WORKING PAPER NO. 232

AN AXIOMATIC STUDY OF
COMPUTATION IN HYPERTREES

by

Glenn Shafer

October 1991




An Axiomatic Study of
Computation in Hypertrees:

Glenn Shafer?
Wednesday, October 16, 1991

Abstract. Theories of computation in acyclic hypergraphs (or hypertrees, as they
are called here) have been developed for a variety of problems, from solving sparse
linear equations to finding posterior probabilities in Bayesian expert systems. These
theories are disparate in many ways, but they all exploit the tree-like structure of the
hypertree. They all involve a step-by-step computation inward to the middle of the
tree, and some involve a further step-by-step computation outward.

This paper undertakes to distill what these different theories have in common into
general axioms relating a commutative semigroup to a lattice. These axioms can be
varied to allow for differences in the uniqueness and flexibility with which various
operations can be performed.

1. Introduction

Computation in acyclic hypergraphs (or hypertrees, as they are called here) has
been studied for a variety of problems, including

—the solution of sparse linear equations (Rose 1970),

—dynamic programming (Bertelé and Brioschi 1972),

—the management of relational databases (Beeri, Fagin, Maier, and
Yannakakis 1983; Maier 1983),

—constraint propagation (Dechter, Dechter, and Pearl 1990),

—belief computation in Bayesian expert systems (Lauritzen and Spiegelhalter
1988; Pearl 1988),

—belief computation in belief-function expert systems (Shafer, Shenoy, and
Mellouli 1987; Dempster and Kong 1988),

and
—the solution of influence diagrams (Shenoy 1990, Shachter, Andersen, and

Poh 1990, Ndilikilikesha 1991).
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The author has profited from conversations with Robert Cowell, Chandler Davis, Finn Jensen, Saunders
Mac Lane, Steffen Lauritzen, Pierre Ndilikilikesha, and others. Further suggestions for improvement are
welcome. The research has been partially supported by NSF grant |Ri-8302444.
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In each of these problems, one begins with several functions or other mathematical
objects, each involving a different cluster of variables. The clusters form a hypergraph.
When this hypergraph decomposes, the computational problem decomposes as well.
In the most favorable case, when the hypergraph is a hypertree, the computational
problem decomposes to the extent that it reduces to a sequence of computations
within the clusters.

This paper undertakes to distill what these problems have in common into some
general axioms. Because the purpose of the paper is to identify the bare essentials
needed for hypertree computation to work, the setting for the axioms is abstract. The
axioms are about domains (elements of a lattice), potentials (elements of a
commutative semigroup), and relations among them. This level of abstraction is not
fully needed, however, for the examples considered in the paper. In all these
examples, the domains are sets of variables, with set inclusion as the lattice ordering.
In the simplest examples, the potentials are functions on these variables, with either
multiplication or addition as the semigroup operation.

In general, hypertree computation involves two phases, each with its own type of
computation. The first phase moves inward in the hypertree, repeating a certain type
of computation to successively simplify the problem. The second phase moves back
out in the hypertree, repeating a different computation that uses the results of the first
phase to solve the problem. In some problems, only the first phase is needed; but in
other probiems, both are needed.

In the inward phase, the emphasis is on some kind of reduction—some operation
that simplifies a potential involving one domain to a potential involving a smaller
domain. In general, reduction may involve some arbitrary choices, and the simpler
potential on the smaller domain may not be unique. If itis unique, we call it a
marginal. (In the probability problem, a marginal is obtained by summing out
variables. Different operations are involved in other problems. We maximize out
variables in dynamic programming, eliminate variables when solving linear equations,
and so on.) All of our computational problems begin with potentials involving a
number of relatively small domains. We want to combine these potentials using the
semigroup operation and then reduce or marginalize the result, which may involve a
large domain and hence be difficult to work with computationally, to one of the initial
domains. It turns out that if the initial domains form a hypertree (sometimes additional
conditions must also be satisfied), then this can be achieved by means of a sequence
of combinations and reductions within domains as we move inward in the hypertree;
the potential resulting from the combination over all the domains need not be dealt
with explicitly or directly.

In the outward phase, the emphasis is on the solution of the problem that was
successively reduced in the inward phase. We now suppose that along with each
reduction we compute a partial solution, or extender, which relates the reduction to the
potential being reduced. (An extender is a conditional probability function in the
probability problem, a map showing where the maxima were attained in the dynamic



programming problem, and a set of equations expressing the variables eliminated in
terms of those that remain in the linear equations problem.) Formally, extenders are
themselves potentials, but in many cases they can be represented and manipulated
more easily than arbitrary potentials. In the outward phase, the extenders are
combined in order to solve either the overall problem or a series of subproblems.

This paper gives several sets of axioms. This reflects the exploratory nature of the
paper and also differences among problems in the uniqueness and flexibility with
which computations can be performed. For each set of axioms, we derive the
possibility of hypertree computation and give examples.

We consider only five computational examples: dynamic programming, factored
probability distributions, sparse systems of linear equations, constraint propagation,
and belief functions. Other examples are anticipated, however, by some of the
material covered and by some aspects of the presentation. The use of arbitrary
latttices anticipates examples where the objects with which we are dealing are not
defined on sets of variables.

The reader will observe a tension between the desire for simplicity at the axiomatic
level and the desire to stay as close as possible to computational reality. Both goals
are important. Simple axioms can help us understand what is common to our different
computational examples, but it is primarily the computational structure we want to
understand, not the structure of a mathematical theory inspired by the computation.

Outline of the Paper. Chapter 2 reviews basic definitions for commutative
semigroups, lattices, hypergraphs, and hypertrees.

Chapters 3 studies the inward phase of hypertree computation in the case where
every potential has a marginal on every subdomain. This is an important special case,
since it includes most of our examples.

Chapter 4 shows how an additional axiom, which is satistied by most of our
examples, allows us to simplify the axioms of Chapter 3. Unfortunately, the
simplification is at the price of computational relevance.

Chapter 5 takes up the outward phase of computation in the case where every
potential has a marginal on every subdomain, and in addition, extenders allow us to
reconstruct potentials from their marginals. We call the extenders “continuers” in this
case. Chapter 6 deals with extenders more generally, still assuming the existence of
marginals.

Chapters 7 and 8 treat the case where reduction is always possible but may not be

unique. Chapter 7 treats the inward phase of hypertree computation for this case, and
Chapter 8 generalizes this treatment to account also for the outward phase.

Topics Not Discussed. This paper leaves aside many important issues and
themes connected with the computational problems with which it deals. Most
importantly, it does not discuss how to search for feasible hypertree covers or what to
do when there are no feasible hypertree covers. These are both difficult questions.



There are only heuristics for searching for feasible hypertree covers (Bertelé and
Brioschi 1972). There are iterative methods for some problems when there is no
feasible hypertree cover, but there does not seem to be a theory at the level of
generality at which we are working here.

We also do not discuss join trees. Roughly speaking, join trees provide an
alternative representation for hypertrees. This representation makes the tree-like
nature of hypertree computation much clearer, but it is not needed for the exposition
here.

Finally, we do not discuss recursion or parallel computation. Many of the problems
that fall under the theory presented here have been discussed in the context of
recursion (because the same computation is required at each step inward or outward
in the tree) and parallel computation (because computations in different branches of
the tree can be carried out simultaneously). These are important aspects of the
general theory as well, but there is no need to elaborate on them in this paper.

2. Mathematical Preliminaries

This chapter reviews elementary definitions and facts about several mathematical
topics: commutative semigroups, lattices, graphs, hypergraphs, and hypertrees. Most
of the definitions are standard. Some standard references are Petrich (1973) for
semigroups, Birkhoff (1967) for lattices, and Berge (1973) for graphs and hypergraphs.

2.1. Commutative Semigroups

A semigroup is a pair (&,®), where @ is a set and ® is an associative binary
operation on ®. When we say that ® is a binary operation on @, we mean that® is a
map that assigns to every ordered pair of elements of @ another element of . We
write @1®¢, for the element of @ that @ assigns to the ordered pair (¢y,92), and we call
p1®¢2 the product of ¢¢ and g2. When we say that the binary operation ® is
associative, we mean that

(P1©092)®%3 = P1®(P20¢3)
for every triplet of (g1,92.¢3) of elements of ®. This implies that the result of combining
any finite number of elements of ® using the operation ® does not depend on where
the parentheses go. Thus we may write @1®p2® @@, for the product of @1,¢2,.... ¢n.

Though we must specify both the set @ and the binary operation ® when we specity
a semigroup, we often mention only @ explicitly, leaving ® implicit. The next
paragraph, for example, refers to a semigroup .

A semigroup @ is commutative if
P1OP2 = P2BP1
for every pair of (pq,¢2) of elements of ®. This implies that the result of combining any
finite number of elements of & using the operation ® does not depend on the order in



which the elements are taken. Thus we may write ®&{@ili=1,...,n} for the product of
1,92, P, and we may write &{gnlheH} for the product of {gninen.

An element . in a commutative semigroup ® is an identity for @ if peL = ¢ for every
element g of ®. It is easy to see that identities are unique; there can be at most one
identity in a given commutative semigroup. If a commutative semigroup does not have
an identity, then we can simply adjoin one. This means that we replace (¢,®) by
(OU{1},®"), where v is not an element of @, and ®* is defined by setting 1®*. = «, PR =
W@*'p = @ for all ged, and p1®* ¢ =@1@¢; for all pe® and @oe®. It is easily verified that
®*, defined is this way, is associative and commutative.

If ®is a commutative semigroup, ¥ is a subset of ®, and ¢;®¢» is in & whenever
both ¢4 and ¢y are, then we say that  is a subsemigroup of .

In this paper, we will call the elements of a commutative semigroup potentials.

2.2. Lattices

A partially ordered set is a pair (J,<), where J is a non-empty set and < is a binary
relation on S that satisfies
XsX,
if xsy and y=x, then x=y, (2.1)

and
if xsy and ysz, then x<z.

An element x of a partially ordered set 3 is called a zero for Jif xsy for ally in . It
follows from (2.1) that if a zero exists, it is unique. If it does exist, we use the symbol &
to represent it. Similarly, an element x is called a unit if ysx for all y in &. If a unit
exists, it is unique, and we use the symbol = to represent it.

Suppose X, y, and z are elements of a partially ordered set, x<z, and y<z. Suppose
furthermore that zsw for any other element w such that xsw and ysw. In this case, we
say that z is the least upper bound for x and y. Least upper bounds are unique when
they exist. Greatest lower bounds are defined similarly, and they are also unique
when they exist. The least upper bound of x and y is denoted by xvy, and the greatest
lower bound is denoted by xay. Other names are also used: xvy is sometimes called
the join of x and y, and xay is sometimes called the meet.

A partially ordered set in which least upper bounds and greatest lower bounds
exist for all pairs of elements is called a lattice. In a lattice, both v and a are
associative and commutative. This means that for any finite subset H of the lattice,
both vH and AH are well defined. In fact, vH is the least upper bound of the elements
of H, and aH is the greatest lower bound of the elements of H.

In this paper, we call the elements of a lattice domains. If x and y are domains in a
lattice, and xsy, then we say that x is a subdomain of y.

A lattice & is modular if for all domains x, w, and y in



xsy implies xv(way) = (XvW)AY. (2.2)
The content of the equality in this condition is the requirement that XV(WAY) 2 (XvW) Ay,
for xv(way) s (xvw)ay will hold whether J is modular or not. The following lemma
gives another condition that is equivalent to (2.2).
Lemma 2.1. A lattice (3,s) is modular if and only if for all domains x,y,
andzin S,
XszsXvy implies xv(yaz) = z. (2.3)
Proof: Suppose (S3,s) is modular. Then by (2.2), xsz implies that
Xv(yaz) = (Xvy)az. But zsxvy implies that (xvy)az =z. So xsz and zsxvy
together imply that xv(yaz) = z.
Now suppose that (2.3) holds. Given domains x, w, and y such that
Xsy, set Z = (xvw)ay. Then xszsxvw, so by (2.3), xv(waz) =z, or
Xv(WA(XvW)AY) = (Xvw)ay. Since wa(xvw) = w, this reduces to xv(way) =
(XvW)Ay.
Again, the content of the equality in (2.3) is the requirement that xv(zay) = z; the
condition xv(zay) = z will hold whether J is modular or not.

A lattice J is distributive if for all domains x, w, andy in &
(XvW)AY = (Xay)v(WAy),
or, equivalently,
(XAW) VY = (Xvy)a(wvy).
Distributive lattices are modular, but there are modular lattices that are not distributive.

A subset Jq of a lattice J is called a sublattice of ¥ if xvy and xay are in 3
whenever both x and y are in Jp. A sublattice of a modular lattice is modular, and a
sublattice of a distributive lattice is distributive.

If x and y are domains in a lattice S, and
XAy = and xXvy =75
then we say that y is a complement of x. In general, complements are not unigque; a
given domain in a lattice may have more than one complement. A lattice is said to be
complemented if every domain has at least one complement.

A complemented distributive lattice with a unit and a zero is called a Boolean
algebra. In a Boolean algebra, complements are unique.

The axioms in this paper begin with an arbitrary lattice 3. They do not assume
modularity, distributivity, or the existence of complements. All of the examples in the
paper, however, involve a Boolean algebra consisting of all subsets of a finite set.

The Boolean algebra of all subsets of a finite set. |f we take J to consist of
all the subsets of a set Z, and we write xsy whenever x is a subset of y, then S a
Boolean algebra. Its unitis Z, and its zero is the empty set. We have xvy = xUy and
xAy = XNy, and the complement of x is the set difference =-x.



More generally, any field of subsets is a Boolean algebra. Recall that a set S of
subsets of a set = is a field if AUB, ANB, =-A, and Z-B are in 3 whenever A and B are
in 3. Itis not necessary that 3 include all the subsets of =.

2.3. Graphs and Trees

In order to be comfortable with hypergraphs and hypertrees, we need to look from a
couple different points of view at the more familiar ideas of graph and tree.

2.3.1. Graphs and Trees, Emphasizing Nodes

A graph is a pair (N,E), where N is a finite set and E is a collection of two-element
subsets of N. The elements of N are called nodes and the elements of E are called
edges. Forour purposes, we can assume that every node is in at least one edge. A
node that is in only one edge is called a leaf. The other node in that edge is called the
bud for the leaf.

Given a subset M of N, set
Em = {ecEle...M}

The graph (M,Ew) is called the restriction of (N,E) to M.

Suppose ny,ny,...,.Nk is an ordering of the nodes of a graph (N,E), and suppose that
fori=2,... k the node n; is a leaf in the restriction of (N,E) to {n1,na,....m}. In this case, we
say that ny,ny,....Ng is a tree construction ordering for the graph (N,E). A tree is a graph
for which a tree construction ordering exists. In order to understand this definition, you
should imagine literally constructing the tree by beginning with ny, then adding np and
an edge between it and ny, then adding nz and an edge between either it and either n;
or ny, etc. As you add a node, you always connect it to only one of the nodes already
there; this is the content of the condition that it be a leaf in the restriction of the graph to
the node set consisting of it and the nodes already there.

It is common to define a tree as a connected graph with no cycles, but it can easily
be shown that the definition given here is equivalent (see, e.g., Golumbic 1980).

It is sometimes useful to pay attention to which nodes we connect to as we build a
tree up following a tree construction ordering. Given a tree construction ordering
Ny,N2,....Nk and an integer i between 2 and k, let b(i) be the integer between 1 and i-1
such that hyg) is the bud for njin {ny,nz,....n;}. We call the function b(i) the budding for
the tree construction ordering.

The following lemma shows a more succinct way to introduce the ideas of tree

construction ordering and budding.
Lemma 2.2. A graph (N,E) is a tree if and only if there exists an
ordering nq.ny,....Nk of the elements of N, and there exist integers b(i), for
2<igk, such that 1<b(i)si-1 and E={{n2,np)}.....{Nk.Np)}}. Any such
ordering is a tree construction ordering for the graph and the function b(i)
is the budding for this tree construction ordering.

The proof is left to the reader.



2.3.2. Graphs and Trees, Emphasizing Edges

In order to pave the way for the generalization to hypergraphs and hypertrees, let
us retrace, in a slightly different way, the road we have just travelled. This time, we
emphasize edges.

To begin, we say simply that a graph is a finite set consisting of two-element sets.
We call the two-element sets edges. We cali the elements of the edges nodes. This is
not different in substance from our first definition of graph. Since we are not
considering graphs with isolated nodes, every node is in an edge, and so the nodes
are specified as soon as the edges are specified.

Continuing this emphasis on edges, we now formulate edge ideas to replace the
node ideas of leaf and bud.

Suppose t and b are distinct edges in a graph E. Let us say thattis atwig, and b is
a branch for b, if exactly one of t's elements is in the rest of E, and this element is also
inb. (Thisis the same as saying that one of t's elements is a leaf and the other, which
is the leaf's bud, is in b. But we are now going to replace our talk about leaf and bud
with talk about twig and branch.) Notice that a twig may have many branches (though

a leaf has only one bud).

The next lemma gives an alternative way of defining twig and branch.
Lemma 2.3. If t and b are distinct edges in a graph E, then tis a twig
and b is a branch for t if and only if

tNb=< and tN(U(Et})) = tNb.
Proof: Sincet and b are distinct, b must contain exactly one or none of
t's elements. So tNbx is equivalent to the statement that it contains
exactly one. And tN(U(E-{t})) = tNb is equivalent to the statement that the

other one is not in E-{t}.

How should we define the idea of tree now? In our first pass, we defined a tree
construction ordering as an ordering of nodes, but now we want to define it as an
ordering of edges. It is easy to make this change, because when we added a node,
we always connected it to a node already there, and thus we were really adding an
edge.

Formally, let us say that an ordering e1,€z,....ex of the elements of agraph Eis a
tree construction ordering in edges for E if for i=2,... .k the edge e; is a twig in the graph
{eq,es,....6}. A treeis agraph for which a tree construction ordering in edges exists.
Since every twig has at least one branch, we can choose, fori from 2 to k, an integer
b(i) such that 1sb(i)<i-1 and e is a branch for e;in {ey,e»,....e;}. Let uscall such a
function b(i) a branching for E and e4,ep,...e.

The number of nodes in a tree is one greater than the number of edges. The edge
that we put down first in a ordering of edges contains two nodes, and the later edges
each add one more node. This complicates the formal description of the



correspondence between construction orderings in nodes and construction orderings
in edges. Here is how it goes.
Lemma 2.4.

(i) Suppose ny,ng,...,N is a tree construction ordering in nodes, with
budding b(i). Then {nz,np2)}.....{Nk.Nb(} is a tree construction ordering in
edges (ct. Lemma 2.2). If we write ey,e5,....ex.1 for this ordering, then Ep(i)1
Is one branch for e;. .

(i) Suppose ey,ep,....& is a tree construction ordering in edges, and
suppose b(i) is a branching for it. Suppose e;={pi,q;} for i=1,...k. Suppose
further, for i=2,..k, that p; is the element of e; that is not in any of the
earlier g, while q; is the element of e; that is in ep(;) and perhaps in other
e; before e; as well. Then both py,q1,p2,....Px and qy,p1,P2.....Pk are tree
construction orderings in nodes. The bud for g, in the first of the ordering
P1,d1.P2.....Px IS p1. The bud for py in the ordering qy,p1,P2.....px IS Q4. The
bud for a later p; in either ordering is q;.

Before leaving the topic of trees, we should contrast the roles played by the two
conditions in Lemma 2.3. The condition tNbzd implies that a twig is connected with
the rest of the graph, and this, in turn implies that any graph built up by adding a
sequence of twigs is connected. The condition tN(U(E-{t})) = tNb, on the other hand,
implies that a twig is connected only through its branch, and this in turn implies that
any graph built up by adding a sequence of twigs is acyclic. If we drop the condition
tNbzd from the definition of twig, then a graph we build up by adding a sequence of
twigs will still be acyclic, but it might not be connected; instead of being a single tree, it
might be a forest—a collection of unconnected trees.

2.4. Hypergraphs and Hypertrees

Now we generalize the preceding definitions of graph, twig, branch, and tree by
dropping the requirement that the edges have only two elements. Now we allow the
edges to be any finite sets. In fact, we go even further, and allow them to be domains
in any lattice.

Formally, if H is finite subset of a lattice 3, then we say that H is a hypergraph on 3.
We say that a domain t in a hypergraph H is a twig if there exists another domain b in
H, distinct from t, such that ta(v(H<{t})) = tab. We call any such b a branch for the twig t.
A hypergraph is a hypertree if its domains can be ordered, say hy,hy,....hy, so that hy is
atwig in {hy,ho,... hi}, for i=2....n. We call any such ordering a hypertree construction
ordering for H. Given a hypertree construction ordering hy,h,,...,h,, we can choose, for
i from 2 to n, an integer b(i) such that 1=b(i)<i-1 and hy) is a branch for hjin
{hy,hp,....hi}. We call a function b(i) satisfying this condition a branching for H and
hy.ho,...hn.

In the sequel, we will write Ht for the hypergraph H-{t}.



Notice that we have not required in the definition of twig that tab=@. This means
that hypertrees are allowed to be disconnected. This is an argument against using the
name “hypertree.” Perhaps we should say “hyperforest” instead, or perhaps we
should follow the lead of Beeri et al. (1983) and use the more awkward term ‘acyclic
hypergraph.” But since the prefix "hyper-" already suggests generalization, and since
we have formulated the idea in the context of a general lattice that might not even have
a zero, “hypertree” seems reasonable.

Suppose H is a hypergraph on a lattice 3. A hypertree K on S is called a hypertree
cover for H on 3 if for every domain h of H, there is a domain k(h) of K such that h <
k(h). In general, a hypergraph H has many hypertree covers. The simplest is the
hypertree consisting of the single domain vH. The computational methods discussed
in this paper work directly if we begin with a hypertree, but if we begin with a
hypergraph H that is not a hypertree, we must replace H with a hypertree cover. Since
the cost of the computation increases primarily with the size of the largest domain in
the hypertree cover (and not so dramatically with the number of domains), vH is
usually not an attractive hypertree cover. We prefer instead a hypertree cover whose
largest domains are as small as possible. Finding such a hypertree cover may itseif
be a difficult computational problem, however (Kong 1986).

3. Marginalization

[n this chapter, we study a set of axioms that justifies the inward phase of hypertree
computation in problems in which all potentials have unique reductions, which we
therefore call marginals. If these axioms are satisfied, we are given a potential ¢ that
factors on a hypertree, and it is feasible to find marginals in the domains of the
hypertree, then we can move backwards in any construction ordering for the hypertree
in order to find the marginal of ¢ on the root of the construction ordering.

Since any domain in a hypertree is the root of some construction ordering for the
hypertree, the algorithm of this chapter allows us to find the marginal on any domain of
the hypertree. By applying the algorithm repeatedly to different hypertree construction
orderings, we can find marginals on all the domains of the hypertree. Shafer and
Shenoy (1988) show how the duplication invoived in such repeated application of the
algorithm can be minimized, so that marginals on all the domains can be found with
only two or three times as much work as marginals on a single domain. As we will see
in Chapter 5, it is also possible, in some cases, to use the outward phase of hypertree
computation to find marginals for the remaining domains once the inward phase has
produced the marginal for one domain. This is often more efficient than the Shafer-
Shenoy method.

The axioms that we use in this chapter are listed in Section 3.1, and the
computational theory based on these axioms is developed in Section 3.3. Section 3.2

is concerned with vacuous extension. This concept is not needed for understanding
computation in a hypertree, but it helps us understand how to extend the theory to the

case where a potential factors on a hypergraph with a hypertree cover. Section 3.4
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gpplies the ;omputationa! theory to five examples: dynamic programming, probability
linear equations, constraint propagation, and belief functions. Section 3.5 comments
on some ways of strengthening the axioms.

3.1. Axioms

Suppose 3 is a lattice and @ is a commutative semigroup. As in Chapter 2, we call
the elements of I domains and the elements of ® potentials.

We label each potential ¢ in ® with a domain in J, say d(¢). When d(¢) = x, we say
that x is the domain of g and that ¢ is a potential on x. We make the following
assumption about these labels:

Axiom A1. If ¢« and g, are potentials on x and y, respectively, then

d(px®qy) = XVY.
This is the labelling axiom. It can be alternatively expressed by saying that the map d
is a semigroup homomorophism from @ to 3, regarded as a semigroup with v as its
semigroup operation.

We set @, = {ge®ld(¢p)=x}. The labelling axiom implies that &y itself is a
commutative semigroup under the operation ®. We assume that this semigroup itself
has an identity, say . And we adopt an axiom relating these identities:

Axiom A2. If x sy, then u,®y = .
This is the identity axiom.

If x < d(¢), then we associate with ¢ and x a potential with domain x, which we call
the marginal of ¢ on x. We write @i for the marginal of @ on x. Weadopt two axioms
concerning marginalization:

Axiom M1. If ¢, is a potential on z, and xsysz, then (oY) 4% = g

Axiom M2. If g and ¢y are potentials on x and y, respectively, then

(Px®Py) X = g@@y i 7.
Axiom M1 is the transitivity axiom; it says that if ¢ is the marginal of g2 and gz is the
marginal of gs, then ¢4 is the marginal of g3. Axiom M2 is the combination axiom; it
says (@«®gy)i* can be found by combining gy with another potential.

Axiom A1 is needed in the formulation of axioms A2 and M2. On the other hand,
there is a certain independence between A2, which does not involve marginalization,
and M1 and M2, which do not involve identities. Some of the consequences that we
will derive from these axioms in this chapter involve only combination and
marginalization and hence depend only on Axioms A1, M1, and M2. Others involve
only combination and the existence of identities and hence depend only on Axioms A1
and A2.

The following lemma is not needed in this chapter, but it will be used in Chapter 5.

Lemma 3.1. If ¢x and gy are potentials on x and y, respectively, then

(Px®Py) XY = @yt XA Y@y v X1Y.
Proof: Using Axiom A2 once and Axiom M1 twice, we obtain

(Qx®@y )XY = ((px@@y)E¥)ixrY = (Px®@y XAV )ixXrY = Pxt XA @@y XY,

11



3.2. Vacuous Extension

If ox is a potential on x, and x sy, then we write gt for the product gx®1y, and we
call @x!Y the vacuous extension of gxto y.

Lemma 3.2. Suppose Axioms A1 and A2 hold. Then the following
statements hold as well.

() fxsy then !ty =y,

(i) For any domains x and y, u®ty = tyyy.

(iii) If g is @ potential on x, then g,®1, = @y txvy.

(iv) If @y is a potential on x, then gt = @x.

(v) If g« is a potential on x, and y s x, then ¢,®t, = ¢x.

(vi) If @y is apotential on x, and x sy sz, then (gx!Y)12 = gt 2.

(vii) It o« and gy are potentials on x and y, respectively, xsz, and ysz,
then (px@gy)12 = pxtZ@p, 2.

(vili) If ¢ and @y are potentials on x and y, respectively, then gx@¢y =
(oxTX¥Y)@(qytxvY).

Proof:

(i) By definition, 1Y = v®@iy. By the identity axiom, @iy = .

(i) Since x s xvy and y < xvy, we have both 1,y = 1 @1 and i,y =
wvy®ty. Substituting one of these equations in the other, we obtain 1,y =
xvy®LBLy. Since 1,y is the identity on xvy, this reduces to i,y = ®.

(ill) px®ly = (Px®L)Oly = Px®(1x®ly) = Px®ixyy = PxtXVY.

(iv) By the definition of vacuous extension, gxt* = g®1. Since iy is
the identity on @y, this is equal to gx.

(v) This follows from (iii) and (iv).

(Vi) (@xtV)12 = (gx®y)12 = Px@ly®lz = Px®lz = @x 12
(Vi) ox!2@pyt? = x@1,09,@1; = PRPyOL; = (x®@y)12.
(vili) This follows from (vii) and (iv).

Lemma 3.3. Suppose Axioms A1, A2, and M2 hold. Suppose gk is a
potential on x. Then (XYY = (gyixay)ty.

Proof: (gu!*VV)IY = (pu®uy)4Y = @MY@y = (e d *AY) 1Y,

3.3. Computational Theory

The computational theory developed here depends on Axioms A1-A2 and M1-M2
and also on certain further assumptions about the computational difficulty and
feasibility of the operations ®, A, v, d, and {. When all these assumptions are satisfied,
the computational theory accomplishes two things. First, it tells us how to compute
marginals of products on certain hypertrees. Second, it tells us how to use hypertree
covers to compute marginals of products on certain hypergraphs that are not
hypertrees.




3.3.1. Computational Assumptions

The axioms themselves do not say anything about the relative difficulty of
implementing the operations ®, A, v, d, and {. The computational theory in which we
are interested makes sense, however, only if we make certain further assumptions
about their relative difficulty.

We assume that no computational difficulty is involved in finding the labels d(g).
This is the point of calling them labels; we imagine that each potential is given to us
with its label pasted on it. A function @ on a set of variables x, for example, comes to us
labelled as such.

We also assume that there is little computational difficulty involved in the lattice
operations. In most cases, these domains are simply sets of variables, and the lattice
operations are simply union and intersection. Provided that the total number of
variables is not inordinately large, finding the intersection of two sets of these
variables, say, will not be a difficult problem.

The computational difficulties lie in implementing the marginalization map and
also, sometimes, in implementing the semigroup operation. We assume that as we
consider potentials with larger domains, finding their marginals becomes increasingly
difficult. Finding their products may also become increasingly difficult. It may be
difficult even to represent a potential on a large domain in any explicit way.

Let us call a domain x feasible it it is feasible to represent potentials on x
adequately, combine them, and marginalize them. (This is not a precise definition, for
what should count as an adequate representation can sometimes be debated, and the
boundary between the feasible and the non-feasible is not sharp.) We assume that
any subdomain of a feasible domain is also feasible.

We also assume that computational difficulties increase with the size of the domain
so sharply that the number of domains with which we must deal is much less important
to the feasibility of the computation than the size of the largest of these domains. Thus
we call a hypertree feasible if each of its domains is feasible, regardless of the number
of these domains. We call a hypergraph feasible if it has a feasible hypertree cover.

3.3.2. Finding the Marginal of a Product on a Hypertree

Suppose we are given a collection {¢n}neH Of potentials, where H is a hypertree on
%, and ¢ is a potential on h. By the labelling axiom, its product, &{gnlheH}, isa
potential on vH. Suppose we want to find the marginal (&{¢nlheH})i*. As we will now
see, we can do this provided Axioms A1, M1, and M2 hold (Axiom A2 is not needed),
our computational assumptions hold, the hypertree H is feasible, and X is a subdomain
of some domain in H.

Let us begin with a something simpler—the computational significance of Axiom
M2, the combination axiom. Suppose x and y are both feasible, but xvy is not. The
combination axiom says that we can compute (p®@g,)+* in these circumstances even if
we cannot even explicitly express the product g.®@gy. We first compute gy+¥ "% (this
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only requires us to work in y), and then we combine it with ox (this only requires us to
work in x).

Combining the transitivity and combination lemmas, we obtain the following
femma.
Lemma 3.4. Suppose zsx, and suppose g, and ¢y are potentials on x
and y, respectively. Then (gx®@y)+2 = (9@, +YAX)i2,
Proof: (px@@yiV*)iz = ((p@@y)+¥)iz by combination
= ((p®py) 2. by transitivity
Again, the computational significance is clear. If the domains x and y are feasible, and
z=x, then we can compute (px®qy)i2.

The next lemma concerns a product on a hypergraph with a twig. (Recall that Htis
a compact way of writing H-{t}.)
Lemma 3.5. Suppose {gn}neH i a collection of potentials on the
hypergraph H, tis atwig in H, and b is a branch fort. Then
() (&{enlheHNIVH = (&{gnlheHD)@qr o,
If we set gpt = @p@@i P and gnt = ¢n, for all other h in Ht, then
(i) (&{gniheH})vH = &{pntlheH Y, and
(iti) if xsvH 1, then (®{gnlheH}){* = (&{pntiheH ) ix.
Proof: By the labelling axiom, ®{gntiheH "} is a potential on vH. So (i)
follows directly from the combination axiom, with vHtfor x, ®{gntheH"%} for
ox, tfory, and ¢ for ¢y. To prove (i), we merely rearrange the factors on
the right-hand side of (i). Then we get (iii) by marginalizing both sides of
(ii) to x and applying the transitivity axiom.
If the twig t and its branch b are feasible, then it is feasible to compute gpt, and
statements (i) and (iii) both have computational significance. Statement (ii) says that
the task of marginalizing a product on H to a subdomain x of vH-t can be reduced to
the smaller task of marginalizing a product on vHtto x. Statement (iii) says that we
can construct (i.e., compute the factors of) a product ®&{gntlheH} that is the marginal on
vH-tof our original product ®{¢nlheH} on H. Of the two, statement (iii) is more
immediately useful, but statement (ii) has the deeper significance, for it opens the way
to the successive removal of twigs when H is a hypertree.

Suppose, indeed, that H is a feasible hypertree, and we want to compute @i,
where ¢ = ®{gnlheH}, and x is a subdomain of some domain in H, say hy. Choose a
hypertree construction ordering for H that begins with hy, say hy,ha,....,hs, and choose a
branching b(i) for this construction ordering. Fori=1,2,...,n, set

H = {hy ho,.. hi}
This is a sequence of hypertrees, each larger than the last; H! = {h;} and H" = H. The
domain h; is a twig in Hi. So we can work backwards in this sequence, using the idea
of Lemma 3.5 each time. At the step from Hi to H-1, we go from a collection {gn/IneH},
say, which has ¢! vH as its product, to a collection {gn"1lheH"'}, which has @ivH" ! its
product. To go from {gn'lheH’} to {pn-1theHi'}, we omit h; and change the potential on
hb(i) from (Phb(i)i to
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Prip iy ®(Pn;') b AN,
the other potentials are unchanged. The collection with which we begin, {gn"lheHn}, is
simply {pnlheH}, and the collection with which we end, {gpn'lheH'}, consists of the singie
potential pih1. One more marginalization within hy reduces this to what we want, ¢ix.

Since the computation we have just described moves backwards in the
construction ordering, from each domain h; to its branch hy), we think of it as moving
inward in the hypertree.

Notice that we have not appealed, so far, to the existence of identities, the idea of
vacuous extension, or Axiom A2. We have only used Axioms A1, M1, and M2 and our
computational assumptions.

3.3.3. Using Hypertree Covers

Now we replace the assumption that H is a feasible hypertree and x is a

subdomain of some domain in x with the weaker assumption that HU{x} is a feasible

hypergraph—i.e., that HU{x} has a feasible hypertree cover. We show that we can still
compute (&{gnlheH})4x in this case. Here we do need the existence of identities, the

idea of vacuous extension, and Axiom AZ2.

Suppose K is a feasible hypertree cover for HU{x}. We may assume that vK =
v(HU{x}). (Otherwise, we can get a feasible hypertree cover satistying this condition
by replacing each domain k in K by ka(v(HU{x})).) For each hin HUW{x}, let k(h) be a
domain in K such that k(h) s h. Construct a collection {¢«}xek on K from the collection
{Pninen ON H by setting ‘

{ pntkiheH k(h)=k} if {pnlheH k(h)=k} # &
‘bk:{ Lk if {pnlheH k(h)=k} = &,
Then
&HdlkeK) = (@{pntkMiheH}) ® (&{wlkeK k(h)zk for any h in H})
= (@{gniheH}) ® (&{umheH}) @ (&{uIkeK k(h)zk for any h in H})
= ®&{pnlheH},
by the definition of vacuous extension and statement (v) of Lemma 3.2. Hence
(@{dxIkeK}) X = (& nlheH}) 4.
But we can compute (&{¢klkeK}) %, because it falls under the rubric of the preceding
section: K is a feasible hypertree, and x is a subdomain of a domain of K.

3.3.4. Conclusion

We conclude that (®{qnlheH})ix can be found whenever HU{x} is a feasible
hypergraph—i.e., is a feasible hypertree or has a feasible hypertree cover.

3.4. Examples

This section examines five problems in which our computational theory is
instantiated. The problems vary in how potentials, combination, and marginalization
are defined, and in what counts in practice as having computed a potential. In some
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cases, a potential is a function, and writing down a formula or an algorithm that allows
us to compute its value at any configuration of its domain counts as having computed
it. In other cases, a potential is a function, but we have to be in a position to sum it over
arbitrary sets of configurations of its domain before we can say that we have computed
it. In other cases, a potential is an equivalence class, and writing down one element of
the equivalence class counts as having computed it.

fn the problems discussed here, the lattice 3 is the set of all subsets of a set of
variables =. Thus it has = as its unit and the empty set as its zero. We write ©¢ for the
frame (or state space or sample space) of the variable &. If we say that & is real-valued,
we mean that © is the real line. In some other cases, we say only that © is finite. We
call an element of ©¢ a configuration of €. If x is a domain, then we write ©y for the
Cartesian product of the frames of the variables in x;

Ox = X, O (3.1)
We call this the frame for x, and we call its elements configurations of x.

If x is a subdomain of y and ¢ is a configuration for y, we write cix for the
configuration of x obtained by dropping the values of the variables in y and not in x. f,
for example, x = {§1,82}, ¥ ={§1.82,83,E4}, and ¢ = (C4,C2,C3,C4), Where CieOg, then ciX =
(Cy.C2).

If x and y are disjoint domains, ¢ is a configuration of x, and ¢y is a configuration of
y, then we write (cy.cy) for the configuration of xvy obtained by concatenating ¢y and cy.
In other words, (cx.Cy) is the unique configuration of such that (cx.cy)i* = cx and
(Cx-Cy)¥Y = Cy.

The problems discussed here are not the only ones that satisfy the axioms. Other
problems of note that satisfy these axioms are discussed in Dawid (1991), Cowell and
Dawid (1991), and Cowell (1991). Of particular interest is the problem of tast
retraction, which involves the probability example, but which uses a marginalization
that differs from the usual marginalization for probability but still satisfies the axioms.

3.4.1. Dynamic Programming
Suppose = is a finite set of variables, each with a finite frame, and let 3 be the
lattice of all subsets of =. Let us call any real-valued function on a subset x of Z a
potential on x. A potential on & is a constant. We combine potentials by adding them.
In other words, @1®@z is the potential with domain d(g¢)vd(gp2) given by
(1©92)(C) = @1(Cid@1) + gp(ctde2))
for every configuration ¢ in d(py)vd(gpz). Thus Axiom At is satisfied by definition.

If x < d(g), then @ix is the potential on x obtained from ¢ by maximizing over the
variables in d(¢)-x. In other words, for each configuration ¢ of x,
@iX(c) = max {p(c.c') | ¢'is a configuration of d(g)-x}.
If x = d(¢), so that d(g)-x = &, then this reduces to gi*(c) = ¢(c). Axiom M1 holds
because the order in which we maximize over variables does not matter.



Axiom M2 holds because addition of a constant distributes over maximization.
Suppose, indeed, that @4 is a potential on x and ¢, is a potential on'y. Then for every
configuration ¢ of x,

(p1+@2)iX(c) = max {(g1+g2)(c.c') I c' is a configuration of y-x}
=max {g1((c.C)*) + gp((c.c')¢¥) I ¢' is a configuration of y-x}
=max {g1(CiX) + go(ci¥r*.c') | ¢'is a configuration of y-x}
= @q(C¥¥) + max {gp(ciyrx.c') | ¢'is a configuration of y-x}
= @1(CHX) + @ai¥rX(CiYrX)
= (p1+@2tY**)(C).

Finally, the commutative semigroup consisting of all real-valued functions on x, with
addition as the semigroup operation, does indeed have an identity —the function on x
that is identically equal to zero. Axiom A2 obviously holds.

Notice that the axioms would still hold if we substituted min for max, or if we
required the potentials to be non-negative and substituted multiplication for addition.
In the latter case, the identity on x would be the function identically equal to one.

Computational difficulties arise in this example when the frame ©, becomes too
large. If the frame ©¢ for each variable & is large, and there are many variables in x,
then ©, will be huge. So representing a potential p on x may be impractical if it means
writing down the real number that g assigns to each configuration of x. And
marginalizing ¢ to y may be impractical if it requires that for each configuration ¢ of x
we sort through all the configurations ¢' of y-x to see which (c.c') is largest.

So feasibility is a matter of the size of ©,. We say that x is teasible if ©, is small
enough for it to be feasible to list the elements of ©, and search through this list to
perform the maximizations we require.

What we can accomplish using our computational theory in this example is to find
the maximum of a function that is defined by adding functions on a feasible
hypergraph. Indeed, it we begin with a collection {gnlheH} of potentials on a feasible
hypergraph H, and we set

¢ = Z{¢gnlheH},
then
max {g(c) | ¢ is a configuration of vH}

is the same as (&{pnlheH})¢2. Our computational theory allows us to find
(®{pnlheH}) 9, because if H is a feasible hypertree, then HU{J} is as well.

Usually, of course, we are interested not only in the maximum value of ¢ but also in
a configuration ¢ at which ¢ takes this maximum. As we will see in Chapter 6, we can
find such a configuration using a second, outward sequence of computations.
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3.4.2. Marginals of Factored Probability Distributions

This computational problem is very similar to our dynamic programming problem. It
differs only in that we multiply instead of adding to combine potentials and we sum out
instead of maximizing out to marginalize.

Again, Z is a finite set of variables, each with a finite frame, & is the lattice of all
subsets of =, a potential on a non-empty subset x of = is a real-valued function on x,
and a potential on & is a constant. But now the potential ¢1®¢» is the potential with
domain d(¢pq)vd(pe) given by

(@1®92)(C) = 1 (cidwr) - gp(cidiva))

for every configuration ¢ in d(g)vd(¢2). And if X < d(g), then @i* is the potential on x
given by

p¥¥(c) = Z {g(c.c') | ¢' is a configuration of d(g)-x}.
for each configuration ¢ of x. By the same reasoning as in the dynamic programming
problem, we find that Axioms A1, M1, and M2 hold. The identity is now the function on
x that is identically equal to one, and hence Axiom A2 also holds. The computational
difficulties are the same as in the dynamic programming problem, except that we are
adding values instead of sorting through them to find the largest. We say that x is
feasible if ©4 is small enough for this to be feasible.

We can use our computational theory to find marginals of a product (I{gnlheH}) X
when HW{x} is a feasible hypergraph. We can also find the constant (I{gnlheH})+ <,
which is the sum of the values of TK¢nlheH} over all configurations of vH. This is most
interesting in the case where the ¢ are all non-negative and their product is not
identically zero, for then

P = ((T{gnlheH}I9) " - (T{gnlheH)),
is a probability distribution on vH, and its marginal on x is given by
Pix = (I{gnlheH})i9) 1 - (I{gnlheH}) i x. (3.2)
Since our computational theory enables us to compute both marginals on the right-
hand side of (3.2), it enables us to compute the marginal Pix.

This example is more satisfying than the preceding one, because finding the
marginal of a probability distribution is a reasonable goal in itself. There is not
necessarily something more that has to be dore, such as finding an optimal

configuration.
3.4.3. Sparse Systems of Linear Equations
Suppose = is a finite set of real variables, and 3 is the lattice of all subsets of =.

A system of linear equations is a pair (A,x), where x is a subset of Z, and A is a finite
non-empty set of equations of the form

Yagt+a=0,

Eew
where w < x and a and the ag are real numbers. (If x =&, then A can contain only
equations of the form a = 0.) The set A may include redundant or contradictory
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equgtions. We say that (A, x) is a system on x, and we say that x is its label. If a
configuration ¢ of x satisfies all the equations in A, then we call ¢ a solution of (A x).

We say that two systems on x are equivalent if they have the same solutions. This
is an equivalence relation. We call the equivalence classes potentials on x, and we
call a system in a potential ¢ a representative of ¢. If a configuration ¢ of x is a solution
of the representatives of a potential ¢ on x, we say that ¢ is a solution of ¢. In practice,
computing a potential means writing down a representative of the potential.

The case where x = J requires special comment. We divide the systems (A,J) into
two potentials—the potential & consisting of those in which A contains false equations
(such as 5 = 0), and the potential & consisting of those in which A contains the single
equation 0 = 0.

We combine potentials by taking unions of representatives. If gx and gy are
potentials on x and y respectively, (A X)epy, and (B,y)eqy, then ¢.®gy is the potential
that contains (AUB,xvy). This potential is the same no matter which representatives
we choose. Since U and v are commutative and associative, ® is as well, and Axiom
A1 holds by definition. The identity i\ is the potential that contains the system ({0 =
0},x), and Axiom A2 is obvious.

In order to marginalize a potential ¢ on y to a subdomain x of y, we choose a
representative (A,y) from @ and successively eliminate from A any variables in y-x that
are in equations in A. We do this in the usual way; if £ is such a variable, we first
remove it from any equations in A in which its coefficient is zero. If it remains in any
equations in A, we choose one such equation, solve it for §, and substitute the
resulting expression for € in any other equations that involve €. Each time we
eliminate a variable, we obtain a system with at least one less equation. The system B
we have when we have eliminated all the variables in y-x will depend on our choice of
(Ay) from ¢ and on the choices we make when eliminating variables (the order in
which we eliminate them and which equations we solve to eliminate them), but the
potential to which (B,x) belongs will not depend on these choices. This potential is
@ix. If x is non-empty, then the solutions of @i* are the configurations of x of the form
ciX, where ¢ is a solution of ¢. Moreover, pi2 = A if ¢ has solutions, and @i9 = & if
has no solutions.

Axioms M1 and M2 follow easily from this description. Axiom M1 is one aspect of
the fact that the order in which we eliminate variables does not matter. Axiom M2
holds because when we eliminate variables, we do not change equations in which
these variables do not appear. Indeed, suppose ¢x and gy are potentials on x and y,

respectively, and consider representatives (A,x) of gx and (B,y) of ¢y. We obtain a
representative of (p1®g2)+* by eliminating the variables in y-x from all the equations in

AUB, and we obtain a representative of g;®p24Y** by eliminating these variables from
the equations in B and adding the result to the equations in A, which comes down to

the same thing.
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Our computational theory is useful when a system is sparse—when it can be
broken into subsystems that deal with relatively disjoint and relatively small clusters of
variables. The total number of equations and the total number of variables may be too
large to solve the system by eliminating the variables in an arbitrary order. But if the
clusters of variables form a feasible hypergraph, then we are dealing with a product ¢
of potentials on this feasible hypergraph, and the computational theory will enable us
to find a representative of @i h for each cluster h, using only eliminations within the
clusters. We may then be able to solve each ¢i", thus obtaining a collection of partial
solutions. At the very least, we can marginalize one of the ¢ih further to &. Then we
will know whether @< is & or &, and hence whether ¢ has a solution.

Usually we will not be content to learn whether there is a solution, or to find a
collection of partial solutions. We will want at least one complete solution. We can
find a complete solution with very little more work than is required to find i<, but this
task belongs to the outward phase of the computation, which we will study in Chapters
6 and 8.

3.4.4. Subsets of Cartesian Products (Constraint Propagation)

A formal interpretation of our axioms can be obtained by taking potentials to be
subsets of Cartesian products, with intersection of cylinder sets for combination and
projection for marginalization. This is instructive in two respects. On the one hand, it
gives us a way of seeing that our axioms are satisfied by constraint propagation, a
practical computational problem in which subsets are defined by systems of
constraints, and intersection and projection downward are implemented by
manipulating these constraints. On the other hand, as will see next, it is a stepping
stone towards understanding how our axioms are satisfied by belief functions.

To be concrete, let = again be a finite set of variables, each with a finite frame, and
let 3 again be the lattice of all subsets of =. A potential on x is a subset of ©y, labelled
with x. We will leave the labelling implicit, except in the case of the empty set, where
we will use a subscript. In other words, we distinguish between Jy, the empty subset
of ©, and &y, the empty subset of ©,.

We define the semigroup operation by

Px®Py = { CeOyyy | Ci¥eqyand ciVegy }. (3.3)

With this definition, the identity for ®y is ©4, and Axioms A1 and A2 are obvious. Notice
that it ¢y and ¢, are potentials on the same domain, then

P1®p2 = 102, (3.4)

We define the marginalization map by
@ty ={cly lcepy},
where y = x. This is sometimes projection downward. Axiom M1 is obvious.

To verify Axiom M2, we note that
(Px®@y)i* = {CIX 1 CeByyy, Ci¥eqy, and CiVeqy }
=g N{Cci¥1ceOy,yand cliVepy }
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=@x N {de©y | dixry = elxay for some eeqQy },
while
Px®@py+*¥*Y = {C | ceqpy and Ci*Weqy ixry }
= @x N{ deOy | diXrYeqyixry }
= @x N {deOx I dixry= eixsy for some eeqy }.

The vacuous extension of a potential ¢ on x to a larger domain y is the cylinder set

in ©y corresponding to ¢y. Indeed,
Pty = @y ={CeOyyy | Ci¥eqy and civey, }
={CeOyy | CiXeqy }.
By (3.4) and statement (vii) of Lemma 3.2,
PPy = (G IV )Ny 1XvY).
Thus ¢« and gy are combined vacuously extending and intersecting.

In the problem of constraint propagation, a subset ¢y of ©y is represented by a set
of constraints on the variables in x—equations or inequalities relating these variables.
With such a representation, combination is simply a matter of pooling two sets of
constraints, but marginalization means manipulating the constraints so as to eliminate
variables, and this may be computationally challenging if the domain is large. A
feasible domain, in this example is one in which such manipulations are practical. Our
computational theory is helpful when we pool a collection {gn}heH. Where qn is a set of
constraints on the variables in h and H is a feasible hypergraph. We can find the
implication of all the constraints for the variables in a particular domain h it we can
marginalize within domains.

This problem of constraint propagation generalizes the problem of we studied in
Section 3.4.3, where the constraints were all linear equations. Constraint propagation
itself can be assimilated formally (though not necessarily computationally) to the
problem of dynamic programming that we studied above, with multiplication instead of
addition for combining potentials. A subset ¢ of a set ©, can be thought of as a non-
negative function on ©,—the indicator function that assigns the value one to the
elements of ¢ and the value zero to the other elements of ©,. Intersecting two sets
corresponds to multiplying their indicator functions, and marginalizing a set to a
subdomain corresponds to maximizing out the variables not in the subdomain.

3.4.5. Combining and Marginalizing Belief Functions

Mathematically, a belief function on a set of variables x can be thought of as a
probability distribution for a random subset of ©, (Shafer 1990). A belief function on x
is marginalized to a subdomain y of x by projecting the random subset downtoy. A
belief function on x is combined with a belief function on y by taking the two random
subsets to be independent, vacuously extending both to xvy, and intersecting them. |t
follows from this description, and from what we just learned about non-random
subsets, that belief functions satisty Axioms A1-A2 and M1-M2.
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In computational practice, there are many ways of representing belief functions.
First, there are many ways of representing subsets. A subset of ©, might be
represented by a set of constraints, an explicit list of elements, or some mixture of the
two. Second, there are many ways of representing a probability distribution over
subsets.

Let us assume, for concreteness, that a subset is represented by an explicit list of
elements. Then the implementation of our computational theory for belief functions
might involve three different representations for a given belief function, which we may
call the m-function, the b-function, and the g-function. Each of these functions assigns
a non-negative number to each non-empty subset of ©,.

The m-function is often the initial representation for a belief function. in some
applications, at least, a person assesses the strength of certain evidence by writing
down an m-function. The m-function m, for a belief function ¢ on a set of variables x
assigns each non-empty subset A of ©, the probability m(A) that the random subset is
equal to A. Since the probabilities for all the subsets, including the empty set, must
add to one, we must have

Em@(A) <1. (3.5)
A...ByxAzD
The m-function is particularly useful for vacuous extension. Indeed, if x sy, then the m-
function for the vacuous extension ¢tV is given by
m,(B) if A=DBtY
Mety(A) ={ 0 if A = BtY for any subset B of ©
X

for each subset A of ©y.
If mg is ¢'s m-function, then its b-function is given by
be(A) = zmw(B). (3.6)
B...A,B2Q
The number b (A) is the total probability that the random set is non-empty but is
contained in A. This is of interest because it is interpreted (usually after normalization)
as the degree of belief in A. The b-function is also useful for marginalization. Indeed,
it y < x, then the b-function for the marginal ¥ is given by
byly(A) = by(At¥) (3.7)
for every subset A of ©y.
If mg is ¢'s m-function, then its g-function is given by

A(A) = Tme(B).
BOA

We can combine belief functions simply by multiplying their g-functions:
qqﬁx®(Py(A) = qwx(Alx) : q(Py(Aly)

for every subset A of Ox.y.
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Each of the three functions, my, by, and g, completely specifies the belief function
¢. If we start with m,,, we can obtain b, and g, by (3.6) and (3.7). If we start with by, we
can obtain my and qq by

Me(A) = Y (-1)"*Blby(B)
B...A,Bxg

and
Ge(A) = Y (-1)*Boy(BU(©4-A)).
B...A Bzg
If we start with q,,, we can obtain m, and b, by

Me(A) = Y (-1)%Alqy(B)
BoA

and
be(A) = Y (-1)*'qy(B).
BNAzD

Since hypertree computation involves alternate marginalization and combination, a
straightforward implementation would use a number of these formulas. Suppose,
indeed, that we want to marginalize a product on a hypertree H. For each domain h in
H, there might be several belief functions, some on h and some on subdomains of h,
that are included in the product (cf. Section 3.3.3). Suppose these belief functions are
initially expressed as m-functions. Then to eliminate a twig t with branch b, we first
vacuously extend the m-functions on subdomains of t to m-functions ont. We then
transtorm all the m-functions on t into g-functions and multiply them together. Then we
transform the result into a b-function and marginalize it to bat. Then we transform it
back into an m-function on bat. This produces a new collection of m-functions, all on
subdomains of domains in H-{t}. We can continue eliminating twigs in this way until
only one domain h is left in the hypergraph. Then we can go through the process one
more time, and stop with a b-function on h or on some subdomain of h that interests us.

Condition (3.5) is not needed for our computational theory. In the standard version
of belief-function theory, however, we use a scale from zero to one to measure belief
or support for a subset, with zero meaning no evidence that the truth is in the set, and
one meaning certainty that it is. If we begin with certainty that the truth is in ©, then we
want

by(Ox) = me(A) =1

A...0x AzD

for the b-functions that we interpret as degrees of belief—i.e., the inputs and the final
output. Making the inputs satisfy this condition is not enough to ensure that the output
does. It ensures only that the output satisfies b, (©x) < 1. This is because the
intersection of non-empty sets can be empty. The standard theory therefore includes a
final step in which the output b-function b, is normalized—i.e. multiplied by [b¢(ex)]“,
This will be possible unless by, is identically zero, which will happen only when the
random sets being combined have empty intersection with probability one. The
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interpretation in this case is that combination is impossible because the belief
functions being combined express contradictory certainties.

3.5. Other Comments
Here we comment on two ways the axioms of Section 3.1 can be strengthened.
3.5.1. Marginalizing a Potential to Its Own Domain

In all the examples we studied in Section 3.4, it does not change a potential to
marginalize it to its own domain: if gy is a potential on x, then gx¢* = ¢x. This property
is not implied by Axioms A1-A2 and M1-M2, however. It is easy to construct examples
of these axioms in which it is violated.

Indeed, given any instance of the axioms, we can construct another instance for
which gyi* = ¢« does not always hold. We simply double the number of potentials by
distinguishing two versions of each potential, one marked and one unmarked. Both
behave the same, except that the marginal of every potential is marked, and when any
potential in a product is marked, the product is marked. Then the axioms will be
satisfied, with the unmarked version of 1, as the identity. And if g is an unmarked
potential on X, then gk is not equal to .

The idea of marking potentials whenever any computation is performed on them
might be useful in some applications, so this example is not entirely artificial.

3.5.2. Are There Non-Modular Examples?

The axioms we have studied in this chapter can be satisfied with any lattice 3. We
simply take the semigroup @ to be ¥ itself, with v as the semigroup operation. Then we
define d and | by d(x) = x and yi* = yax. The semigroup ®, then has only one
element, x itself, which is therefore the identity . And Axioms A1-A2 and M1-M2 are
all satisfied.

The lattices in our computational examples, on the other hand, are very well-
behaved. In fact, they are all Boolean algebras. This raises the question of how
general the axioms are in a practical sense. Are there interesting computational
examples in which the lattice is non-modular, say?

The following lemma, which depends on modularity, will be useful in Chapter 5.

Lemma 3.6. If 3 is modular, x <z < xvy, and ¢y and ¢y are potentials on

x and y, respectively, then (gx@py)i2 = gx®@yt¥Y*2.

Proof: By Axiom M2,

(@2 = (x®LOPy) 12 = (Px®L)@Py M = (Pu@Py Y421y

By Lemma 2.1, xv(yaz), which is the domain of (¢x®qy+¥12), is equal to z.

SO (Px@Py+Y 2@tz = Y@@y Y12,
If the lattice & is not modular, then the conclusion of Lemma 3.6 will not hold.
According to Lemma 2.1, there will be x, y, and z such that x <z < xvy and yet
xv(yaz)#z, and in this case, the two potentials equated by the lemma will have different

domains.
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4. Strongly Vacuous Extension

In most of the examples that we studied in Chapter 3, vacuous extension can be
reversed by marginalization; whenever we vacuously extend a potential up to a larger
domain and then marginalize back down again, we get the potential with which we
began. In this case, we say that vacuous extension is strongly vacuous.

When vacuous extension is strongly vacuous, the mathematical theory of the
preceding chapter simplifies, and we can reformulate the axioms in a several different
ways. In particular, we can eliminate the distinction between a potential and its
vacuous extension altogether. We will explore these possibilities in this chapter.

The purpose of this chapter is mathematical insight. It breaks no new ground
computationally, and it can be omitted by readers who prefer to move on immediately
to the further computational theory in the succeeding chapters.

In Section 4.1, we introduce the stability axiom, which we call Axiom M3. In
Section 4.2, we show the equivalence of Axioms A1-A2 and M1-M3 to a set of axioms
that use vacuous extension as a primitive. In Section 4.3, we reaxiomatize again,
using the idea of projection between arbitrary domains as a primitive. In Section 4.4,
we show how the axioms for projection simplify when we identify potentials that differ
only by vacuous projection.

4.1. The Stability Axiom
Vacuous extension is strongly vacuous if and only if the marginal of an identity is
always an identity.
Lemma 4.1. Suppose Axioms A1-A2 and M1-M2 hold, and suppose X
<y. Then (¢!Y)I* = ¢ for every potential ¢ on x if and only if 1 4% = 1.
Proof: If x <y and ¢ is a potential on x, then (@tY)IX = (L)X = eOLy I X
Hence (p!Y)i* = ¢ for every potential ¢ on x if and only it geui* = @ for
every potential ¢ on x. But the latter condition is equivalent to saying that
¢+ is the identity on &y,
Since Axioms A1-A2 and M1-M2 use identities rather than vacuous extension as a
primitive, it is natural to adopt the condition v,¢X = «x as an additional axiom if we want
to stipulate that vacuous extension is strongly vacuous. So we formulate the following
axiom:
Axiom M3. Ifx =y, yi* =1
We call this the stability axiom.
By setting y equal to x in Lemma 4.1, we see that if vacuous extension is strongly
vacuous (i.e., the stability axiom holds), then g« * = @ for every potential gxon x. As
we saw in Section 3.5, this property does not follow from Axioms A1-A2 and M1-M2

alone.
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The stability axiom holds in all but one of the examples we studied in Section 3.4.
The exception is the probability example, in 3.4.2. in that example, X =Ky, where k
is the number of elements in the frame ©y.,. We can force this example into a form that
satisfies Axiom M3, but at only at a cost to the computational relevance of the theory.

One way to make the probability example satisty Axiom M3 is to drop any
distinction between potentials that differ by a mulitiplicative constant. In other words,
we say that a potential on x is an equivalence class of real-valued functions on x,
where two functions are equivalent if one is equal to a non-zero constant times the
other. The equivalence classes inherit the semigroup operation, the labelling, and the
marginalization map, and Axioms A1-A2 and M1-M3 are all satisfied. This loses
computational relevance because it talks about equivalence classes, while we are
actually working with concrete functions, and because it puts the computation of the
constant (IgnlheH})1<, which is important in most applications, outside the theory.

Another approach is to consider only real-valued functions that take positive values
and sum to one, and to replace marginalization with conditional expectation (in other
words, @i*(c) is the average of @i*(d) over all d for which dix = ¢). This takes us even
farther away from actual computational problems. In practice we want to work with
functions that are not yet normalized to sum to one, and we will avoid conditional
expectation in favor of marginalization when possible, because conditional
expectation requires divisions, which are computationally costly.

This example is reason enough to omit Axiom M3 from our general computational
theory. But it would be interesting to know if there are other computational examples
in which Axiom M3 does not hold, and it would ailso be interesting to see examples
that diverge from the axiom more sharply, in the sense that it cannot be satisfied by
taking equivalence classes that retain signiticant aspects of the computational
problem.

On the other hand, it is worthwhile to study Axiom M3 further, because a theory that
includes this axiom is the natural framework for a number of ideas and properties that
occur in many examples.

4.2. Axioms for Strongly Vacuous Extension

When vacuous extension is strongly vacuous, we can use it in place of identities as
an axiomatic primitive.

Here is how it goes. We begin with the operations d, ®, !, and ¢ as our primitives.

We assume that
dmapsdto S,
® is a commutative binary operation on @,
if xsy, and ¢y is a potentiat on x, then ¢!V is a potential on y, and
if xsy, and gy is a potentiat on y, then g, +*is a potential on x.
And we adopt the following axioms.

26



Axiom V1. If ¢, and ¢, are potentials on x and y, respectively, then
d(ex®py) = Xvy.

Axiom V2. If gy is a potential on x, then gx!* = @«

Axiom V3. If ¢y is a potential on x, and X sy < z, then (g !1Y)12 = g, t2.
Axiom V4. If ¢, and ¢, are potentials on x and y, respectively, xsz, and
y<z, then (px®@y) 1% = ot Zeg, 2.

Axiom V5. If g, is a potential on z, and x sy sz, then (gz1Y)iX = @ 4X.
Axiom V6. If gy and @y are potentials on x and y, respectively, then
(Px®Py) X = Px@pyd YAX,

Axiom V7. If gy is a potential on x, then (g tXvY )Y = (@i XAy)ty.
Axiom V8. If gy is a potential on x, and X sy, then (g tY)iX = g.

We have already verified that Axioms V1-V8 are implied by Axioms A1-A2 and M1-

M3:

Axiom V1 is Axiom A1.

Axiom V2 is statement (iv) of Lemma 3.2.

Axiom V3 is statement (vi) of Lemma 3.2.

Axiom V4 is statement (vii) of Lemma 3.2.

Axiom V5 is the same as Axiom M1.

Axiom V6 is the same as Axiom M2.

Axiom V7 is Lemma 3.3.

Axiom V8 is part of Lemma 4.1.

It is also true, that Axioms V1-V8 imply Axioms A1-A2, and M1-M3. More precisely,
if Axioms V1-V8 hold, then we can adjoin identities to the semigroups ®4 and extend
the operations d, ®, 1, and | to include these identities in such a way that Axioms A1-
A2 and M1-M3 hold.

Suppose, indeed, that Axioms V1-V8 hold. Then it follows from Axiom V1 that @,
the set of all potentials with domain x, is a semigroup. Hence we can adjoin an identity
\, to it. We can then extend ® to an operation on O 1, IxeS} by setting v@, equal to

wvy and by setting gx®ty and y®gx equal to gy 1*vY. Axiom A2 is satisfied by definition.
The extended operation ® is obviously commutative and satisfies Axiom A1; using

Axioms V1-V4, we can show it is associative as well.

Next, we extend the definitions of t and | to U{IxeST} by setting 1Y = 1y and 4
= 1w whenever x s y. Axiom M1 follows immediately from these definitions and Axiom
V5. To derive Axiom M2, we use Axiom V6, and we note that

(x@@y)+* = (y tXvy)x
= (gpy+YAX)1X by Axiom V7
= LX®(pylyAx
and
(@) ¥ X = (uIXvY )i
= gxby Axiom V8
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= gy X by Axiom V2
= Px®lyax
= q)x®tyly"x.

Note the essential role of Axiom V8 in the last derivation.

Axioms V1-V7 follow from Axioms A1-A2 and M1-M2 alone, without Axiom M3.
Going the other way, however, it does not appear possible to adjoin identities and
derive Axioms A1-A2 and M1-M2 without using Axiom V8. So although Axioms V1-V8
succeed in reaxiomatizing the theory of Axioms A1-A2 and M1-M3 in terms of vacuous
projection, it does not appear that the theory of Axioms A1-A2 and M1-M2 alone can
be similarly reaxiomatized.

4.3. Projection

Recall Lemma 3.3 and Axiom V7:

(XYY = (gixa)ty (4.1)
whenever ¢ is a potential on x. This equation suggests that the map that takes ¢ into
the potential (ptxv¥)i¥ might also be used as a primitive. In fact, doing so considerably
simplifies Axioms V1-V8.

Given a potential g on x, let us write @Y for (pt*xv¥)lY, and let us call ¢~*Y the
projection of pto y. (Notice that ¢~V is defined for any potential ¢ and any domain y.)
It can be shown that if Axioms V1-V8 hold for the operations d, ®, 1, and i, then the
following axioms hold for the operations d, ®, and —: '

Axiom P1. If ¢, and gy are potentials on x and y, respectively, then

d(gx®@@y) = Xvy.

Axiom P2. If g4 is a potential on X, then @ox ™% = @x.

Axiom P3. (¢p7X)7Y = (@p7XaY)TY = (¢ XVY) Y.

Axiom P4. If ¢y and gy are potentials on x and y, respectively, then

(Px®y) ™% = @@y X
Conversely, if Axioms P1-P4 hold for d, ®, and —, then Axioms V1-V8 hold for d, ®, t,
and {. (If we start with ~, then we define t and | as special cases of ™; when x sy, we
write g« 1Y for @Y, and when y < x, we write gy iV for @x~Y.) Proofs are left to the
reader.

Though (4.1) holds even if vacuous extension is not strongly vacuous, it does not
appear that Axioms P1-P4 can be adapted in any simple way to make them equivalent
to Axioms A1-A2 and M1-M2 alone. Apparently the theory of Axioms A1-A2 and M1-
M2 cannot be axiomatized in terms of projection.

4.4. Projection Without Labels

Now we formulate axioms that dispense with labels and hence with the distinction
between a potential and its vacuous extension.
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4.4.1. Axioms

Here is the way it goes. We begin with a lattice I and a commutative semigroup
(9.®). We associate with every potential ¢ in O and every domain x in & a potential ¢=
that we call the abstract projection of ¢ on x. If $=X = ¢, we say that x supports ¢, or that
¢ is measurable with respect to x. We adopt two axioms.

Axiom P*1. (¢=X)=VY = ¢p=xrY.

Axiom P*2. If x supports ¢+, then (¢1®¢2)=% = ¢1®(p2~>%).
We assume, without loss of generality, that the semigroup contains an identity. If it did
not, then we could adjoin an identity v and set +=x =« for all x, and Axioms P*1 and P*2

would still hold.

The following lemma lists some consequences of Axioms P*1-P*2.
Lemma 4.2.

(i) x supports ¢=x.

(ii) If x supports ¢, then x supports ¢=Y.

(i) If x and y both support ¢, then xay supports ¢.

(iv) U x supports ¢, then xay supports ¢=Y.

(v) If x supports ¢, then ¢=¥ = ¢=*»Y.

(vi) If x supports ¢ and x s 'y, then y supports ¢.

(vii) If x supports both ¢4 and ¢2, then x supports ¢1®¢2.

(viii) If x supports ¢1 and y supports ¢z, then xvy suppors ¢1©¢s.
Proof:

(i) Substituting x for y in Axiom P*1, we obtain (¢=%)=* = ¢=*. So x
supports ¢=x.

(i) It follows from Axiom P*1 that (§=Y)=% = (¢=>)=Y. If X supports ¢,
then we can substitute ¢ for ¢==* on the right-hand side of this equation,
obtaining (¢=Y)=X = ¢=>¥. This means that x supports ¢=.

(ifi) If x and y both support ¢, then by substituting ¢ first for ¢=>* and
then for ¢=Y in Axiom P*1, we find that ¢ = $=*+y, which means that xay
supports ¢.

(iv) This follows from (i), (ii), and (iii).

(v) This follows from Axiom P*1 and the definition of support.

(vi) If xs vy, then xay = x. So Axiom P*1 says that (o=X)=Y = ¢=*. If X
supports ¢, then this reduces to ¢=Y = ¢, which means that y supports ¢.

(vii) If x supports ¢1, then Axiom P*2 says that (01@¢2) =% = ¢1®($p2=%).
If x also supports ¢z, then we can substitute ¢2 for ¢o=* in this equation,
obtaining (p1®¢2)=* = p1@¢2, which means that x supports ¢1®¢z.

(viii) If x supports ¢1 and y supports ¢, then, by (vi), Xxvy supports both
b1 and ¢p. Hence, by (vii), Xvy supports ¢1®¢2.

4.4.2. Translation to Labelled Potentials

Axioms P*1-P*2 are essentially equivalent to Axioms A1-A2 and M1 -M3, to Axioms
V1-V8, and to Axioms P1-P4. Since we are most interested in Axioms A1-A2 and M1-
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M3, which are closest to our computational theory, let us spell out formally the

equivalence of P*1-P*2 with A1-M3. First, let us say how to go from P*1-P*2 to A1-M3.
Lemma 4.3. Suppose Axioms P*1-P*2 are satisfied by the lattice 3, the
commutative semigroup (9,®) and the abstract projection =. Define (d.®)
by

@ = {($,X) | $pe0, X, and x supports ¢}
and
(¢1.X)(92,Y) = ($1©2,XvY),
define amap d from ® to I by
d((¢.x)) = X,
and define a map | by
(¢ X)4Y = (¢=V.y)
whenever y < x. Then (®,®) is a commutative semigroup, and Axioms
A1-A2 and M1-M3 are satisfied by 3, (9,®), d, and +.

Then let us say how to go from Axioms A1-A2 and M1-M3 to Axioms P*1-P*2.
Lemma 4.4. Suppose Axioms A1-A2 and M1-M3 are satisfied by the
lattice 3, the commutative semigroup (®,®), the labelling d, and the
marginalization {. Define a relation = on the set ® by

@1 = @ if and only if P10 (gp) = P2®ld(gpq)-

Then = is an equivalence relation, and any two identities  and i, are in
the same equivalence class. Let [¢] denote the equivalence class
containing ¢, and let & denote the set of all the equivalence classes.

If ¢ =2 and @3 = @4, then p1®ps = p2©¢4. Thus a binary operation @
on & can be defined by [g1]@[p2] = [91®92]. The pair (3.®) is a
commutative semigroup, with [i] as its identity.

It @ = @o, and x is a subdomain of both their labels, then g1+ % = gai*.
So we can define a map = by [¢]=* = (g@u)+*.

Axioms P*1-P*2 are satisfied by J, (0,®) and =.

4.4.3. Least Support

If the lattice S is finite, then every potential ¢ has a least support. (This follows from
statement (iii) of Lemma 4.2.) We could call this the label for ¢, but it would not
necessarily follow the labelling axiom, for the least support of a product may be
smaller than the least support of its factors. A variable can influence two real-valued
functions, for example, without influencing the product, in which case it is be in the
least support of both functions but not the least support of the product. (Example:
Suppose f and g are functions on the variabie g, which takes the values 0 and 1.
Suppose f(0)=2, {(1)=4, g(0)=6, and g(1)=3. Then d(f)=d(g)={&}, but d(f-g)=&, because
f.g is a constant; it is always equal to 12.)
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4.4.4. Semi-Computational Theory

By relying on the idea of support rather than on the specification of labeis, we can
derive from Axioms P*1-P*2 a theory that is similar to the computational theory of
Section 3.3. The following lemma illustrates the point.

Lemma 4.5. Suppose H is a hypergraph. For each domain h in H,
suppose ¢y, is a potential supported by h. Set
¢ = &{¢nlheH}.
Suppose tis atwigin H and bis a branch fort. Then
¢=vH' = ofgn tiheH,
where ¢pt = dp@(Ppy=P41) and ¢nt = ¢r, for all other h in H-t.
Proof. Apply Axiom P*2 with vHtfor x, ®{¢nlheH% for ¢4, t for y, and ¢ for
¢2. Thisyields
¢="H" = (&{pnlheH ) ® pr=vH".
Since ¢ is supported by t, ¢, = ¢!, and hence, by statement (v) of
Lemma 4.2, ¢=vH! = g=(vHat Since b is a branch for tin H, (vHYat =
bat. So
¢=vH" = (&{¢nlheHD) @ (er=>").
By the commutativity and associativity of ®, we can shift ¢p within the
right-hand side of this equation to obtain
¢=vH" = (&{¢nlhe(H'{b})}) @ (pp@P=P"Y).
This lemma allows us to eliminate twigs step-by-step in a hypertree. Since § contains
an identity, we can also use a hypertree cover as in Section 3.3.3.

This theory we obtain in this way is less interesting than the computational theory
based directly on Axioms A1-A2 and M1-M3, because in practice, computation does
require labels in some form. And if we use labels but think in terms of support, we are
complicating our story. We may even be creating new computational problems, for it is
not always easy to find the least support for a potential.

5. Continuation and Normalization

This chapter deals with an important special case of the outward phase of
hypertree computation —the case where the axioms of Chapter 3 are satistied and, in
addition, continuers exist. In this case, after moving inward in the hypertree to
compute the marginal on the root, we can move back out to compute marginals on the

other domains in the hypertree.

We call y a continuer of ¢ from x to y if combining y with ¢'s marginal on x
produces ¢'s marginal on y:
PLX@Y = piY. (5.1)
As we will see, continuers exist in all the examples of Chapter 3. Finding a continuer
in these examples is sometimes a little harder than finding a product. Intuitively, it
requires a division; solving (5.1) for v requires that we divide each side by pi*.
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We will assume that the lattice J contains a zero &, and we call a continuer from &
to y a normalization on y. In our examples, a normalization is nearly the same as a
marginal. (In the case of a probability distribution P, it is exactly the same; we have
Pi2 =1, and hence Pi9¢y = Pi¥ means y = PlY.)

Section 5.1 of this chapter studies the definition of continuer and explores the
implications of the existence of continuers. Section 5.2 shows how continuers can be
used in the outward phase of hypertree computation. Section 5.3 applies this
computational theory to the examples of Chapter 3.

5.1. Properties and Implications of Continuation

We begin with the framework of Chapter 3. In other words, we adopt Axioms A1-A2
and M1-M2.
Here is the definition of continuer again. Suppose ¢ is a potentialon z, and xsy <
Z. Suppose
ey = gV, (5.1)
Then we say that y continues ¢ from x to y, or that y is a continuer of @ from x to y.

We have encountered continuation before. If x sy, ¢ is a potential on x, and Axiom
M3 holds, then v, is a continuer of @!¥ from x to y.

The following lemma lists some consequences of the definition of continuer:
Lemma 5.1.
. () If y continues @ from x to y, then xvd(y) =y.

(i) fwsxsysz and ¢is a potential on z, then ¥y continues ¢ from w
to x if and only if it continues ¢! from w to x.

(i) Suppose the lattice Jis modular. Thenifwsxsysz gisa
potential on z, and y continues ¢ from w to y, then «x+d(¥) continues ¢
from w to x.

(iv) Ifwsxsysz gisapotential on z, g4 continues @ from w to X,
and yp continues ¢ from x to y, then @2 continues ¢ from wtoy.

(v) If gxand gy are potentials on x and y, respectively, and ¢
continues gy from xay to y, then y also continues gx@gy from x 1o xvy.

(vi) If gx and gy are potentials on x and y, respectively, and ¥
continues gy from xay to y, then v also continues ex®gy from xay toy.
Proof.

(i) This follows from (5.1) and Axiom A1.

(i) Since W = (pi¥)iW and @ix = (gi¥)iX, the relation @i* = @iy
can also be written (@iY)i* = (piY)iWeyp.

(i) By Lemma 3.6, when we marginalize both sides of gi¥ = gi%ey 10
X, we obtain giX = (W)X = plWepixrdw),

(iv) We have @iW@yp1@y2 = @¥X@ypz = ¢iY.

(v) We have (gx®@y)t @y = gx@@y 1 *AY@) = gxO@y.
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(vi) Using Lemma 3.1, we find that (@x@gy)i**Yeyp = Px AN Ry XA Y @y
= Qe XNy = (P@@y)iY.

[NOTE: We could add to statement (iii) the comment that any continuer of y from
xad(y) to d(y) is also a continuer of ¢ from x toy. (Proof: If y* continues vy from xad(y)
to d(y), then we can substitute the equation y = pix+dWgy* in the equation giWey =
@iX to obtain giWeylxrdWey* = iy, or pi*@y* = @l¥.) |s this of any use?]

We can only use the results in Lemma 5.1 if continuers exist. So in addition to
Axioms A1-A2 and M1-M2, we now adopt the following axiom:

Axiom T. If g is a potential on z, and x s y < z, then there is at least one
continuer of p fromxtoy.
As we will see in Section 5.3, Axiom T is satisfied by all the examples we studied in
Chapter 3. It would be interesting to know whether there are computationally
interesting examples of Axioms A1-A2 and M1-M2 in which continuers do not always
exist.
As the following lemma indicates, the existence of continuers can help us even if

we do not compute them.
Lemma 5.2. The following statements follow from Axioms A1-A2, M1-

M2, and T.
(i) Suppose xsy, g1 and gz are potentials on x, ¢y is a potential on vy,
and
P1OPy X = PPy X,
Then

P1®OPy = P2®Q@y.
(i) Suppose gy is a potential on x, and gy is a potential on'y. Then
there exists at least one potential x on xay such that
APy VY = (Qy@py) XY, (5.2)
Moreover, if x is any potential satisfying (5.2), then
XOPy = (Px@y)4Y.
Proof. (i) Lety be a continuer of gy from x. Then
P1®Py = P1OPY @Y = P2OPy AP = P20y
(i) By Lemma 3.1, gy XAy satisfies (5.2). If x is another potential
satisfying (5.2), then by statement (i), together with Axiom M2,
YOy = Pxi XY@y = (q)x®cpy)l.‘/.

Continuers are not, in general, unique. One aspect of their non-uniqueness is the
possibility of continuers to y whose domain is smaller than y. If y continues ¢ from x to
y, and d(y) is smaller than y, then the vacuous extension 1Y is a different continuer of
¢ from x to y. Itis not bad to have a continuer to y whose domain is smaller than y.
This happens whenever a potential factors non-trivially on a hypergraph, and the point
of this chapter is to take advantage of it. As we will see in Section 5.3, however, the
non-uniqueness of continuation often goes beyond this. There are often several
different potentials on y that continue ¢ from xto y.
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In order to use statement (iii) of Lemma 5.1, we need 3 to be modular. For the sake
of simplicity in our computational theory, we also want 3 to contain a zero. So we
adopt one more axiom:

Axiom A3. The lattice J is modular and contains a zero &.
This axiom, too, is satisfied by the computational examples we considered in Chapter

3.

If v is a continuer of ¢ from Jto y, where & is the zero of 3, then we call y a
normalization of g ony. Notice that if y is a normalization of pony, and x s 'y, then ix
IS @ normalization of g on x.

We say that a continuer y of ¢ from x to y is proper if iX2dW) = 1,4y As we shall
see, proper continuers exist in all the computational examples of Chapter 3. In some
cases, it is may be worthwhile to use proper continuers: in other cases, the extra effort

needed to find them may not be justified.

5.2. Computational Theory

In Chapter 3, we learned how to find the marginal on the root of a hypertree
construction ordering of a potential for which we have a factorization on the hypertree.
We do this by marginalizing and combining within domains as we move inward in the
hypertree—i.e., backward from twig to branch in the hypertree construction ordering.
In this section, we learn how to move back out in a hypertree —forward from branch to
twig in the sequence—using continuers to find marginals for the other domains in the

hypertree.
We actually give three different theories for the outward computation.

In the first two theories, we find continuers as we marginalize moving inward. Each
time we marginalize a potential on a twig to the meet with the twig's branch, we aiso
find and store a continuer of the potential from the meet back to the twig. After we
reach the root, we move back out along the construction ordering, marginalizing to
meets and combining with the continuers we have stored in order to find the marginals
for successive twigs. In the first theory, we start back out as soon as we have found the
marginal for the root. In the second theory, we first use this marginal to find a
normalization for the root, and the potentials we find for the other domains as we move
outward are also normalizations rather than marginals.

In the third theory, we simplify the computation. Instead of combining and storing
continuers to the twigs, we merely store all the potentials that we compute as we move
inward to find the marginal of the root. This includes a potential on each domain and
its marginal on the meet with the branch of that domain. On our way back out, we
solve equations that are analogous to (5.1) but which involve potentials on the meets
rather than on the larger domains.

The third theory is equivalent to a method explained by Jensen et al. (1990) for the
probability example. It is more efficient than the first two theories, since it does its work
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on smaller domains. The first two theories are theoretically interesting, however,
because they help us understand the third theory, and because the second theory
works for the more general axioms we consider in the next chapter.

5.2.1. Using Continuers to Find Marginals

Finding continuers, like finding products and marginals, often becomes more
difficult as the domain is enlarged. So we must modify the definition of feasible
domain. In Chapter 3, we called a domain feasible when it is feasible to combine and
marginalize potentials on the domain. Now we require that it also be feasible to find
continuers of potentials on the domain. We will still say that a hypertree is feasible
when all its domains are feasible.

The following lemma provides the key to finding marginals in a feasible hypertree.

Lemma 5.3. Suppose ¢ is a product on a hypergraph H:
¢ =& pnlheH}.

Suppose that tis a twig in H, and b is a branch for t. And suppose that vy
continues ¢ from battot. Then

(i) p continues ¢ from batto t, and

(i) y continues ¢ from vHtto vH.
Proof. Statements (i) and (ii) are special cases of statements (vi) and
(v), respectively, of Lemma 5.1.

Suppose H is a feasible hypertree, and recall Chapter 3's recipe for finding the
marginal of ¢ on a domain hy of H. First we find a construction ordering hy,hy,....hn, and
a branching b(i) for this ordering. Then we marginalize from H" to H™! to H"2 and so
on, where Hiis the hypertree {hy,hp,....hj}. At the step from Hito H-', we go from a
collection {gn/lheH}, which has @i vH' as its product, to a collection {gn-1lheH*1}, which
has ¢l vH" its product. To go from {gnilheH} to {gn-1lheH-1}, we omit h; and change the
potential on hyg)y from nyg, to ryp'®(pr)i oMM the other potentials are unchanged.
The collection with which we begin, {gn"lheH"}, is simply {gnlheH}, and the collection
with which we end, {gn'lheH'}, consists of the single potential gih1.

Now suppose that at each step we also find a continuer. As we are work within h;
to marginalize %ii to hpyahi, we also work within h; to find a continuer of on; from
hogyahi to hi. We write ; for this continuer.
Lemma 5.4. The potential y; continues ¢ from hy;ah; to h; and also
from vH-1 to vHi fori=2,...,n.
Proof. By Lemma 5.3, y; continues cplvHi from hygahi to hy and from vH-!
to vHi. By statement (ii) of Lemma 5.1, it also continues ¢ from hyg)ah; to
h; and from vHi-1 to vH

Notice that d(y;) < h;.

At the last step, we find @ih1, together with y,, which continues ¢ from hyahz to hy.
According to the second part of Lemma 5.4, we have the following:

@ih1, the marginal of @ on hy,
Yo, Which continues ¢ from hy to hyvho,
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Y3, Which continues ¢ from hyvhs to hyvhsvha,
and so on, upto

Yn, Which continues @ from hyvhov--vhn 1 to hyvhov-vhy.
By the definition of continuer, together with statement (iv) of Lemma 5.1, these
potentials constitute a new factorization of .

Now let us describe what we have using the first part of Lemma 5.4:
@M, the marginal of g on hy,
Yo, which continues ¢ from hyahs to hy,
Y3, Which continues ¢ from hpgyahgz to hg,
and so on, up to
Yn, Which continues @ from hppyahp to hy.
This description makes it obvious how to use these potentials to find marginals on all
the h;.

First we marginalize @it to hiahy (an operation within hy). This gives the marginal
of @ on hyahg, which we can combine with ¥ (an operation within hy) to obtain the
marginal of ¢ on h,. Next we find the marginal on h3. We do this by taking the
marginal on hy or hp, whichever is the branch of hs, and marginalizing it to hy@a)aha (an
operation within hy(a)) and then combining the result with ya (an operation within hgz).
Continuing in this way back out the hypertree construction ordering, we successively
obtain marginals on each h;, working in each case only in the domains hj and hy.
The computation at each step is the same as the computation we performed at each
step during the inward phase of the computation: marginalization to the meet with a
neighbor and then combination with the potential on that neighbor, except that now we
move from hpgy to h; instead of from h; to hy.

5.2.2. Using Continuers to Find Normalizations

Suppose that instead of stopping the inward phase of the computation when we
have found N1, we continue the process one more step, finding ¢+< and a potential
w1 that continues @ from & to hy.

We now have
4, which continues ¢ from & to hy,
o, which continues ¢ from hy to hyvhy,
3, which continues ¢ from hyvhz to hyvhavhsg,
and so on, up to
P, which continues ¢ from hyvhav-vhp.1 to hyvhav--vhn.
By statement (iv) of Lemma 5.1, y1®yp2®--@yn continues ¢ from & to hyvhav--vha—i.e.,
a normalization of ¢ on hyvhav--vhp.

Now we shift our attention to the fact that

Py continues ¢ from J to hy, (5.3)
o continues ¢ from hyahz to hy, (5.4)
P3 continues ¢ from hy@yaha to hg, (5.5)

and so on, up to
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Pn continues ¢ from hppyahp to hy.
We can use these continuers to find normalizations of ¢ on all the h;.

We begin with ¢4. Its domain is hy. By (5.3), together with statement (iii) of Lemma
5.1, its marginal y4ih14h2 continues ¢ from & to hyah,. We can find yq4h14h2 working
within hy, and then we can combine it with 2 working within hy; this yields, by (5.4)
and statement (iv) of Lemma 5.1, a continuer of ¢ from & to h,.

Now we have normalizations on hy and hz (i.e., continuers of ¢ from & to hy and
from & to hp). The next step is to find a normalization on h3 (i.e., a continuer of ¢ from
1o hg). We do this by taking the normalization on hy or hy, whichever is the branch of
hs, and marginalizing it to hp@)ahaad(yps). By statement (iii) of Lemma 5.1, this yields a
continuer of ¢ from & to hy@yahs. By (5.5) and statement (iv) of Lemma 5.1, we can
combine this continuer with y3 to obtain a continuer of ¢ from & to hs.

Continuing in this way back out the tree, we successively obtain normalizations on
each h;, working in each case only in the domains h; and hy).

Lemma 5.5. If the continuers y1,2,...,¢n are proper, then the
normalizers on the h; found by the preceding algorithm are marginals of
the normalizer {1®yPo@--@Pn.
Proof. Let us write iy,ip,...,ik for the sequence i,b(i),b((i)),....1. Since the
P1,Y2,...,Pn Are proper, ;@Y is the marginal of y1®y2@--®yp on
hi;vhi,v-vhy. To see that this is true, notice that we can marginalize to
hi;vhi,v--vh; by successively eliminating twigs from the hypertree
construction sequence. We begin with a twig j other than i, and we find
that
(w1®w2®...®wn)},h1vh2..,vhj_1vhj+1...vhn
= (P 1©P2® P} 1®P}4 1© @) @j 4 ir P (ALl
= (P 1©Y2®" @Y. 1 ®Yj4 1@ @Y ) Othjahpjyad(y))
= P1OY2® @Y1 @Y} 1@ @Y.
We can continue eliminating twigs until only hiy,hi,,...,h; are left.
To complete the proof, note that the algorithm amounts to
marginalizing y;,®yi,®®y;, by eliminating first hy (or hy), then h; , and
so on, until only h; remains.

[NOTE: The exposition of this proof needs to be improved, but this seems to
require some groundwork on join trees or directed acyclic graphs. | am also troubled
because | think the conclusion of the lemma is true even if the continuers are not
normal. How can this be proven? If it is true, does it generalize to the next chapter?]

5.2.3. Using Division in Separators to Find Marginals

The meets hygah;, fori=2,...,n, are called the separators for the hypertree
construction ordering. In our third computational theory, we marginalize and combine,
as usual, on the h;. But we do not compute continuers on the h;. Instead, we solve

equations of the form
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X®P1 = @2 (5.6)
on the separators. Instead of assuming that it is feasible to find continuers on these
domains, we assume only that if ¢1 and g2 are potentials on a separator, and x
satisfying (5.68) exist, then it is feasible to find one.

The following lemma brings us closer to seeing how solving equations of the form
(5.6) can help us find marginals on the domains of the hypertree.
Lemma 5.6. Suppose ¢ is a product on a hypergraph H:
¢ = &{gnlheH}.
Suppose that tis a twig in H, and b is a branch for t. And suppose that
continues gy from bat to t. Then there exists at least one potential x on
bat such that

X@q)tl bat — (p‘[,b/\t_ (57)
Moreover, if x is any potential satisfying this equation, then
XOPy = it (5.8)

Proof. This is a special case of statement (i) of Lemma 5.2.

In a typical step of the outward computation described in Section 5.2.1 above, we
find the marginal ¢iP, marginalize it to the separator bat, and combine the result with a
continuer to find ¢it. Lemma 5.6 shows us that the continuer is not needed. If we save
@t Pt which we had computed during the inward phase of the computation, we can
solve (5.7) for x and then use (5.8) to find @it

So here is what we do. As we move inward, from {gn/lheH} to {gn-1lheH"1}, we save
both ¢n! and its marginal (pr){ @AM, Thus at the end of the inward phase, we have
@ih1, the marginal of g on hy,
Pno2 On hp and (gn,2)4N14h2 on the separator hyahy,
Phg® ON hz and (gng3)iMo(3)2h3 on the separator hpg)ahs,
and so on, up to
®r" ON hp and (gn,")iMomahn on the separator hpmyahn,

On the first step back out, we marginalize @Mt to hyahy, then solve the equation
X®(@h22)ih1 aho — cplhp\hg

for %, and then compute

@ih2 = x®pn,2.
On the next step, we marginalize @M1 or @ih2, depending on whether hy or h; is the
branch for hg, to hypzyahg, and then we solve

X®(png3) tNb(3)h3 = iNb(3)Ah3

for x, and then we compute

@ih3 = x®pngS.
And so on, until we have found gihi for all the h;.
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5.3. Examples

In this section, we review each of the examples we studied in Section 3.4, to verify
that Axiom T holds. This means checking that the equation
QY@ = @iY. (5.1)
has a solution whenever g is a potential on z, and x s y s z. We also discuss how to
solve this equation and the equation
X@q)tlb/\t = cpj,b/\t‘ (5.7)
in each example. And we discuss the interpretation of continuers and normalizations
in each example.

As we will see, equations (5.1) and (5.7) can be solved easily except in the
example of beliet functions. In this example, we must enlarge the semigroup @ in
order to solve these equations.

It should not be thought that continuers exist in all cases of marginalization. An
interesting example where continuers do not always exist is provided by the fast
retraction marginalization studied by Cowell and Dawid (1991) and Dawid (1991).
When continuers do not exist, marginals for all domains in the hypertree can be
efficiently computed using the simultaneous propagation scheme of Shafer and
Shenoy (1988).

5.3.1. Dynamic Programming

In this example, E is a finite set of variables, each with a finite frame, J is the lattice
of all subsets of Z, and a potential on a subset x of Z is a real-valued function on x. We
combine potentials by adding them: @i®g2 is the potential with domain d(¢1)vd(ps2)
given by '

(P1®92)(C) = p1(cid@ 1) + gp(cldw2))
for every configuration ¢ of d(g¢)vd(g,). We marginalize by maximizing out variables:
@iX(c) = max {g(c.c") | ¢'is a configuration of d(¢)-x}.
for every configuration ¢ of x.
In this example, (5.1) and (5.7) have unique solutions, and finding them is simply a
matter of subtraction:
P(c) = piY(C) - pi*(ciX)
for every configuration ¢ of y, and
%(C) = GLPA(C) - griatc)
for every configuration ¢ of bat. Notice that yi* is identically equal to zero. Thus the
continuer 1 is proper.

In general, y(c) is always negative or zero. It tells how far gi¥(c) is from the
maximum value that can be achieved by holding the coordinates in ciX constant while
varying the coordinates in ci¥*. The value of a normalization tells how far the
particular configuration is from attaining the maximum of the potential.
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5.3.2. Factored Probability Distributions

Again, Z is a finite set of variables, each with a finite frame, & is the lattice of all
subsets of Z, and a potential on a subset x of = is a real-valued function on x. Butin
this example we combine by multiplying: ¢®¢» is the potential with domain
d(e@1)vd(ge) given by

(@1892)(C) = @1(Cid@) - gp(cided)
for every configuration ¢ of d(¢gy)vd(¢2), and we marginalize by summing out:
pX(c) = Z{g(c.c') | ¢'is a configuration of d(¢)-x}.

for each configuration ¢ of x.

Here solving (5.1) and (5.7) is a matter of division. in the case of (5.1), we want to
find 1 such that

@IX(cX) - (c) = @i¥(c) (5.9)

for every configuration c of y. This is easily done. If gi*(ci*) =0, then ¢!¥(c) = 0, so
any value for y(c) will satisfy (5.9). If pix(ci*) > 0, on the other hand, then we must
have

pv¥(c)
c)= . A
WO = o (5.10)
So we use (5.10) to define y(c) for ¢ such that gi*(ci*) > 0., and we define y(c)
arbitrarily for ¢ such that @i*(ci*) = 0. We handle (5.7) similarly; we set
(pl bAt(C)

X(e) = prioAY(c)

for every configuration ¢ of bat such that the denominator is non-zero. It follows from
Lemma 5.6 that if the denominator is zero, then the numerator is also, so that we can
define x(c) arbitrarily.

In this example, continuers give conditional probabilities. More precisely, if the
denominator of (5.10) is not zero, then the ratio is the conditional probability of ¢ given
ciX, according to the probability distribution that is proportional to 1.

In the case where @ does not take any zero values, continuers and normalizations
are unigue. All the values of a continuer are conditional probabilities, and a
normalization on y is simply the marginal on y of the probability distribution that is
proportional to ¢. When ¢ does have some zero values, continuers and
normalizations may not be completely unique, because some of their values may be
arbitrary. In the extreme case, where @ is identically zero, the continuers and
normalizations are completely arbitrary.

In this example, a continuer  from x to y is proper if
= {@(cx.Cy.x) | Cy.x is @ configuration of y-x} = 1 (5.11)
for each configuration ¢, of x. When ¢iX(cy) > 0, this holds, because then the ¢(cx.Cy.x)
are the conditional probabilities, according to the probability distribution proportional
to ¢, of cy.x given ¢y If @iX(cy) = 0, then we can define arbitrarily ¢(cx.cy.x), and hence
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we can make (5.11) hold it we wish. If we are interested only in finding marginals for,
however, there will be no reason to go to the trouble of doing so.

5.3.3. Linear Equations

In this example, (5.1) and (5.7) are both trivial to solve in a formal sense; giY is a
solution of (5.1), and @iPAtis a solution of (5.7).

This means that the ideas of Section 5.2 simplify, and the distinctions among the
three computational approaches more or less disappear. The simplest way to
describe the computation is to say that we save only potentials on the domains (not on
the separators) as we move inward. After we have found the marginal on the root hj,
we marginalize it to hyahy, and we combine this with the potential we have on hs to
obtain the marginal for h,, and so forth.

5.3.4. Subsets of Cartesian Products
Our comments on the preceding example apply to this one as well.

5.3.5. Belief Functions
In the theory of belief functions, combination can be implemented by multiplying g-
functions.
Q(px®cpy(A) = Q@X(Alx) ' Q(py(Aw)
This suggests that we can define continuers for commonality functions just as in the
preceding example. In other words, we solve (5.1) by means of a g-function g, on y
with
_ _Goiy(A)
qw(A)_q(plX(Alx) (512)
for each subset A of©, such that q,ix(A{X) > 0.
As it turns out, we can use (5.12) to define a non-negative function g, that satisfies
Qe ix(AYX) - ay(A) = Aely(A). (5.13)
If quix(AIX) =0, then gyiy(A) = O, so (5.13) will hold no matter how we define g, for A
such that g, x(AlX) = 0. However, g, may fail to be a g-function.

We can legitimize (5.12), however, by enlarging the commutative semigroup of
belief functions to a larger commutative semigroup. The belief functions on y form a
semigroup @y, which consists, in its g-function representation, of all set functions g on

©y for which the numbers
m(A) = Y (-1)%*q(B)
B2A

are non-negative and add to one. Every element of @y is itself non-negative, but not
every non-negative set function g on ©y isin ®y. If we let ®,* be the commutative
semigroup consisting of all non-negative set functions on ©, still with multiplication as
the semigroup operation, then ®, will be a subsemigroup of ®y*, and (5.12) will define
a legitimate element of ®,*. If we use the same definition of marginalization for ®," as
we used for @y, then we have a more general theory of belief functions, in which
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Axioms A1-A7 all hold. We can implement the algorithm of Section 5.2 in this more
general theory.

A normalization of ¢ on y, in this general theory, will be a set function Qy satisfying
Aei@ - Qy(A) = Geiy(A). (5.14)
Since g2 is a constant, we see that here, as in the probability example,
normalizations are essentially the same as marginals. If q,i2=0, then qe is identically
zero. Whenever is not identically zero, we can rewrite (5.14) as

_Goiy(A)
WA =g s
Thus the normalization g on y is the proper belief function proportional to the marginal
ofgpony.

If the belief function @ is in the subsemigroup @, then its marginals and
normalizations will be as well, and hence the final results of the algorithms described
in Section 5.2 will be in @, even if some or all of the factors or some or all of the
continuers used in the computation are not.

6. Extension and Solution

Normalizations sometimes provide more information than we need. In the case of
dynamic programming, for example, we may not want to know how much each
configuration of y falls short of being optimal. We only want to know which
configurations of y are optimal. In this chapter, we generalize the computational theory
of the preceding chapter so that it will apply to cases where we seek less information.

6.1. Extension Relations
We adopt Axioms A1-A3 and M1-M2. We also assume the existence of an
extension relation.

We call a set E of ordered triplest (x,3,p) an extension relation if Axioms A1-A3 and

M1-M2 hold and E satisfies the following axioms:
Axiom E1. If (x,y,9)eE, then ¢ and vy are in @, x is in J, and xvd(y) =

d(¢).
Axiom E2. If w s X < d(p), (W, y1,@iX)eE, and (X,y2,9)eE, then
(W, 1@z, ¢)eE.

Axiom E3. If ¢, and @y are potentials on x and y, respectively, and
(XA .py)eE, then (X, px@qy)eE.
Axiom E4. If x < d(p), then there is at least one potential y such that

(X, ¢, p)eE.
Axiom E5. If w < x < d(¢p) and (w,y,@)cE, then (w,ylxrdW) gix)eE.
The most important axioms here are E2 and E3. Axiom E2 is the combination axiom

for extenders. Axiom E3 is the lifting axiom for extenders.
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[NOTE: Should | strengthen Axiom E5 by requiring that any extender * of v from
XAd(y) to d(¥) should also be an extender of ¢ from x to d(¢) and should satisfy yp =
Y@l xrdW)? | think these things are true in the examples.]

We say that v extends ¢ from x to y (or that ¢ is an extender of ¢ from x to y)
whenever x sy < d(g) and (x,y,!Y)eE. (If d(p) =y, this condition reduces to (x,y,¢)cE.)

Continuers provide one example of an extension relation. More precisely:
Lemma 6.1. If Axiom T holds, and we set
E ={(x,¢y,9) | ¢y continues ¢ from x to d(¢)},
then E is an extension relation.

On the other hand, extension relations have all the properties that we used in the
last chapter's computational theory for continuers. Indeed, we can prove the following
lemma, which differs from Lemma 5.1 only in that “continues” has been replaced by
“extends.”

Lemma 6.2. Suppose we are given an extension relation. Then the
following statements hold.

(i) If ¢ extends @ from x to y, then xvd(y) =y.

(i) fw=sx<y=s2z ¢isapotential on z, and vy extends ¢ from w to x,
then ¢ extends ¢lY from w to x.

(i) fw=sxsysz g@isapotential on z, and y extends g fromwtoy,
then ixadW) extends ¢ from w to x.

(iv) fwsxsysz gisapotential on z, ¢4 extends ¢ from w to x, and
Po extends ¢ from x to y, then 1@y extends g fromwto y.

(v) If pxand gy are potentials on x and y, respectively, and y extends
gy from xay to y, then  also extends @@y from x to xvy.

(vi) If gx and gy are potentials on x and y, respectively, and ¢ extends
gy from xay to y, then v also extends ¢x@gy from xay to y.
Proof: Statements (i) through (v) follow from the definition of “extends”
together with Axioms E1, M1, E5, E2, and E3, respectively.

To prove (vi), note that by (v), ¢ extends gui**Ye@gy from xay toy.
Since g XYo@y = (ex®@y)4Y, this means that ¢ extends (px@@y)+Y and
hence gx®@gy from xay toy.

If g is an extender of ¢ from J toy, where & is the zero of I, then we call y a
solution of pony.

6.2. Computational Theory

The computational theory for extenders follows from Lemma 6.2 exactly as the
computational theory for extenders followed from Lemma 5.1. We begin, of course, by
modifying appropriately our concept of a feasible domain. A domain is now feasible if
it is feasible to combine and marginalize potentials and to find extenders within the

domain.
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Here is the analogue of Lemma 5.3.
Lemma 6.3. Suppose g is a product on a hypergraph H:
@ = &{pnlheH).

Suppose that tis a twig in H, and b is a branch for t. And suppose that P
extends ¢t from battot. Then

(i) p extends ¢ from batto t, and

(if) ¢ extends ¢ from vHtto vH.
Proof. Statements (i) and (ii) are special cases of statements (vi) and (v)
of Lemma 6.2, respectively.

Suppose H is a feasible hypertree, and we find @iM1 by the step-by-step method
described in Chapter 3. And at each step, we also find an extender. As we work
within h; to find the marginal of cph{ on hpgahi, we also find an extender of cphi" from
hpgyah; back to h;. Let us write y; for this extender.

Lemma 6.4. The potential v; extends ¢ from hpgah; to h; and also from
vH-1 to vHi, fori=2,....n.

Proof. By Lemma 6.3, y; extends ¢! vH from hpgah; to hj and from vH-!
to vHi. So by statement (i) of Lemma 6.2, it extends ¢ from hygyah; to by
and from vHi"! to vH.

At the last step, we find @iP1, together with ,, which extends ¢ from hyahy to ho.
Then we continue one more step, finding ¢l< and a potential y4 that extends ¢ from &

to h1.

We now have
Y1, Which extends ¢ from & to hy,
Yo, which extends ¢ from hy to hyvhy,
Pz, which extends ¢ from hivhz to hyvhavhg,
and so on, up to
Yn, Which extends ¢ from hyvhav--vhn.y to hyvhov--vhy.
By statement (iv) of Lemma 6.2, ¥1®y®--@y, extends ¢ from & to hyvhov-vhy—i.e., it
is a solution of ¢ on hyvhav--vhn.

In some cases, as shall see, the extenders y; may be simple enough that it is
feasible to compute y1@@-@pn directly. In general,this will not be possible, but we
can work back out in the hypertree to compute solutions of ¢ on the individual h;. To
see how to do this, we shift our attention to another aspect of the ;:

Y1 extends ¢ from & to hy, (6.1)
Yo extends ¢ from hyahz to hp, (6.2)
g extends @ from hpzyahs to hg, (6.3)

and so on, up to

P extends ¢ from hpmyahn to hn.
Using these facts, we can find solutions of ¢ on the individual h; simply by
marginalizing and combining the ; within the h;. This is our outward phase of

hypertree computation.
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We begin with 4. By (6.1), together with statement (iii) of Lemma 6.2, its marginal
Y1iM1ah2 extends @ from & to hyah,. We can compute this extender within the domain
hy, and then we can combine it with vy, within the domain hy; this yields, by (6.2) and
statement (iv) of Lemma 6.2, an extender of ¢ from & to h,.

Now we have solutions on hy and h; (i.e., extenders of ¢ from & to hy.and from @& to
ho). The next step is to find a solution on hj (i.e., an extender of ¢ from & to hy). We do
this by taking the solution on hy or hp, whichever is the branch of hs, and marginalizing
it to hpz)ahzad(ys). By statement (iii) of Lemma 6.2, this yields an extender of ¢ from &
to hp@yahs. So by (6.3) and statement (iv) of Lemma 6.2, we can combine it with 13 to
obtain an extender of ¢ from & to hs.

Continuing in this way back out the tree, we successively obtain solutions on each
hi, working in each case only in the domains h; and hp. The computation at each step
is essentially the same as the computation we performed at each step during the
inward phase of the computation: marginalization to the meet with a neighbor and
then combination with that neighbor, except that now we move from hy) to h; instead of

from h; to hpg.

6.3. Example

Since continuation is a special case of extension, all the examples of the preceding
chapter serve as examples of the theory of this chapter. It is more interesting,
however, to see how the theory of this chapter applies to the problem of finding optimal
configurations in the example of dynamic programming. )

Suppose x sy =z, xvw=y, and ¢ is a potential on z. Suppose A is a map from Oy,
to ®y. such that for every configuration ¢ of x,
@(c.Mcixaw)) = max {pi¥(c.c*) | c¢* is a configuration of y-x}.
Then we say that the potential 1 on w given by

_ 1 if clyX=A(cixaw)

w(e) = { 0 otherwise

extends ¢ from xto y.

7. Reduction

We now return to the inward phase of hypertree computation, in order to generalize
the theory of Chapter 3 from the case where unique reductions (marginals) exist to the
case where a variety of reductions may be possible.

One motivation for this generalization is the example of linear equations, which we
studied in Section 3.4.3. As we saw in there, we can define a marginal in this
example, but doing so puts our theory at an awkward distance from the example's
computational reality. Here we get closer to that reality.
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7.1. Reduction Relations

We adopt Axioms A1-A2. We do not adopt Axiom A3 or Axioms M1-M2. Instead
we assume the existence of a reduction relation.

We call a set R of ordered pairs (go.¢) a reduction relation if Axioms A1-A2 hold and

R satisfies the following axioms:

Axiom R1. If (go,@)eR, then d(go) = d(g).

Axiom R2. If (p1,92)eR and (g2,93)eR, then (g1,@3)eR.

Axiom R3. Suppose ¢y and ¢y are potentials on x and y, respectively,

o is a potential on xay, and (¢o,9y)eR. Then (px®qo, px@¢y)eR.

Axiom R4. if x <y and ¢ is a potential on y, then (gg,9)eR for some

potential gg on x.
Notice that Axioms R2 and R3 correspond to the Axioms M1 and M2, respectively; R2
is the transitivity axiom, and R3 is the combination axiom.

When (go,)eR, we say that ¢q is a reduction of @. If d(gg) =%, we say also say that ¢g
is a reduction of g to x.

Axioms R1-R4 clearly constitute a generalization of Axioms M1-M2. If Axioms A1-
A2 and M1-M2 are satisfied, then we get a reduction relation by saying that ¢4 is a
reduction of ¢ if and only if it is a marginal of go. On the other hand, if Axioms A1-A2
and R1-R4 are satisfied, and for each potential ¢ and each subdomain x of d(g), there
is only one reduction of ¢ to x, then we can write i X for this reduction, and Axioms M1-

M2 will be satisfied.

7.2. Vacuous Extension

Here, as in Chapter 3, if g« is a potential on x, and x <y, we write @x1!Y for the
product g,®1y, and we call 'Y the vacuous extension of g, to y. Since we have
retained the labelling and identity axioms, we still have all the conclusions from
Lemma 3.2:

(i) fxsy, thenyty =1y

(i) For any domains x and y, u®ty = xyy.

(iii) If gy is a potential on x, then gx®iy = @y t*vy.

(iv) If o« is a potential on x, then gyt = @y.

(v) It pxis a potential on x, and y < X, then gx®uy = gx.

(vi) If o« is a potential on x, and x sy <z, then (gxtY)tZ = git2.

(vii) If px and gy are potentials on x and y, respectively, then @@y =
(@x X )@(ey 1XVY).

(viii) If @y is a potential on X, then (VY)Y = (pygi*rY)1y.

Moreover, we have the following generalization of Lemma 3.3:

Lemma 7.1. If g, is a potential on y, and ¢ is a reduction of gy to xay,
then otX is a reduction of gy t*v¥ to x.
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Proof: Since @'* = x®p and @ytxv¥Y = ,®¢y, the lemma is merely the
result of substituting v for gy in Axiom R3.

7.3. Computational Theory
With Axioms A1-A2 and R1-R4, we can develop essentially the same

computational theory as with Axioms A1-A2 and M1-M2. Here, as in Chapter 3, we
assume that it is not computationally difficult to find labels or to implement the lattice

operations. The computational difficulties lie in finding reductions and perhaps in
implementing the semigroup operation. A feasible domain is one in which we can

express a potential explicitly, find its product with other potentials on the same domain,

and find its reductions to subdomains.

The combination axiom has the same significance as in Chapter 3. lf xandy is
feasible, then we can find a reduction of gx®@y to x. We first find a reduction of gy to

XAy (this only requires us to work in y) and then we combine it with ¢y (this only
requires us to work in x).

Next, we can reduce ¢x®gy to a subdomain of x.
Lemma 7.2. Suppose zsx, ¢y and gy are potentials on x and y,
respectively, ¢ is a reduction of ¢, to xay, and ¢' is a reduction of gy®¢ to
z. Then ¢' is also a reduction of ¢x®gy to z.
Proof: By the combination axiom, ¢x®g is a reduction of g®py to x. So
by the transitivity axiom, ¢' is a reduction of gx®gy to z.

And we can take advantage of twigs.

Lemma 7.3. Suppose {gn}neH iS a collection of potentials on the
hypergraph H, tis a twig in H, and b is a branch fort. Suppose ¢is a
reduction of gy to tab. Then

(i) (XgnlheH Y@@ is a reduction of &{pnlheH} to vHt
Moreover, if we set gpt = gp®p and gnt = ¢, for all other h in H, then

(i) {pntiheH % is a reduction of ®&gnlheH} to vH, and

(iii) if zsvHtand ¢' is a reduction of &{gnlheH} to z, then ¢' is also a
reduction of @{gnlheH} to z.
Proof: By the labelling axiom, &{gntheHY} is a potential on vHL So (i)
follows directly from the combination axiom. To prove (i), we merely
rearrange the factors on the right-hand side of (i). Then we get (iii) by the

transitivity axiom.

Here, as in Lemma 3.4, statement (iii) shows how to simplify the the task of reducing a

product on H to the smaller task of reducing a product on vH, while statement (ii)
opens the way to exploiting the successive removal of twigs.

Suppose, indeed, that H is a feasible hypertree, and we want to compute @i*,

where ¢ = ®{qnlheH}, and x is a subdomain of some domain in H, say hy. We can do
this following the same steps that we followed in Chapter 3. we choose a hypertree
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construction ordering for H that begins with hy, say hy,h,,....h,, and we choose a
branching b(i) for this construction ordering. Fori=1,2,....n, we set
H ={hq,hs,.... h}.

This is a sequence of hypertrees, each larger than the last; H' = {hy} and H" = H. The
domain h;j is a twig in H. So we can work backwards in this sequence, using the idea
of Lemma 7.3 each time. At the step from Hito H!, we go from a collection {gnilheH},
say, which has a reduction of ¢vH' to vHi as its product, to a collection {gn-!lheHi1},
which has a reduction of vH™! to vH*-1 its product. To go from {gnilheH} to {pn-1IheH1},
we omit h; and change the potential on hgg) from gny,' to

. (Phb(;)i®((9hji)hb(i)/\hia
where (gn/)"o®4"i is a reduction of gn to hpgahi. The collection with which we begin,
{ennlheH"}, is simply {pnlheH}, and the collection with which we end, {gn1lheH1},
consists of the single potential, which is a reduction of ¢ to hy. One more
marginalization within hy reduces this to what we want, (®&{gnlheH})!x.

It follows that if HU{x} is a feasible hypertree, then we find a reduction to x of
®&{gplheH}. And by using vacuous extension and identities, we can draw the same
conclusion in the more general case where HU{x} has a feasible hypertree cover.

7.4. Example

Since reduction is a generalization of marginalization, all the examples of
marginalization in Section 3.4 are examples of reduction. The theory of reduction
allows us to improve one of the examples, however—the example of sparse linear
equations. Indeed, if we are working with Axioms R1-R6, then we do not have to resort
to equivalence classes of systems of linear equations. Instead, we move closer to the
computational reality by taking the systems themselves as the potentials.

Here is how it goes. A potential on x is a pair (A,x), where A is a finite (possibly
empty) set of equations of the form

Yat +a=0,

Eew
where w s X, and a and the & are real numbers. (If x = &, then A can contain only
equations of the form a = 0.) If a configuration c of x satisfies all the equations in A,

then we call ¢ a solution of (A x).

We combine potentials by taking their union: (A x)®(B,y) = (AUB,xvy). Since U and
v are commutative and associative, ® is as well, and Axiom A1 holds by definition.
The identity 1 is the potential (J,x), and Axiom A2 also holds.

If (A x) and (B.y) are potentials, y < x, and cl¥ is a solution of (B,y) whenevercis a
solution of (A x), then we say that (B,y) is a reduction to y of (A x). Thus Axiom R1
holds by definition.

We find reductions, of course, by eliminating variables. Axiom R2 is one aspect of
the fact that the order in which we eliminate variables does not affect the solutions of
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the variables that remain. Axiom R3 holds because when we eliminate variables, we
do not change equations in which these variables do not appear. Indeed, suppose
(Ax) and (B,y) are potentials on x and y, respectively. We obtain a reduction (B',yax)
of (B)y) by eliminating the variables in y-x from all the equations in B. The potential
(AUB'y) will then be a reduction of (AUB,xvy), because the same steps will also
eliminate these variables from AUB. Axiom R4 holds because we can always

eliminate variables.

If (A x) has solutions, then (J,&) and ({0 = 0},9) will be reductions of (A x) to &. If
(A,x) does not have any solutions, then any reduction of (A, x) to & will contain false
equations (such as 6 = 0). Thus we will find out whether a potential has solutions by

reducing it to &.

8. Resolution

This chapter combines the idea of reduction (Chapter 7) with the idea ot extension
(Chapter 8). It simulataneously axiomatizes these two ideas.

The axioms given here are the most general of this paper, except that we do
require modularity and the existence of a zero, which are not, as we saw in. Chapters 3
and 7, required for reduction alone. All the examples we studied in Chapter 3 satisfy
the general axioms given here. These axioms also allow us to deal straightforwardly
with examples such as systems of linear equations, where neither reduction nor
extension are unique, but where they must be coordinated.

8.1. Axioms
We adopt Axioms A1-A3. We do not adopt Axioms M1-M2. Instead we assume the
existence of a resolution relation.

We call a set S of ordered triplets (go,y,®) a resolution relation if Axioms A1-A3 hold
and S satisfies the following axioms:
Axiom S1. If (o, ¢,9)eS, then d(¢) = d(go)vd(y).
Axiom S2. If (@1,91,92)eS and (g2, p2,93)eS, then (g1, p1®y2,¢3)eS.
Axiom S3. If (¢1,9,9)eS and g3 is a potential such that d(p2)ad(¢) <
d(@4), then (p1®@2, P, e®@2)eS.
Axiom S4. If xsy and ¢ is a potential on y, then there exist potentials ¢o
and v (possibly not unique) such that d(go)=x and (go,p,p)eS.
Axiom S5. If (o, 9,9)eS and d(go) < X < d(g), then there exist potentials
Y1, @1, and 2 (possibly not unique) such that d(g1) = X, (go,1,91)eS and

(1, 92,0)eS.
Axioms S2 and S3 are the crucial axioms here. Axiom S2 expresses the transitivity

axiom for reduction and the combination axiom for extension. Axiom S3 expresses the
combination axiom for reduction and the lifting axiom for extension. For simplicity, we
will call Axiom S2 the axiom of combination for extension, and we will call Axiom S3

the axiom of combination for reduction.
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[NOTE: Should | strengthen Axiom S5 by requiring that (y1,y2,1)eS and/or that v =
P1@Y27]

The idea of a resolution relation generalizes both the idea of a reduction relation
and the idea of an extension relation. If we omit mention of the extender, then the
resolution relation becomes a reduction relation. If this reduction relation has unique
reductions (marginals), then the extenders constitute an extension relation. On the
other hand, if we have marginals with an extension relation, then they together form a
resolution relation. This is made precise by the next few lemmas.

First, if we omit mention of the extenders, the resolution relation becomes a
reduction relation:
Lemma 8.1. Suppose S is a resolution relation—i.e., a set of ordered
triplets satisfying Axioms S1-S5. Then the binary relation

{ (¢0,9) | (90,3, @) isin S for some  }
is a reduction relation—i.e., it satisties Axioms R1-R4.
Proof: Axioms R1-R4 follow directly from Axioms S1-S4, respectively.

Next, if the reduction is a marginalization, then the extenders constitute an

extension relation:

Lemma 8.2. Suppose S is a resolution relation—i.e., a set of ordered
triplets satisfying Axioms S1-S5. Suppose further that the reduction
relation defined in Lemma 8.1 is a marginalization—i.e., for each
potential ¢ and each subdomain x of d(¢), there is only one potential gp
on x such that ¢ is a reduction of ¢ to x. If we write @iX for this unique
reduction, then the relation

{ (X, 9,) | x=y, d(p)=y, and (@i*p,@) is in S for some ¢ }
is an extension relation—i.e., it satisfies Axioms E1-E5.

Finally, if a marginalization and an extension relation determine a resolution

relation:
Lemma 8.3. Suppose Axioms A1-A3 and M1-M2 are satisfied, and

suppose E is an extension relation. Then

{ (@¥Xp,9) | (X, p,p)eE }
is a resolution relation.
Proof:

With these lemmas in mind, we will talk freely about reduction and extension when
we are working with a resolution relation. Whenever (go,v,9)eS, we will say that (¢, )
is a resolution of ¢ to d(gg), go is a reduction of ¢ to d(gp), and vy is an extender from ¢
to .

We call a resolution of ¢ to & a solution of ¢. This differs slightly from the usage of
Chapter 6. There a solution was an extension from &J. Here a solution is a pair, a
reduction to & together with an extension from .
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8.2. Computational Theory
Here we combine what we have learned in Chapters 6 and 7.

A teasible domain is now a domain in which we can implement combination and
also find the resolutions whose existence is guaranteed by Axioms S4 and S5. A
feasible hypertree is one all of whose domains are feasible.

Suppose H is a feasible hypertree, and we want to find a solution of @ on x, where
¢ = &{gnlheH}, and x is a subdomain of some domain in H, say hy. As usual, we
choose a hypertree construction ordering hy,hy,...,h, and a branching b(i). We set H =
{h{,hz,...,h}, so that h;jis a twig in H. We work backwards from H" to H'.

On the first step, we use Axiom S4 in hy to find a resolution (@ "bMAhn pn) of @n, to
hpmyahn. Then we form a collection {gn™1lheHM 1} by omitting h,, changing the potential
on hpy from Phpr) to

(Phb(n)®fphnhb(”)"h”,

and leaving the potentials on the other h; unchanged. By Axiom S3,
(v{pn™1lheH™ '} yy) is a resolution of @. Continuing in this way, we obtain a sequence

{on11}={gn1heH}, {gn2lheH?2},... {gn"IheHM}={qnlheH},
of collections of potentials, and a sequence

VY1, P2, Yn,

of potentials such that for i=2,...,n, y; extends (gn)"b®ANi on hpgahi to ¢n' on h;, and also
extends v{gn-1lheHi"1} on hyvhav--vhiy to v{gnlheH} on hyvhav--vh;. (The first
extender, ¢ extends a potential ¢p on x to the potential gn1' on hy.) By Axiom S2,
P1@PY2®--- Py extends o on x to g on hyvhav--vh,. More generally, $1®yo2®---®@;
extends g to v{gnilheH}, and pi@yo®-®¢, extends v{gnilheH!} to .

If X =, then (go,p1®yPo®---@Pp) is a solution of .

In the example we consider below, y1®@y.®---®y, can be computed relatively easily.
We now explain, however, how to find reductions to individual domains while working

within domains.
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