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1. Glance at a broader landscape

We have a perpetual regression defining
probabilities in terms of probabilities in
terms of probabilities...

R. A. Fisher, 1958



Previous lectures studied game-theoretic probability using examples.

This lecture gives an axiomatic account.

Axiomatic account clarifies relation to:
* Bruno de Finetti’s subjective probability,
* the imprecise-probability generalization of de Finetti,

* measure-theoretic frequentism.



Some mathematicians
who defined probability
in terms of bets
considered fair.

No known
portrait
Blaise Pascal Christiaan Huygens  Abraham De Moivre Thomas Bayes
1623 - 1662 1629 - 1695 1667-1754 1702-1761

Some mathematicians
who defined probability in
terms of a person’s
willingness to bet.
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Joseph Bertrand Emile Borel Bruno de Finetti
1822-1900 1871-1956 1906-1985
France France Italy



Three ways of understanding probability in terms of betting:
1. Fair betting rates. (Pascal, Huygens, De Moivre, Bayes)
2. A person’s betting rates. (Bertrand, Borel, de Finetti)
3. Betting rates that cannot be beat. (Shafer/Vovk)

Shafer/Vovk closest to frequentism.

From my RSS paper:
Are the probabilities tested subjective or objective? 'T'he probabilities may represent
someone’s opinion, but the hypothesis that they say something true about the world
is inherent in the project of testing them.
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In measure-theoretic probability, we can prove that
frequency = probability in the limit
with measure-theoretic probability one.

In game-theoretic probability, can prove that
frequency = probability in the limit
with game-theoretic probability one.

The frequentist thinks this justifies interpreting probability as frequency.

The frequentist’s claim is just as legitimate (or illegitimate) with game-
theoretic probability as with measure-theoretic probability.



2. De Finetti + imprecise probabilists as Forecaster;
Shafer/Vovk as Skeptic

Lower and upper previsions represent
commitments to act/behave in certain ways.

Gert de Cooman, 2003



Probability forecasting
Skeptic announces Ky € R.
FORn=1,2,...:
Forecaster announces p,, € [0, 1].
Skeptic announces M, € R.
Reality announces y,, € {0, 1}.
Kn =K1+ M (yn — pn).

Forecaster makes betting offers.

Skeptic decides which, if any, to take.

Bruno de Finetti’s subjective theory took Forecaster’s viewpoint. He replaced the
traditional Italian term for expected value, speranza matematica (mathematical hope),

with previsione (forecast).

Founders of “imprecise probabilities” followed de Finetti’s example.

e Peter Williams 1975

* Peter Walley 1981, 1991
e Gert de Cooman (Launched Imprecise Probabilities Project with Walley in 1996.)
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Society for Imprecise Probability, Theory and Applications
SIPTA http://www.sipta.org/

Peter Walley Gert de Cooman
Born 1953 Born 1964
Australia Ghent, Belgium

Ph.D., Cornell, 1979

Prof. De Cooman will talk on
"Randomness and Imprecision" this
Monday (March 29) at 1pm EST in the
Rutgers Foundations of Probability
seminar.

If you are interested, contact me for
the zoom link.

This talk uses the martingale-theoretic
approach of game-theoretic probability
to incorporate imprecision into the
study of randomness. We associate
(weak Martin-Lof, computable,
Schnorr) randomness with interval,
rather than precise, forecasting
systems. The richer mathematical
structure this uncovers, allows us to,
amongst other things, better understand
existing results for the precise limit.
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Bruno de Finetti, 1931

... to measure numerically the degree of belief that a certain subject O has towards an
event E ... assume ... that he might be forced to keep a betting shop ...

... it is the decision of subject O ... to define the price p of one ticket, giving the right to
cash one lira in the eventuality that .... E occurs; having done so, he commits himself
to sell or to buy at such a price as many tickets as the public will want. ...

... Any competitor ....

From de Finetti’s “Sul significato soggettivo della probabilita”, 1931; translation by Mara Kahle.

To make this rigorously game-theoretic:
* name the competitor,
e specify the players’ information.




Peter Williams

In de Finetti’s picture, as Williams noted in 1975,

.an “opponent’ is free to choose the stake
and consequently whether the bet is on or
against the event in question.

Williams proposed

... to relax the requirement that the indi-
vidual take either side of an acceptable bet.

S0 the class of bets the agent considers acceptable

would be only a cone rather than a linear space.

Williams gave axioms for upper and lower conditional
previsions representing the relaxed model.

From 9t ISIPTA, page 20.

Williams, Peter M. (1975a). “Coherence, strict co-

herence and zero probabilities.” Fifth International
Congress of Logic, Methodology and Philosophy of
Science. Vol. VI, pp. 29-33.

(1975b). Notes on conditional previsions. Tech. rep.
Published as (Williams 2007). School of Mathemat-
ical & Physical Sciences, University of Sussex.
(1976). “Indeterminate probabilities.” Formal Meth-
ods in the Methodology of Empirical Sciences. Con-
ference for Formal Methods in the Methodology of
Empirical Sciences. (Warsaw, Poland, June 17-21,
1974). Ed. by Marian Przelecki, Klemens Szaniawski,
Ryszard Wojcicki, & Grzegorz Malinowski. Vol. 103.
Synthese Library. D. Reidel Publishing Company &
Ossolineum Publishing company, pp. 229-246. DoT:
10.1007/978-94-010-1135-8_16.

(2007). “Notes on conditional previsions.” Interna-
tional Journal of Approximate Reasoning 44. Pub-
lished version of (Williams 1975b), pp. 366-383. DoOI:
10.1016/j.ijar.2006.07.019.
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Peter Walley’s very rare 1991 book

e Like de Finett:i and Williams, Walley took Forecaster’s
viewpolnt.

e Like Williams. he used the terms lower prevision and
upper prevision.

e For Walley. a lower prevision P “represents a dispo-
sition to accept gambles of the form X — p whenever

p< P(X).” (page 101)
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Forecaster’s viewpoint is default in SIPTA.

A/ E

For an objective understanding of forecasting,
we need Skeptic’s viewpoint.
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Game-theoretic probability emphasizes upper expectation.
Imprecise probability theory emphasizes lower prevision.

Why?

Upper if you are Skeptic. Lower if you are Forecaster.

Game-Theoretic Foundations, page 131:

* Because most people buy more often than they sell, ordinary
language is more developed for buying.

» Skeptic’s buying prices are given by the lower functional.

* Forecaster’s buying prices are given by the upper functional.
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3. Local and global

Think global, act local.

Attributed to Patrick Geddes, 1915
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Testing a forecaster
Forecaster announces a probability distribution /7 on Y.
Skeptic announces S : Y — [0,00) such that Ep(S) = 1.
Reality announces y € Y. _
K = S(y). The variable S on the local sample space YV

has expected value Ep(5).

Testing a forecaster over time

Ko :=1. Local variables .S, have expected values Ep (.5,,).
FORn=1,2,...,N:
Forecaster announces a probability distribution P, on ).
Skeptic announces S,, : Y — [0,00) such that Ep (S,,) = K,,—1.
Reality announces y,, € ).

K= Sn(yn).
We also have global variables. In general,

they have global upper and lower expected
values.
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Testing a forecaster over time
]CO = 1.
FORn=1,2,....N:

Local variables .S, have expected values Ep (.5,,).

Forecaster announces a probability distribution £, on ).
Skeptic announces S,, : Y — [0, 00) such that Ep (S,,) = K,,—1.

Reality announces y,, € V.
K= Sn(yn).

We also have a global sample space €2:

variables with upper expected values.
events with upper probabilities.

We can prove

P

() consists of paths of the form Py, ... Pyyn.

See Lecture 3,
slide 309.
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From page 98 of Game-Theoretic Foundations

Abstract

Local

Global

outcome space Y Reality’s move space Y

outcome y € Y

Reality’s move y € Y

event £ C Y local event £ C Y

upper probability P(FE) upper probability P(E')
extended variable f : Y — R | local variable [ : Y — R
upper expected value E( f) upper expected value E( f)
upper expectation E local upper expectation E

sample space (2

path w € ()

global event £ C ()
upper probability P(E)
global variable X : Q@ — R

upper expected value E(.X)

global upper expectation E

Here R = [—o00,00]|. For abstract theory, it is best to

imclude variables that take infinite values.
convention —oo + 00 = 0.

We use the
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4. Axioms

As far as the laws of mathematics refer to
reality, they are not certain; and as far as
they are certain, they do not refer to reality.

Albert Einstein, 1921
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Axioms for upper expectations from Game-Theoretic Foundations, p. 113:

Given a nonempty set ), we call a functional E : RY — R an upper expectation on
YV if it satisfies these five axioms:

Axiom EL. If fi. fo e RY. then E(f; + f2) < E(f1) + E(f2).
Axiom E2. If f € RY and ¢ € (0,00), then E(cf) = cE(f).
Suboptimality allowed. Axiom E3. If f1, fo € RY and fi < fo.then E(f1) < E(f2).
Coherence. Axiom E4. Foreachc € R, E(c) = c.
Axiom ES. If f1 < fo < --- € [0,00]Y. then E (limp_, o0 fx) = limp_ oo E(f)-

We call Axiom ES the continuity axiom. We call E(f) f’s upper expected value.

Continuity axiom not needed for major results; simplifies some proofs.
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Some direct consequences of the axioms:

IffeRY andc e R, then E(f +c)=E(f)+c

If f € RY, then inf f <E(f) <supf.

If fi.fo.--- € [U,-DC , then E (Z f_:f) < ZE 1) \
k=1
Iff € RY, then f > 0= E(f) > 0. /

Require continuity axiom.
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Kolmogorov (1933) on the continuity axiom:

...Since the new axiom is essential only for infinite fields of proba-
bility, it is hardly possible to explain its empirical meaning... . In
describing any actual observable random process, we can obtain only
finite fields of probability. Infinite fields of probability occur only as
idealized models of real random processes. This understood, we limit
ourselves arbitrarily to models that satisfy Aziom VI. So far this lim-
itation has been found expedient in the most diverse investigations.
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Axioms for pricing non-negative payoffs (Game-Theoretic Foundations, p. 104)
Axiom E19:°], fffl fa € [U DC-]y+ then E(fl + fo) < E(fl) + E(fg)

Axiom E2[%l, [f f € [0, 00]¥ and ¢ € (0, ), then E(cf) = cE(f).
Axiom E3[%2°l, [f f1. fo € [0,00]Y and fy < fo. then E(f1) < E(f2).
Axiom E41%>l. For each c € [0. ), E(¢) = ¢

Axiom E5l0°°l, Jf fi < fo < ... arein [0, c]”, then

E ( lim f;;) = lim E(f#).

k— oo k— oo

Extra axiom  Axiom E6!°>°l. If f € [0, 00]” and c € (0, ), then E(f + ¢) = E(f) + c.

Functional satisfying these axioms can be extended upper expectation on all payoffs.

23



Beginning with Williams, axioms for imprecise probabilities
have been stated in two equivalent forms:

* Axioms for lower/upper previsions
* Axioms for the set of offered gambles

The essential axioms for offered gambles say that
1. offered gambles can be combined,
2. any multiple or fraction of an offered gamble is offered,
3. sure payoff is not offered.



Natural axioms for offered gambles:

Axiom G1. If g;. 92 € G, then g1 + g2 € G.
Axiom G2. If ¢ € [0,00) and g € G, then ¢g € G.
Axiom G3. If g1 € RY, g3 € G, and g; < g9. then g1 € G.

Axiom G4. If g € G, then inf g < 0.

To make equivalent to axioms for upper expectations, add:

Axiom GO. If g € RY and g — € € G forevery € € (0, 00), then g € G.

Continuity axiom:

Axiom G5, If g1 < g2 < ... are all in G, and ¢g; 1s bounded below, then

lime_ o g1 € G.

Ecg(f) =infla eR| f—ac G}

Gy = {g ¢ RY | E(g) <0}
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Testing a probability p
Skeptic announces Ky € R.

Skeptic announces M,, € R.
Reality announces y,, € {0,1}.
}C'T?, = }Cn—l + j\[n(yn — p)

Testing the hypothesis that p <
Skeptic announces Ko € R.
FORn=1,2....:
Skeptic announces M > 0.
Reality announces y € {0, 1}.
Kn =Kno1+M(y— %).

1
2

Local
if Ske

1.

offers satisfy the axioms
otic can

nave negative capital and

2. waste money.

Testing a probability forecaster
Skeptic announces Ky € R.
FORn=12...:

Forecaster announces a probability distribution P, on Y.
Skeptic announces S;, : JV — R such that Ep_(S,,) exists.

Reality announces vy, € V.
Kjﬂ — K:TL—]. —|_ Lg.n(y.nJ.

In each protocol, the offers
satisfy the axioms for offers.
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Major result in Game-Theoretic Foundations (2019)
(first posted as a working paper in 2009)

If a protocol’s local upper expectations satisfy the

axioms, then the global one does too.

Generalizes Kolmogorov’s extension theorem.
Closely related to

 Doob’s martingale convergence theorem,
 Lévy’s zero-one law.

Continuity axiom not required.
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http://probabilityandfinance.com/articles/29.pdf

5. Global upper expected value

It is well known that in the Middle Ages al
scholastic philosophers advocated Aristot

]

'

€S

"Infinitum actu non datur" as an irrefutab]
principle.

€

Georg Cantor, 1866
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Abstract protocols

PARAMETER: Nonempty set )/
Skeptic announces Ky € R.

FORn=1.2....:
Forecaster announces an upper expectation E,, on ). For abstract theo ry,
Skeptic announces f,, € RY such that E,,(f,,) < K,_1.
Reality announces y,, € ). the Second prOtOCO|
Kn = fu(Un). is adequate. World
combines Forecaster
PARAMETERS: Nonempty set J; upper expectation Eon) and Rea“ty.
Skeptic announces Ky € R.
FORn=1,2,...:

Skeptic announces f,, € RY such that E(f,,) < K, _1.

CWorldannounces y,, € V.
’Cn- :: ]0?1(?.;”}*
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PARAMETERS: Nonempty set J; upper expectation E on )/

Skeptic announces Ky € R.
FORn=1,2,...:

Skeptic announces f,, € RY such that E(f,) <K,._1.
World announces y,, € V.

}Cn = fn(Un)

Set  Elements of the set

T supermartingales

L supermartingales that converge in R
M  martingales

Definition of global upper expected value

T:{j{) . — lllf{ﬂ] ‘ T c T? il‘lfT > — 00, HHI il'lf 7;1 E j{}

Recall simpler definition for the finite-horizon protocol for

testing p.

E(X):=inf{7y|T € T and Ty > X}

Testing a probability p

Skeptic announces Ky € R.

FORn =1

7

Skeptic announces M,, € R.
Reality announces y, € {0,1}.
’Cn = ]Cn—l + A[n(yn - p)




Definition of global upper expected value

E(X):= iuf{'}'.'] ‘ T eT . infT > —oo. liminf7,, > X}

T — OO

We can also use the same definition in a non-initial situation:

E.(X) = inf{T{s) | T € T,inf T > —00,Vw € Q, : liminf 7, (w) > X(M)}

— 0O
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Definition of “almost sure”

An event E 1s almost sure if there exists a nonnegative
supermartingale that tends to oo on all paths outside E.

Definition of global upper expected value

E(X) := mf{’,&. | T eT.inf T > —o0, liminf T;, > x}

— OO

Lévy's zero-one law will imply that [E 1s an upper expec-

tation. (page 160)

Once we know that £ 1s an upper expectation, it 1s easy
to show that E is almost sure if and only if P(E£) = 0.
(page 161)
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6. The supermartingale of upper expected values

... [Doob’s] theorem had ancestors in two different
frameworks: in Lebesgue’s theory of integration there was
his proof (1903) of the theorem about differentiation almost
everywhere; in Borel’s theory of denumerable probabilities
there was his statement and proof by probabilistic
arguments (1909) of the almost sure convergence of
frequencies in the game of heads or tails—the first version of
the strong law of law numbers.

Bernard Bru, 2009
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Doob’s martingale convergence theorem
A nonnegative supermartingale that begins with a finite
value converges 1n R almost surely.

This can be proven in our abstract protocol using Doob’s
upcrossing argument.

34



Definition of global upper expected value

E (X) := i1‘1f{T[5) ‘ TeT.infT > —o00,Vwe Q : liminf 7, (w) > }i(r,u)}

— OO

Proposition 7.7. If X is a bounded below global variable and s € S, then

E.(X) = i1‘1f{T(5) ‘ T €TandVw € Qg : limsupT,(w) > X (w)}

M—r OO

— i1‘1f{£(5) ‘ LeLandVw € ), : lim ﬁn(fﬂ) > X(u})}

n— OO
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The Supermartingale of Upper Expected Values
Theorem. If X is a global variable, then Eg(X ), 4

considered as a function of the situation s. is a /%

supermartingale.
/ /
. . \ ‘a/\
We can also write the supermartin- S. _——
gale as Eg(X), Eq(X),...

I
(Any process can be written both w<\

as a sequence of random variables Here s is a situation at time 2.

and as a function on the situations.) Es(X) for this particular s is one
of the 4 possible values of Eq(X).
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7. Lévy’s zero-one law

The first martingale convergence theorem is the

celebrated Paul Lévy 0-1 law. It is perhaps one of

the most beautiful results of probability theory.
Michel Loeve, 1973
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Lévy’s zero-one law
Theorem 8.1. If X is a bounded-below global variable in Protocol 7.1, then

IiminfE,(X) > X a.s.

n— OC

We prove it with a more complicated version of Doob’s upcrossing argument.

Corollary 8.9. Suppose X is a bounded global variable and has an expected value.
Then

lim E,(X)=X as <—What Lévy said

n— OO

Corollary 8.10. Suppose the event E has a probability. Then

lim P,(F)=1g a.s. <_Why we call it a
e Zero-one law
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8. Classical, measure-theoretic, game-theoretic

The true basis of the probability calculus is the
principle of compound probability, which allows
us to replace two experiences with a single
experience.

Paul Lévy, 1954
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A century ago, probability theory was often based on two axioms:

Total probability. For mutually exclusive A and B,

Prob(A or B) = Prob(A) + Prob(B).

Compound probability. For successive A and B,

Prob(A and B) = Prob(A) x Prob(B after A happens).

40



The rule of compound probability allows
us to construct a distribution for a se-
quence of variables Y7, Y5, . .. step-by-step.

e [irst specity a distribution for Y7.

e Then a distribution tor Y5 for each value
y1 of Y7.

e Then a distribution for Y3 for each pair
Y1, Yo of possible values of Y7, Ys.

e Litc.

We still do it this way in math stat.

Cassius lonescu Tulcea
1923-2021

In 1949, as measure theory was
ascendant, lonescu Tulcea gave
measurability conditions under
which the classical construction
produces a probability measure.

Now we pretend that the measure
comes first, thus imposing the
awkward notion of “conditional
expectation” on ourselves.

Alexander Philip Dawid

Born 1946

In 1985, Dawid gave new theoretical
life to the classical construction by
calling its ingredients a probability
forecasting system.

In game-theoretic probability, it is a
strategy for forecaster.



Protocol 9.1.

PARAMETER: Measurable space (Y, F)
Skeptic announces Ko € R.
FORn =1,2,...:

Forecaster announces F,, € P()).
Skeptic announces f,, € RY such that P, (f,) < K,._1.
Reality announces y,, € V.

e Let ¢ be a strategy for Forecaster that uses only
information in the game.

e Call ¢ a probability forecasting system.

e Let P, be the probability measure on > construct-

ing by using ¢’'s moves as conditional probabilities.

Protocol 9.2.

PARAMETERS: Measurable space (), F), probability forecasting system ¢

Skeptic announces Koy € R.
FORn =1,2,...:

When Forecaster uses a
probability measure’s
conditional probabilities as a
strategy, the global expected
values agree with the
probability measure.

<4 |onescu Tulcea

Ville’s Theorem. Every bounded mea-
surable function X on Y has a game-
theoretic expected value in Protocol 9.2,

Skeptic announces f,, € RY such that ¢, (y1.y2. ... )(fn) < Kn_1. and E(X) — Ep (X)
) .

Reality announces y,, € ).

}Cn = fn(Un)
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Lévy’s zero-one law also implies a duality between game-
theoretic and measure-theoretic probability:

Theorem 9.7 in Game-Theoretic Foundations

The upper expected values we obtain as infima over
game-theoretic supermartingales are also suprema
over probability measures.

Much stronger regularity conditions required here.
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9. Independence and causality

Were counterfactuals to have objective meaning,
we might take them to be basic, and define
probability and causality in terms of them.

Glenn Shafer, 1996
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Exercise 7.11 (causal independence). Show that if X and Y are nonnegative global variables
in a testing protocol such that X (w) depends only on w; and Y (w) only on wy, where j < £k,

then E(XY) = E(X)E(Y).

The Art
of Causal
Conjecture

[]

I would love to see the
results of my 1996 book on
probabilistic causality
(probability trees) restated
in game-theoretic terms.
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