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1. Game theory and betting protocols

Die Frage, ob die Anfangsposition p, bereits fur eine
der spielenden Parteien ein “Gewinnstellung” ist,
steht noch offen. Mit ihrer exacten Beantwortung
wdirde freilich das Schach den Charakter eines

Spieles Uberhaupt verlieren.

Ernst Zermelo, 1913



To make testing-by-betting rigorous,
we must define a game.

This means specifying
1. the players,
2. how they move (simultaneously? in order?),

3. the information available to them,

4. their goals.



Economics and most other fields that use game theory use
games of imperfect information. Players move simultaneously.
e von Neumann’s minimax theorem
* Nash equilibrium

We use a narrow but older part of game theory:
two-player games of perfect information.

We usually ask whether one player can achieve a certain goal. The
others being a team, this makes the game a two-player game.



Specify:

1. The players

2. Rules for moving

3. Information the players have when they move
4. Rule for winning (or goal for each player)

===

Player | Player |
Player I Player Il

Player | wins at red.

Who has a winning strategy?

Zermelo’s theorem (1913):

In a two-person perfect-information
game that always has a winner, one
of the players has a winning strategy.



Zermelo’s theorem:

In a combinatorial game, one
of the players has a winning
strategy.

Player | wins at red.

PROOF BY BACKWARD RECURSION




Zermelo’s theorem (1913):

In two-person perfect-information game that always has
winner, one player has a winning strategy.

Generalized in 1990 to games with infinite horizon (p. 90 of Game-Theoretic Foundations).

Lecture 3: Theorems that say something happens with
high probability (e.g., law of large numbers) become
theorems in game theory.

Ernst Zermelo e Equate P(A) = 1-a with bettor having strategy that

1871-1953 multiplies capital by 1/a unless A happens.

German logician
5 e Equate P(A) = 1 with bettor having strategy

that multiplies capital infinitely unless A happens.



Zermelo’s theorem:

In a two-person perfect-information game that always
has a winner, one of the players has a winning strategy.

In two-person perfect information games, pure
strategies are used to prove theoremes.

But you can test by betting without a strategy!

Proving probability theorems is one of many ways of using testing by betting.



To make testing by betting rigorous, we must define a game.

This means specifying

1. the players

2. how they move (simultaneously? in order?),
3. the information available to them,

4. their goals.

We use betting protocols to specify 1, 2, and 3.

e The players move in order.

 They see each other’s moves as they are made (perfect information).
e Each may have other information (specified by the protocol or not).

We may vary the players’ goals without changing the protocol.



Many of the following examples of betting
protocols are in the RSS paper studied in
the first lecture.

Others are in Game-Theoretic Foundations.



2. Testing a probability distribution

... the odds are now only 8 to 1 against a system of deviations
as improbable or more improbable than this one.

Karl Pearson, 1900
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Testing a probability distribution /° on )
Skeptic announces S : ) — [0,00) such that Ep(S) = 1.
Reality announces y € V.

K == S(y). N

Betting protocol
e S is the bet.

e S(y) is the betting score.
e Skeptic is testing the probability distribution P.

e Skeptic is trying to make S(y) large, but his real goal is to see
whether PP and Reality agree.
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Testing a probability distribution P on )V
Skeptic announces S : Y — |0, 00) such that Ep(S) = 1.
Reality announces y € Y.

K:=S(y).

The probability space (P, )) is arbitrary.
e y can be multi-dimensional.

e [° can the probability distribution
for a stochastic process ¥ = (Y1,...,Yn).
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Testing a probability distribution P on )Y

Skeptic announces S : Y — [0, 00) such that Ep(S) = 1.

Reality announces y € V.

K:=5(y).

This 1s a perfect information protocol:
e The players move sequentially.

e Fach sees the other’'s move as it 1s made.
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Testing a probability distribution P on )
Skeptic announces S : Y — [0,00) such that Ep(S) = 1.
Reality announces y € ).

K= 5(y).

Special case: Y = {0, 1}.
Think of 1 as Heads and 0 as Tails.
Testing a probability p for y =1

Skeptic announces sg, s; € [0, 00) such that ps;+(1—p)sg = 1.

Reality announces y € {0, 1}.
K :=ysi+ (1 —y)so.

16



Special case: ) = {0, 1}.
Think of 1 as Heads and 0 as Tails.
Testing a probability p for y =1

Skeptic announces sq, s; € [0, 00) such that ps;+(1—p)sy = 1.

Reality announces y € {0, 1}.
K :=ys1 4 (1 = y)so.

Another way of stating this protocol
Testing a probability p for y =1
Skeptic announces M such that % < M <

1
# - pi
Reality announces y € {0, 1}.

K:=1+M(y—p).

The two versions are related by

ﬂ[:Sl—lzl—SU
I —p P
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1

The two versions when p = 3

Testing the probability % for y=1

Reality announces y € {0, 1}.
K = ys1 + (1— y)so.

Skeptic announces sg, s; € [0, 00) such that (s + s9)/2 = 1.

Testing the probability % for y=1
Skeptic announces M such that —2 < M < 2.
Reality announces y € {0, 1}.
K:=14+M(y— %)

Yet another variation: Use {—1,1} instead of {0,1} as ).

Testing a probability % for y =1
Skeptic announces M such that —1 < M < 1.
Reality announces y € {—1,1}.
K:=14 My.
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3. Testing a probability forecaster

...the observation ... that many chaotic empirical phenomena ...
exhibit stable [relative frequencies] ... arises as a consequence of
our methodological practice of first removing noticeable
regularities (e.g., drifts, cycles, etc.) from the data ...

Terrence L. Fine, 1976
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Is P a good description of reality?

Testing a probability distribution P on )
Skeptic announces S : Y — [0,00) such that Ep(S) = 1.
Reality announces y € ).

K= 5(y).

Psychological shift:
P belongs to Forecaster,
Testing a forecaster not to Reality.
Forecaster announces a probability distribution P on }. )
Skeptic announces S : Y — [0, 00) such that Ep(S) = 1.
Reality announces y € ).

K:=5().

|s Forecaster a good forecaster?
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Testing a forecaster
Forecaster announces a probability distribution /2 on V.
Skeptic announces S : )Y — [0, 00) such that Ep(S) = 1.
Reality announces y € V.

K= 5(y).

Testing a forecaster over time
]C[) = 1.
FORn=1,2,...,N:
Forecaster announces a probability distribution £, on ).

Skeptic announces S,, : ) — [0,00) such that Ep (5,,) =K, _1.

Reality announces y,, € V.
Ko, := Sn(yn). This is outside standard probability.

We have no joint distribution for yy, . .. yx.
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Testing a forecaster over time

;IC{] = 1.

FORn=1,2,... N:
Forecaster announces a probability distribution P, on Y.
Skeptic announces S, : Y — [0,o00) such that Ep,_(S,,) = K, _1.
Reality announces y,, € V.

an — lg.n ('yn).

Compare to testing a probability distribution P for a
stochastic process Y = (Y1,....Y),).

Testing a stochastic process
;IC{] = 1.
FORn=1,2....,N:

Skeptic announces S,, : YV — [0, oo) such that Ep(S,,(Y,,)|vy1.....

Reality announces iy, € Y.
’Kjﬂ- — Lg.n(yn).

Probability distribution for stochastic
process is a kind of strategy for Forecaster.

Probability distributions don’t tell Reality
what to do. They tell Forecaster what to do.
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4. One-sided offers & suboptimal bets

... It i1s always possible for the individual to choose whether to
bet at the extreme rates, or only arbitrarily closely, in such a
way that he never accepts a bet which he can only lose.

Peter M. Williams, 1975
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One-sided betting offer Skeptic is only allowed to bet on y = 1.

Testing the probability 1 for Y = (Forecaster: y = 0 more likely than not.)
2
Skeptic announces M such tha,J < 2.

Reality announces y € {0, 1}.
K:=1+M(y— %)

Bets suboptimal for Skeptic

Testing a forecaster over time . .
Ko =1 Skeptic can give up money.

FORn=1.2 N- (Calculation too difficult?)

Forecaster announces a probability distribution F,, o
Skeptic announces S,, : Y — [0, 00) such that Ep (S 1

Reality announces y,, € ).
Koo i = Sn(yn).
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5. Using signals

The idea of regression is usually introduced in connection with
the theory of correlation, but it is in reality a more general, and,
In some respects a simpler idea, and the regression coefficients
are of interest and scientific importance in many classes of data
where the correlation coefficient, if used at all, is an artificial
concept of no real utility.

R. A. Fisher, 1925
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Introducing aunxiliary information x, sometimes known as
e signal in engineering,
e independent variable in statistics,

e object in machine learning.

Testing a forecaster over time

K:{] = 1.

FORn=12 ..., N:
Reality announces z,, € X.
Forecaster announces a probability distribution F,, on Y.
Skeptic announces S, : Y — [0,o0) such that Ep (S5,) = K, —1.
Reality announces v, € V.

Kn = S-n(yn)*

26



Testing a forecaster over time
Ko := 1.
FOR n=1.2.. .. N: What does a strategy

Reality announces =, € X. for Forecaster in thIS

Forecaster announces a probability distribution P, on V.

Skeptic announces Sy, : Y — [0, 00) such that Ep_(Sy,) = K,—1. protocol look like?

Reality announces y,, € V.

Kn = 5n (Un)
One type of strategy for Forecaster specifies for all n and all possible
T1Y] - . . Tp—1Yn—1Tn a probability distribution Py, . 2z, _yyn_iazn-
_ Testing a forecaster’s strategy that uses a signal
Again we seem to Ko:=1.
be outside standard FORn=1,2,...,N:
orobability theory. Reality announces z,, € X.

Skeptic announces S,, : Y — [0, 00) such that
— }C?l—l'

. P‘rlyl“'rn—lyn—lrﬂ( TL)
Reality announces vy,, € V.

Krn = Sn(yn).
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Psychological divergence between probabilists and mathematical statisticians

By late 20th century, mathematical probability meant

e Kolmogorov (axioms, abstract Lebesgue integration,
conditional expectation) plus

e Doob (add filtration).
In the resulting “folk picture”.

e all probabilities live within a single filtered probabil-

ity space (€2, P, (F})ier)

-
’

e () 1s so huge that the complete actual evolution of
the umverse 1s described by a single w € ().
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The probabilists’ folk picture has infiltrated some applied work, but

e applied statistics often retains the picture where probabilities
merely describe or forecast small worlds, as in Fisher’s fixed-o
regression,

e statisticians continue to combine p-values a la Fisher even though
they do not believe in a global probability distribution for what
experiments would have been conducted,

e those statisticians who consider probability subjective tend to
reject the global nature of the folk picture,

e workers in “imprecise probability” now pursue notions of sub-
jective probability that use less than a probability measure,

e came-theoretic probability also moves away from complete prob-
ability measures.
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6. Testing market efficiency

,,,;market efficiency per se is not testable. It
must be tested jointly with some model of
equilibrium, an asset-pricing model.

Eugene Fama, 1991

30



Remember our protocol for the probability 1 for Heads
when Heads 1s coded as 1 and Tails as —1:

Testing a probability % for y =1
Skeptic announces M such that |M| < 1.
Reality announces y € {—1,1}.

K:=1+ My.

Generalize this from one to many flips:

Ko := 1.
FORn=1.2.....N:

Reality announces y, € {—1,1}.

]Cn = ]Cn—l T ﬂj;'r.i n:

Skeptic announces M,, such that |M,| < IC,,_1.
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]C(ZJ ="

FORn=1,2,..., N:
Skeptic announces M,, such that |M,| < K,,_;.
Reality announces y, € {—1,1}.

]Cn L= ]C-n-—l + *ﬂ"[n-? n-

Now make one small further change: change Reality’s
move space from {—1,1} to [—1, 1].

Ko = 1.

FORn=1.2...., N:
Skeptic announces M,, such that |M,| < K, _;.
Reality announces y,, € [—1, 1].

]Cn = }Cn-—l + ﬂ'[n-:l n:

Here Skeptic 1s testing a forecaster who gives the esti-
mate 0 to successive quantities y;. . .. . y, that are bounded

between —1 and 1.
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]Cn = 1.

FORn=1,2,....N:
Skeptic announces M,, such that |M,| < K, _4.
Reality announces vy, € [—1,1].

]Cn = ]C-n.—l + J[Hyn

Let’'s make 1t more interesting and allow Forecaster to
vary his estimate:

Ko = 1.

FORn=1,2,...,N:
Forecaster announces m,, € (—o0, 00).
Skeptic announces M, such that |M,| < K, _;.
Reality announces y, € [m,, — 1, m,, + 1].

K, =K.-1+ M,(y, —my,).

Protocols of this type can be used to study problems
often called *non-parametric”.
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Ko = 1.
FORn=1,2....,N:
Forecaster announces m,, € (—o00,00).
M,| <K,
Reality announces y,, € [m,, — 1, m,, + 1].

K, =K,-1+ M, (y, —m,).

Skeptic announces M, such that

With one more twist, we get a protocol for testing the
efficiency of a financial market. Today’s price for a fi-
nancial security i1s an estimate of tomorrow’s:

Ko = 1.
* A stock price cannot be Market announces vy € (0, 00).
negative. FORn=1.,2,....N:
e We are assuming a limit Skeptic ammressaces M, such that |M,| < K, ;.
on its change in one day. Market announces v, € (max(0. y,—1—1). y,—1 +1].

]Cn = ]C-n..—l + J[n(yn — yn—l)-

WP 1, 3, 44, 47 at www.probabilityandfinance.com.
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