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In his articles for this symposium, Richard Friedman introduces a method
of diagramming probability models. He then uses this method to develop
probabilistic explications of legal ideas along lines that were pioneered by
Richard Lempert.

My comments will be directed towards two main goals. First, I will try to
nail down the technical meaning of Friedman’s diagrams. Second, I will
criticize the general enterprise that Lempert initiated and that Friedman is
carrying on. In my view, this enterprise is flawed by a misunderstanding of
the relation between objective and subjective probability models. Finally, I
will briefly comment on a secondary issue: the relative strength of Bayesian
and frequency ideas in the statistical community.

What Do the Diagrams Mean?

Friedman's articles are a model of exposition. They will be accessible to
many readers who have little mathematical training and little experience
with probability. Readers who are familiar with the mathematical literature
on probability (or who want to learn more from this literature) will be
frustrated, however, by Friedman'’s failure, to relate his diagrams to standard
ideas and nomenclature and his failure to state the technical meaning of his
diagrams in concise mathematical language. I will try to remedy these
failures here.

What, exactly, does one of Friedman’s diagrams tell us about joint proba-
bility distributions? It appears that the diagrams are supposed to communi-
cate conditional independence assumptions.

The events are arranged in columns. Each column consists of mutually
exclusive events, one of which is known to be true: this means that a column
represents a random variable. The diagrams that I understand seem to be
expanded versions of simpler diagrams relating these random variables. In
Figures A and B below, I draw these simpler diagrams for Friedman’s
Figures 10 and 185, respectively. These simpler diagrams are trees, and the
nodes in the trees are random variables. The same three random variables
appear in both trees: C for clouds, R for rain, and P for the picnic. The
variable C has two possible values, cloudy and not cloudy. The variable R

+ © 1986 by Glenn Shafer.
* Professor of Statistics, University of Kansas School of Business.
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has two possible values, rain and no rain. And the variable P has three
possible values, timely, delayed, and cancelled (I have not included nodes
corresponding to the nodes labeled O in Friedman’s diagrams.).

We can express Friedman's conditional independence assumptions very
simply in terms of Figures A and B: conditional on a value of one of the
random variables in the tree, other random variables that are separated when
this random variable is removed are independent.

R
C—R—P c”
~S P
Figure A Figure B

Probabilists call a tree of random variables having this property a Markov
tree." When the tree is actually a chain, as it is in Figures A and B, it is called
a Markov chain.

This interpretation of Friedman's diagrams affords no significance to the
direction of the arrows, because the definition of a Markov tree does not
depend on directions being associated with the links between the random
variables. It is because of this that Friedman is able to reverse the directions
of the links so freely. A Markov tree does have the following property,
however. If we designate one of the random variables as the initial variable,
and assign each link the direction outward from this initial variable, then the
entire joint probability distribution is determined by the distribution for the
initial variable and the probability transition matrices in the directions of the
arrows. This property partially accounts for the significance these arrows
have for Friedman.

To get from a Markov tree back to Friedman's picture, we must expand
each random variable into a column of nodes representing the possible
values of the random variable. An arrow from variable X to variable Y in the
Markov tree then becomes a collection of arrows, one from each value x for
X to each value y for Y such that PrfY = y/X = x] = 0. This kind of
elaboration is quite common in the case of a Markov chain with arrows
pointing in one direction along the chain, as in Figure 10. I cannot say,
however, that [ have ever seen a diagram like Figure 15 before. Friedman's
Figure 18 remains within the general framework I have just sketched: it is
special only in that one variable in the chain is a refinement of the preceding
one.

Figures 16 and 19 seem to correspond to networks that are not trees.
Although they can perhaps be related to the idea of a Markov field, which is

! See. e.g., Darroch, Lauritzen. & Speed, Markov Fields and Log-Linear Interac-
tion Models for Contingency Tables, 8 ANNALS STATISTICS §22-525 (1980).
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more general than the idea of a Markov tree, I do not fully understand
Friedman's intentions in these figures. (Is Figure 16 supposed to convey the
information that P(G;|NC) = 0.5?)

Causal Models

Friedman's conditional independence assumptions come from causal
models. Figure 10 is based on a model that says that whether the picnic is
delayed or cancelled will be determined in the afternoon, and that this
decision will be directly influenced only by whether it is raining in the
afternoon.

This emphasis on causal models suggests that Friedman is using an objec-
tive interpretation of probability. If causal independence assumptions trans-
late directly into probabilistic independence assumptions, then the prob-
abilities must be probabilities in the causal model.

The causal aspect of Friedman's models gives further meaning to the
directions of the arrows in his diagrams. Though he sometimes reverses the
directions of the arrows, he always seems to begin with models in which the
arrows indicate the direction of causation.

Markov trees that have this causal interpretation have recently been
studied? and generalized® by Judea Pearl, in the Computer Science Depart-
ment at UCLA. Pearl's generalization involves trees of random variables in
which more than one arrow may point to the same random variable. Trees of
this general kind have also been extensively studied by biologists,
sociologists, and economists, under the rubric '‘path analysis.”"* These
scientists have been primarily concerned, however, with models for statisti-
cal data, and have usually considered only continuous random variables.
Friedman, like Pearl, is concerned with conceptual rather than statistical
modeling, and emphasizes discrete rather than continuous variables.

A Spurious Subjectivity

Friedman’s causal models are attractive, but they are obviously unrealis-
tic for legal applications. The problem, as Friedman himself explains, is that

2 See Pearl, Reverend Bayes on Inference Engines: A Distributed Hierarchical
Approach, in PROCEEDINGS OF THE SECOND NATiONAL CONFERENCE ON ARTI-
FICIAL INTELLIGENCE, AMERICAN ASSOCIATION FOR ARTIFICIAL INTELLIGENCE
133-36 (1982).

3 See Kim & Pearl, A Computational Model for Combined Causal and Diagnestic
Reasoning in Inference Systems, in PROCEEDINGS OF THE EIGHTH INTERNA-
TIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE 190-93 (1983); see gener-
ally J. Pearl, Fusion, Propagation and Structuring in Bayesian Networks, 29 ARTIFI-
CIAL INTELLIGENCE 241-48 (1986).

* See e.g., Wright, The Method of Path Coefficients, 5 ANNALS MATHEMAT-
iIcaL STAaTISTICS 161-215 (1934).
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the objective probabilities called for by these models are seldom available in
the context of adjudicative factfinding.

Friedman tries to rescue the relevance of his work from this unfortunate
fact by appealing to the personalistic interpretation of probability, according
to which rationality and consistency demand that a person have subjective
values for these probabilities. There is no reason, however, to expect events
that are causally independent to be independent with respect to a subjective
probability distribution. If we believed that C and P were independent given
R (as indicated by Figure A), then we might adopt as our subjective probabil-
ity distribution an average of several objective distributions for which C and
P are independent given R. Yet we should not expect C and P to be
independent given R with respect to this average.

A numerical example may make the point clearer. Suppose we know that
C and P are objectively independent given R. Suppose we also know the
objective conditional probabilities for R given C:

Pr{rain / cloudy] = 0.8, Pr[rain / not cloudy] = 0.1,
Pr[(no rain / cloudy} = 0.2, Pr[no rain / not cloudy] = 0.9.

But suppose we do not know the objective probabilities for C or the objec-
tive conditional probabilities for P given R. We know instead that there are
two impossibilities: Either Pr{cloudy] = .03, and

Pr{timely / rain] = 0, Pr[timely / no rain] = 0.8,
Pr{delayed / rain] = 0.2, Pr(delayed / no rain] = 0.1,
Pricancelled / rain] = 0.8, Pr[cancelled / no rain] = 0.1.

Or else Pr[cloudy] = 0.7, and

Pr{timely / rain] = 0, Pr{timely / no rain] = 0.8,
Pr{delayed / rain] = 0.8, Pr[delayed / no rain] = 0.1,
Pricancelled / rain] = 0.2, Pr[cancelled / no rain] = 0.1.

Suppose we give both possibilities the subjective probability 0.5. This deter-
mines a subjective joint probability distribution for C, R, and P. But relative
to this subjective distribution, C and P are not independent given R. We find,
for example, that

Pr{delayed / rain & cloudy] = 0.62,
while
Pr{delayed / rain & rot cloudy] = 0.38.

Even given that it rains in the afternoon. whether the picnic is delayed is not
independent of whether it was cloudy in the morning. This means that Figure
A is not valid for the subjective distribution.

The lesson I draw from this example is that Friedman's diagrams do not
survive his transition from objective to subjective probability.
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Explaining Relevance

This lesson is pertinent to Lempert's Bayesian account of relevance.’
According to this account, an item of evidence is relevant if its likelihood
ratio differs substantially from one. More precisely, evidence E is relevant to
hypothesis H given prior evidence F if the likelihood ratio

Pr(E/F & H)/Pr[E/F & not H]

differs substantially from one. This is equivalent to saying that E and H are
substantially dependent given F. In later elaborations of his views, Lempert
has emphasized that the probabilities in this ratio are subjective and may
vary from person to person, and so E is relevant if the ratio is substantially
different from one for at least one reasonable person.

In the example 1 just gave, the subjective likelihood ratio is 0.62/0.38, or
1.63, which is substantially different from one. even though we have a causal
model in which E and H are independent given F. Is the particular subjective
probability distribution [ used unreasonable? It is as reasonable as any.
There are no particular grounds on which to justify it, but neither are there
any grounds on which to justify any particular alternative.

Yet the lack of justification for this subjective distribution surely makes it
inappropriate to claim that the relevance of E has been established. It seems
to me that Lempert's Bayesian account of relevance is defective because it
takes too seriously the range of reasonable but unfounded subjective dis-
tributions.

A simple and more sensible non-Bayesian account can be given of the
significance of a causal model in which E and H are independent given F but
the objective probabilities are left unspecified. This account says simply that
the causal model does not establish the relevance of E to H. This is a purely
negative result. It leaves open the possibility that some other argument
might establish the relevance of E to H.

Who Is In The Majority?

In a footnote, Friedman suggests that the perception that Bayesians are in
a minority among statisticians is outdated. For those interested in this
question, here are some judgments offered by two distinguished Bayesian
statisticians, David Blackwell and Morris DeGroot, in a recent conversation
published in the inaugural issue of the new journal, Statistical Science.

Blackwell: Sort of a steady 5-10% of all work in statistical inference is
done from a Bayesian point of view.

DeGroot: 1 see the Bayesian approach growing, but it certainly is not
sweeping the field by any means.®

5 See Lempert, Modeling Relevance, 75 MicH. L. Rev. 1021 (1977).
6 DeGroot, A Conversation with David Blackwell, 1 STaTisTICAL ScI. 40, 48
(1986).






