise had the respect of von Mises’s constructivist
contemporaries, including Kolmogorov, who returned to it with his own
work on the complexity of sequences in the 1960s.
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Hilbert’s philosophy of mathematics was based a shift similar to von
Mises’s but on a grander scale.  Hilbert agreed with the intuitionists that
only the finitary part of mathematics has meaning, but, as von Plato puts it,
he located what was meaningful and finite in metamathematics, where one
speaks of properties of formal systems.  It is fully legitimate to posit and
reason about infinities mathematically, as long as the axiomatic system thus
constructed is consistent, for the infinities will introduce no contradictions
into the description of any finite reality that may satisfy the axioms.  In his
first explorations of this idea, Hilbert had thought that consistency would be
enough to ensure that infinity would be a conservative extension over the
finite:  no finitary statements would be provable with infinitary notions that
were not already provable with finitary ones.  This hope was refuted by
Gödel in 1931, but as von Plato notes, the refutation seems to have come too
late to have influenced Kolmogorov’s understanding of the application of
his axioms, which he based on Hilbert’s ideas in spite of his own somewhat
stronger sense of constructivism.

The key to Kolmogorov’s success in axiomatizing probability using
measure theory was the fact that Hilbert’s philosophy allowed a
considerable distance between an axiomatic system and its interpretation.
Even when axioms authorize infinities, the connection between the axioms
and the reality they describe can be approximate and finitary.  Thus measure
theory can describe, if from a greater distance, the same randomness that
von Mises had sought to describe.  Under certain conditions (“which we do
not wish to go into here,” as Kolmogorov said in the Grundbegriffe), one
can assume that a real number P(A) is attached to the event A such that (1)
one can be practically certain, in a large number of trials, that the relative
frequency will differ only little from A, and (2) if P(A) is very small, then
one can be practically certain that A will not appear in a single trial.  Thus
was frequentist probability founded on a mathematical framework that made
no mention of frequency, using a subjective concept of practical certainty.

Kolmogorov was not the first to try to base probability on measure
theory.  As von Plato demonstrates, the idea that had been in the air since
the turn of the century, long before the project of making measure theory
itself fully abstract and independent of geometry was brought to a
conclusion, by Frechet in 1914.  Hilbert, who had included the
axiomatization of probability theory in his famous list of unsolved problems
in 1900, even inspired a Göttingen dissertation on the topic in 1907.  But it
was Kolmogorov who made measure theory work as a foundation for
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probability.  Three elements were essential to his success:  his extension
theorem, which showed that continuous-time stochastic processes could be
constructed in an essentially finitistic way, his conception of conditional
expectation as a function, using the Radon-Nikodym theorem, and the
formalist philosophy of infinity that Hilbert developed in the 1920s.

Minor Themes

Statistical physics is not the only science that brought infinitary
events and the idea of measure zero into probability.  Von Plato’s second
chapter, “Pathways to modern probability,” explores two other pathways for
such ideas, both beginning in planetary astronomy.  They turn out to be
closely related both to each other and to ergodic theory in its eventual form.
The first pathway starts with the work of the Swedish astronomer Hugo
Glydén, whose understanding of the approximate computation of planetary
motions led him, in 1888, to study the probability of convergence of the
integers in a continued fraction.  The second begins later, in 1909, when
another astronomer, Bohl, studied the problem of mean motion in planetary
astronomy.  The conclusions of Glydén and Bohl, in the hands of Hermann
Weyl, became a simple statement about real numbers:  if you choose a real
number at random, multiply it by 2, 3, 4, ... and take only the decimal parts,
you get with probability one a dense set that is uniformly distributed in the
unit interval.  Von Plato considers Weyl’s proof of this statement the first
rigorous proof of an ergodic theorem.  But at a intuitive level, ergodicity
turns out to be a very old idea indeed.  In an appendix (or “supplement”),
von Plato recounts the efforts by Nicole Oresme (1325-1382) to show that
the motions of the heavenly bodies are aperiodic.  Oresme’s results, as he
notes, are easy consequences of Poincaré’s recurrence theorem.

Von Plato’s chapter on probability in quantum mechanics reviews the
old quantum theory, with an emphasis on Einstein’s contributions, and then
recounts the rapid development of quantum mechanics, from its first
invention by Heisenberg in July 1925, through Born’s explanation of the
statistical interpretation of Schrödinger’s wave mechanics in July 1926, to
Heisenberg’s formulation of the uncertainty relation in March 1927.  The
theme of chapter is how quickly most physicists came around to a genuine
indeterminism, even though Einstein, who never abandoned the older
epistemic interpretation of probability, inspired Born’s interpretation.  As
von Plato insists, the triumph of the quantum revolution preceded
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Kolmogorov’s formulation of measure-theoretic foundations for probability
and thus must be counted as an important constituent of the ambient
frequentism within which that formulation was reached.  Yet quantum
mechanics remained clearly to one side of Kolmogorov’s enterprise, for
Kolmogorov carefully left room for the traditional epistemic understanding
of frequentist probabilities and sought most prominently to legitimize
continuous probabilities, whereas the  probabilities of quantum mechanics
were both radically objective and jarringly finite.  It was only much later,
with Feynman’s path integrals, that quantum theory came into a closer
embrace with measure theory.

Von Plato’s final chapter is devoted to Bruno de Finetti.  One of the
best chapters of the book, it summarizes masterfully de Finetti’s work on
subjectivist probability, providing a clear understanding of his mathematical
contributions and his philosophical commitments.  We see step by step how
de Finetti developed exchangeability, partial exchangeability, his
representation theorems, and the law of large numbers for exchangeable
events.  We get a balanced view of de Finetti’s foundations for subjective
probability, beginning with his arguments based on coherent bets, but also
including his axiomatization of qualitative probability, which he thought
sounder.  We get a good explanation of de Finetti’s problems with
Kolmogorov’s foundations, especially with the rule of denumerable
additivity.  We also get a good view of de Finetti’s work on continuous
stochastic processes in the late 1920s and early 1930s, especially his work
on infinitely divisible distributions.  The work on stochastic processes has
been overshadowed, in recent decades, by interest in de Finetti’s
subjectivism.

De Finetti’s subjective interpretation of probabilty is not part of the
story that culminates in Kolmogorov’s Gundbegriffe.  As von Plato
emphasizes, Kolmogorov sought to provide foundations for a frequentist
probability.  De Finetti’s alternative subjectivist conception was fully
articulated only later, in the late 1930s, and it was heavily influential only
much later, after the work of L.J. Savage.  But although we do not need de
Finetti in order to understand the rest of the story, the rest of the story does
help us towards a fuller understanding de Finetti.  It allows von Plato to
place de Finetti’s representation theorem in the context of the ergodic
decomposition theorem, and it allows him to explain the content of de
Finetti’s insistence on operational meaning, especially insofar as this led de
Finetti to reject the meaningfulness of probabilities for infinitary events.
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For de Finetti, it only made sense to speak of probabilities for verifiable
events.  The context of the larger story also gives meaning to a significant
lacunae in de Finetti’s subjectivist argument:  his failure to motivate his
subjective interpretation in physics.

Other Perspectives

Any historical study must make choices in emphasis and perspective,
and we can expect that future work will go beyond the choices von Plato has
made.

The most salient of von Plato’s choices is the choice to write from
within.  As he notes in his introduction, the history of science must be
studied both from without and from within; we must place scientific ideas in
the wider lives of their authors and their times, and we must also understand
the internal logic of the development of these ideas.  Von Plato sees his
choice as a natural one, because study from within is easier, and perhaps
also because it is a prerequisite for an adequate study from without.  The
study of circumstances of individuals and institutions will have to wait, he
believes, “for a general organization of historical studies on probability.”

The decision to undertake a study from within does not suffice to
mark off the ground to be covered, for there are many layers of scholarly
activity, in many different directions, between mathematical probability and
larger concerns to which it is relevant, and so it remains to say what is in
and what is out.  Von Plato’s preferences are clear.  Quantum mechanics is
in; statistics is out.  De Finetti is in; Keynes and Jeffreys are out.  Even R.
A. Fisher’s philosophy of probability merits but a few passing words.  As
von Plato says in his preface, the absence of predecessors left him free to let
his own interests act as his guide. But he sometimes justifies his
preferences, and he is not always persuasive.  No doubt quantum mechanics
helped convince mathematicians of the importance of probabilty, but the
accounts of Hacking, Porter, and Stigler suggest that the nineteenth-century
successes of social statistics also had a great impact on appreciation of
probability, an impact that mathematicians could scarcely have escaped.
And social statistics, unlike quantum mechanics, did not direct attention
from the continuous back to the discrete.  Future reconsiderations of von
Plato’s topic will need to identify and weigh the evidence about the relative
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weight of statistics and physics in the development of measure-theoretic
probability.

For my own part, I hope that von Plato’s successors will give more
sympathy and attention to classical probability, for in his emphasis on the
transition to modern probability, he sometimes fails to do justice to the
resources and contributions of the older theory.  The idea of equiprobability
does not exhaust the conceptual or technical content of the older theory, any
more than the idea of measure exhausts the content of Kolmogorov’s theory.
In particular, the older theory had a dynamic aspect; from its very beginning
in the work of Pascal and Huygens, it was concerned with changes in the
values of expectations.  A full understanding of the sources of
Kolmogorov’s theory would include an understanding of how the ideas of
conditional probability and independence evolved out of the dynamic
aspects of classical probability.

In the long run, the significance of von Plato’s work will hinge most
on the fate of the theory he celebrates.  Kolmogorov’s theory is now two-
thirds of a century old.  By anchoring it in history, von Plato frees our
imagination to turn to the future.  Kolmogorov found a way to link infinitary
measure-theoretic probability to the finitistic meaning of probability in his
culture.  Will that linkage remain viable in a twenty-first century in which
the applications of probability continue to expand, while measure-theoretic
probability plunges ever deeper into pure mathematics?  Or will new
foundations for these applications?  If Kolmogorov was modern, what will
be post-modern?
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