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CHAPTER 4. THE MATHEMATICAL REPRESENTATION OF OUR 

PROBABILITY 

Now that we have a better technical grasr of the theory of Boolean 

algebras, we can improve the mathematical representation of our 

intuitive "probability masses. 11 In this chapter, that representation is 

improved and developed. 

1. Probability Algebras 

In section 1 of Chapter 2, I gave the following definition of a 

Boolean algebra: 

If /I{. is a Boolean algebra, then a function/':. m -+[O, I] 

is a measure if 

(I) 

(2) 

and (3) 

µ(J\./11) = o. 

µ (\0;1 ) = l, 

µ (M
1

) + u M
2

) = µ(M
1 

V M
2

) whenever M
1

, M
2 

e 1?7 

and M 1 A M
2 

= _Arn, • 

I then declared that any Boolean algebra 11( with an accompanying 

measure µ could be called a measure algebra -- the intuitive idea being 

that the elements of 111 could be regarded as probability masses . But 

as I later observed, there are properties that our "probability masses 11 

9ught ideally to have that are not imposed by this definition. At the end 

of Chapter 2, I listed three such properties: positivity, completeness 
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and complete additivity. Now that we have a stronger t echn ical grasp 

of the theory of Boolean algebras, we can describe these properties 

more precisely. 

A measure algebra ( '/71, µ ) is called a prob ab ility algebra if 

(1) ('l1i, µ) is positive: If Me?fl and M =1=.A.·,n, then µ (M)> o; 

(2) lfl_ is complete; 

(3) ('lll., µ) is completely additive: If L C?f/ and the elements of 

C are pairwise disjoint, then L µ (M) = µ (V ( ). 
Me[ 

The conditions listed in this definition add up to a rath e r strong package, 

and the reader might well question whether there even ex ist any 

probability algebras. As it turns out, though, there are quite a few of 

In fact, for every measur e algebra (Ji?, µ), ther e ex ists a 

probabilit y a l gebra ((I_, v) and a Boolean homomorphism h: 11l-l( such 

µ = v o h. This fact w ill b e proven in the ne xt section. 

The condition of complete additivity may require some explanation, 

symbol L . µ(1\.1) ostensibly r eq uires the addition of a number of 
Mee'.. 

non-negative quantities that may be infinite and perhaps even uncountably 

But the sum of an uncountable number of positive quantities 

really exist, or at any r a te must be consid ered infinite, while 

L µ(M) = µ (V L,) is supposed to be finite. Hence th e condition of 
Me(:, 
complete additivity requires in particular that at most a countable nun1.ber 

of the elements of l can have non - zero measure. If ( 1/1?, µ) is also 

sitive, then this means that only a countable number of the elements 

of ?'J1 can be non-zero. Henc e we may conclude th at any collection of 
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disjoint non-zero elements in a probability algebra must be countable. 

These considerations make the following theorem less surprising 

than it seems at first: 

Theorem. Suppose ( ?fl, µ) is a measure algebra and satisfies the 

following conditions: 

(i) 1/1. is a-complete. 

(ii) ;J1. is positive. 

(iii) (1r/,, µ) is countably additive: If (c'?Jl, (is countable 

and the elements of (, are pairwise disjoint, then 

L µ(M) = µ(Ve.,). 
Met'. 

Then ( 711., µ) is a probability algebra. 

Proof: It follows from the (finite) additivity of µ that IJr1 cannot 

contain, for any positive integer n, as many as n elements of 

measure greater than l /n. Hence any disjoint set of elements of 

/'f't must be countable. 

Let ( le any non-empty subset of 11/. Then it follows from 

the second theorem of section 5 of Chapter 3 that there exists a 

disjoint subset f) of I},/ with exactly the same upper bounds as e. 
Since X) is disjoint, it must be countable; and since '/7/ is a-complete, 

/J must have a least upper bound or join. The same element will 

also be the join of f, . Hence any non-empty subset of 711 has a 

join. The existence of meets follows; '}fl.. is complete. And 

complete additivity follows from countable additivity. 
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The fact that any collection of disjoint non-zero elements in a 

probability algebra must be countable also gives the following interesting 

result: 

Theorem: Suppose 7il is a probability algebra, Me ?r/., (M } r is y ')IE: 1. 

a collection of elements of ?I/ and M = V M')I.' Then there exists 

a disjoint sequence M
1

, M
2

, ... of elements of ?/I such that (i) M = 

V M. and (ii) for each i there exists ye f' such that M. $ M 
1 l ')/, 

Proof: By the second theorem of section 5 of Chapter 3, there 

exists a disjoint subset 1) of ?rl with the same set of upper bounds 

as {:M ] 1 , and such that for each Def) there exists 'Y. E: I'with . y yr:: ' 

D :$My . But since fj is disjoint, it can have at most a countably 

infinite number of non-zero elements . Denoting these by M
1

, M
2

, 

••• yields the theorem. 

A probability algebra also has very strong properties of the typ e 

that are often called continuity properties. For a start, the measures of 

a monotone sequence of elements of the probability algebra will converge 

to the measure of the limit of the monotone sequ en ce, as shown in the 

following theorem. 

Theorem. Suppose (911., µ) is a probability algebra. Then for any 

monotonically increasing sequence M
1 

$M
2 

$ ••• in JJ?, 
µ (VM.) = s:1p µ (M.). 

1 l l 

And for any monotonically decreasing sequence 1\.1
1 

:2: M
2 

:2: ••• 

in 01, 

µ(AM.)= 
l 

inf 
. µ(M.). 
1 1 
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Proof: First suppose M
1 

:S M
2 

S .•. is an increasing sequence, 

and set M
0 

= JL. Then it is easily verified from the definition of 

join that 

0:, 0:, 

.v
1 

M. = .v
1 

(M. - M. 
1

). 
l= 1 l= 1 1-

But the elements in the join on the right-hand side are disjoint; 

hence 
0:, 0:, 0:, 

E µ (M. - M. l) 
i= 1 1 1-. 

In the case where M
1 

;?: M
2

;?: • • • is a decreasing sequence, 

M
1 

S M
2 

S ... an increasing sequence, and A\!Ii = V Mi. 

Hence, 

µ (I\M.) = µ, (VM.) = I - µ ( V M.) = I - s~p µ (M.) 
1 1 1 1 1 

= 1 - s~p ( 1 - µ (lv1.) ) = 
1 1 

inf 
. µ(M.). 
1 1 

The proof just given uses the property of additivity only for countable 

subsets of 'Jlt.. Using the full force of the property of complete additivity, 

can prove a rather stronger statement, the formulation of which requires 

notion of a net. 

A non-empty subset tf3 of a Boolean algebra {) is called a downward 

in (1 if for every pair of elements A, B e fl there exists an element 

such that CS Al\ B. A non-ernpty subset 05 of a Boolean algebra 

an upward net in {J_ if for every pair of elements A, B e £ there 
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exists an element C e B such that AV B :S: C. Notice that a filter is a 

downward net and that an ideal is an upward net. 

Theorem. Suppose (1';/, µ) is a probability algebra. Then for any 

downward net 03 cm, 
inf 

µ(/\~) = B!i.63 µ (B). 

And for any upward net (13 C. ?1/., 

( ,0 ) _ s up ( B) µ VIO - Be(]µ . 

Proof: Consider first the case of a downward net Q5. Since 

/\B :$ B for a .1.l B e Q5 , u (/\ Qj) :S: ~:i ,u (B). Choo se a decreasing sequence 

. /0-, inf · inf 
B 1 ~ B 2 . ~ B 3 , ... rn VJ such that i µ(Bi) = B &b µ(B). Then by the 

preceding theorem, µ (I.I B.) 
1 1 

inf inf 
= . u (B.) = B I.) u (B). Now suppose 

1 1 E:ICJ· 

µ. (/\63) <~~S µ (B). Then /\(13 is a proper subelement of/\ B .. 
1 

This 

implies th e existence of some e lement M
1 

e(b such that /\Bi is not 

a subelement of M 1, or /\ Bi - M
1 

=I= JL . Denot e u ( /\B i - M
1

) = 

e > O. We can choose an int eger K so thatµ (BK - /\ Bi) =µ(BK) -

µ ( /\B i) < e/2, and if we th en choose M
2 

e (D so th at M
2

~ Bif M
1

, 

we will h ave 

and 

This implies thatµ ( /\ Bi) > µ (M
2

), contradicting the assumption 

inf inf 
thatµ. (/\Bi) = Be£µ. (B). Hence u(/\ B) = Be£µ (B). ~ 

If ( 7Jz, µ) is a probability al geb ra and ?! is a com plete subalgebra 

?!?, then ( 'Jl, u. I ·'Ji.) will be a probability algebra. We can describe 

this situation by saying that (1/l, u j~) is embedded in (111, u ). More 
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generally, if ( 'JJl, µ) and (1{, v) are probability algebras, then an 

isomorphism 8 of 'l7l into ~ is called an embedding or isomorphism of 

(·'tJ?.., µ) into ('fl, v) ifµ= voe. And of course if 8 is also onto, then it 

is called an isomorphism b etween the two probability algebras, and th ey 

are said to be isomorphic. 

2. Constructing Probability Algebras 

In this section, I will show that for any measur e algebra ( 711, µ) 

there exists a prob abi lity alg e bra ( '/l., v ) and a Boolean homomorphism 

h: 1/l ➔ 'J? such that µ = \i o h. One important tool in this demonstration 

is Caratheodory' s Extension Theorem, a standard theorem in measure 

theory that I will state and us e without proof. 

er. 
Carathe odory' s Extension Theorem. Suppose rf' 1s a field of subsets of 

a set .J and S: J ~ [ 0, 1 ] satisfies 

(1) o(~)=O 

(2) 6( J) = 1 

( 3) 6(S
1

)+6(S
2

) 

s
1 

n s2 = ~-
oO 

(4) If S? s2 :> ••• and ic,l 

Let c;t ,:, be the a- field of subsets of 

lim 
S. = 6 , th en . ➔ 6 ( S. ) = 0. 1 1 00 1 

.J gener ated by ~- Then 

there exists an ex tension 6 ,:, of 6 to ;J: ,:, su c h that 
co co 

(5) L o,:, (S.) = o,:, ( .l}
1 

S.) for all disjoint sequences 
i = 1 1 1- 1 

s
1

, s
2

, ... of elem ents of 'J:' ,:,. 
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Lemma 1. Suppose ( !/ll, µ) is a m e asure algebra. Then there exists a 

measure algebra ( :f ,:0 , 6 ,:,) that is er - complete and count a bly 

,,..,-, 
additive and a Boolean homomorphism f: Plz ~ J, ,:, such that 

µ = o':0 0 f. 

Proof: Let f : ?7l-, J be the isomorphism established by the 
0 

t"' 
Stone Representation Theorem; J, being a field of subsets of the 

set J of all ultrafilters in '/71., ·with f
0

(M) = ( F!Fc .J and MeF]. 

-1 
Set o = µ o £ . 

0 

Then c;J and o obviously satisfy (1), (2) and (3) in the hypothesis 

of Caratheodory' s Extension Theorem. In fact, it also satisfies 

(4). To see this, let S? s
2 

") ... be a decreasing sequence in 

('\ - 1 with 1 ,S. = ;/J, and set M. = f (S.). 
1 1 1 

Then M
1

~ M
2 
~ ... , and 

rt = n Si = n [ FI Fe J and Mi€ F} 

= ( F jFe .,J and Mie F for all i} 

N ow set F = [M/ M . :S tv1 for s01ne i }. It is e asily seen th a t F i s 
0 · 1 0 

a filter. Furth e rmore, F is improper. For if it were proper, it 
0 

would be contain ed in an ultrafilter F 
1

; F 
1 

would th en cont a in a ll 

the M. and henc e would be in S., contradi c ting th e assumption th a t 
1 1 

n Si = r/J. So F 
O 

is improper and thus contains Jlm. But this 

irnplies that Mi =JL'Pl for som e i and hence for all j ~ i. Thus 

. li m 6 ( S. ) = _lim ( M. ) = 0. 
1-;)CO 1 l ➔ CO µ 1 

So by Caratheodo ry' s Extension Th e orem, 5 can b e extend e d 

to a countably additive measur e 5,:, on the a - field i,:, g e nerat e d by 

cy 
-d' Evid ently, ( J ,:0 , [i ,:, ) is a a - compl e te and countably a clditi ve 

probability alg e bra. If we d e; 1ot e by i the id entity mappin g from J 
into ~ ,:, th e n f = i o f is a Boolean homom o rphisn1 of 711. into 

0 

Furthermore,µ = 6 of = o ,:, o i of = o,:, of.· ~ 
0 0 ~ 

"( .,. 'Cf'.,. 
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Lemma 2. Suppose(~*, 5*) is a a-complete and countably additive 

measure algebra. Then there exists a probability algebra ( ?1., v) 

and a Boolean homomorphism g: J * ➔ 1/l. such that a,:, = v o g. 

Proof: Consider the set I= {MjM1:~*, µ(M) = o}. It is easily 

shown that I is a proper ideal in 1,:,. Hence one may construct 

the quotient 1l, = :;f :!.</I and the Boolean homomorphism g: J:,:, ➔ i/: 

M~{NINE $,:,, NAMEI} as in section 8 of Chapter 3. Recall that 

each element of i1_ is an equivalence class of elements of d ,:,. 

If Mand N are both in the equivalence class EEJl, then NAMEI, 

whence iH<(N.:lM) = 0 and 5,:,(N) = c5,:,(M). Hence one may define a 

function v: JZ --11>[0, l] by setting v(E) = 5,:,(M) for any MEE. Evidently, 

V= () ,:, o g. 

Since 1.J,:, is in the equivalence class .An and lJ"i;,:, is in 

the equivalence class 0t , v(t-n.) = 0 and v(-Yn,) = 1. And if 

E
1

, E
2

E?1_ with E/'Ez = )L'l/ , then choosing ME El and NfEz 

gives g(MAN) = g(M)Ag(N) = E
1

AE
2 

= Jt.n_ = I, whence 0':'(MAN) -=0. 

Hence 11(E
1

) + 11(E
2

) = o':'(M) + O'i(N) = 8,:,(MvN) = v(g(MvN)) = 

v(g{M)v g(N)) = v(E
1

vE
2

). So (Jl ,v) is a probability algebra. 

Furthermore, ell , v) is positive. For if v(E) = 0, then choosing 

MfE gives 5,:,(M) = 0, whence Mfl and E = I =.ln . 

Now I is a a-ideal. In order to prove this, take any countable 

collection A
1

, A
2

, ... of elements of I and set B. = A. - .V. A., 
1 1 J <1 J 

and note that vA. = vB. and 8 ,:, (vB.) = 2 8 ,:, (B.) = O. Since I is a 
1 1 1 1 

a-ideal, the quotient 71. is a-complete and g preserves countable 

joins. From the fact that g preserves countable joins, one may 

deduce that (?1,v) is countably additive. It then follows from the 

first theorem in section 1 that (1( ,v) is a probability algebra. ~ 
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Theorem. Suppose (1/t, µ.) is a measure algebra. Then there exists a 

probability algebra (1/{, v) and a Boolean homomorphism h: 7J7. ➔ 1f. 

such that µ= vo h. 

Proof: The theorem follows directly from the constructions in 

the two lemmas. For setting h =go f, we have µ = 3,:, o f = 

V O g O f = II O h. ~ 

In the proof of the second lemma above, we took a a-field of subsets 

that had a countably additive measure and divided it by the ideal consisting 

of those of its elements with zero measure. As we saw, such a process 

nzcessarily results in a probability algebra. With the help of the Loomis

Sikorski Representation Theorem, it is easily shown that any probability 

algebra can be represented as such a quotient. 

Theorem. Suppose ( 'lJ1., µ.) is a probability algebra. Then there exists 

a set .J, a a-field i of subsets of ,J, a countably additive measure 

~ d 
v on d, , and an isomorphism i of }1/. onto the quotient of ;Ji by the 

a-ideal of sets of rn.easure zero such that V(F) = µ(M) whenever 

Ffi(M). 

Proof: The Loomis-Sikorski Representation Theorem supplies us 

with a a-field :f of subsets of a set J, a-ideal I of J and an 

isomorphism i of Pfl onto Hence we need only verify that 

the function v: 1, ~[O, l] defined by 11(F) = µ(M) whenever Ffi(M) 

is countably additive measure and that I consists precisely of the 

sets F for which v(F) = O. 

The second part is easy: the sets F for which v(F) = 0 are 

precisely those in i(_A.Jn ) = J\_ ~ /I = I. On the other hand, J ( 

1( -V,)n ), so 11 ( j) = I. Hence we need only show countable additivity 
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for v. But the canonical homomorphism f: i ➔ ':h!I is a-complete. 
r( 

So if we tak e any disjoint sequence s
1

, s
2

, ... of elements of J,, 

we have v(USi) = µ( i- l (f(USi))) = µ (i -l (vf(Si0) = µ(vi-l (f(Si))) 

=2µ{i-l(f(Si~ = _LV(Si). ~ 

3. Standard Representations for Be li ef Functions 

It follows from the preceding theorem that any belief function can 

be represented by an allocation into a probability algebra. Suppose, 

indeed, that we have a belief function BeJ.: (}_ ·~O, l], a mea3ure algebra 

(?/l ,µ) and an allocation p
0

: (1 ➔m. such that Bel= µ.0 p
0

• Then using 

the probability algebra ( 7l, v) and the Boolean homomorphism h: ?rl.➔ 'J1 
supplied by our theorem, we may set p = ho p

0
• The mapping p: (}-+- 'Jl 

will then be an allocation into the probability algebra (7/, v) and it will 

repres en t Bel; for Bel = µ 0 Po= voh o p
0 

= vop. 

In the sequel, I w ill generally mean an allocation into a probability 

algebra whenever I use the term "allocation of probability." When 

confusion is pos s ibl e , I will use the word sta nd ard to specifically r efer 

to allocation s into probability algebras. I will say that an allocation 

into a probability algebra is a standard allocation, and I will say that it 

is a standard representation of th e belief func tion it represents. 

As we will see, the existence of standard representations will often 

facilitate our thinkin g a bout allocations of probability and beli ef functions. 

It should be not ed that when p: (}. ➔ 'JJ! is a sta ndard representation 

the belief functi on Bel: {l ➔[o,I) anrl (}. 
0 

is a subalgebra of a, p 1(1
0 

wi ll 

a standard representation for the beli ef function Bel I (Jo on ao. 
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4. Quotients of Probability Al ge bras 

One of our fundamental con ve ntion s is th a t the m e asur e of ou:r: 

total probability m a ss should equal on e . It som e tim e s happ e ns, thou g h, 

that we want to dis ca rd a g i v en probability ma s s and to r egard the 

probability mass th a t is l ef t over as our total probability; in this cir c um

stance the m e asure of our total probability will d e creas e unless we ''re-

normalize" it. In this section I will bri efly d e scribe the process of 

discarding a probability mass and renormalizing the m e asur e of the 

Essentially, to discard a probability mass means (1) to put the 

null probability mass in its place and (2) to dedu c t its contribution from 

every probability mass to which it contributed. In symbols, the discardin g 

of the probability m a ss M from a probability al ge bra ('Ill,µ) involves 

r eplacing ev er y pro b ability mass M'f'!!?. by M 1/\M = M'-M. Or, to put it 

a diff e rent w ay, it mean s id e ntifyin g all p a irs M' , M" of probability 

masses in ?rl for which M' - M = M" - M. 

But this is pr eci sely what is done wh e n 'li/ is di v ided by the 

principal ideal I gen e rated by M. For und e r th a t division M' g o e s int o 

the equivalen ce clas s {M " /M',j_M " n} = { M" IM"L\..M' ~M}= {M " IM " - M 

= M' -M}. H e n c e di sc ardin g a probability mas s m e ans dividin g by a 

principa l ideal. 

Denote by f th e ca noni c al homomorp hi s m of 'Jn onto ill/I. Th e n 

what m e asure should b e assi gned t o a giv e n elem e nt f(M') ( 1n /I? W e ll, 

M' = (M' - M)v(M'AM) and M ' AM i s be in g di sc a r d e d; so M' - M i s w hat 

is left of M', and it w o uld b e natural to a do pt µ(M' - M) a s th e m easur e 
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of f(M'). But this procedure will result in a measure ofµ( Ym - M) = 

µ(M) = I - µ(M) for the unit 7f:P1./I = f( Y-171.). If µ(M) > 0 -- i.e., if 

M =!=J..
1
n , then this conflicts with the requirement that the measure of 

-V IJn. /I should be one. We can correct this difficulty by multiplying all 

the quantities µ(M' - M) by a constant in order to increase the measure 

of V"(fl/I to one. The appropriate constant is, of course, 1/(1-.f(M)). 

In other words, we define a measure Von m /I by 

v(f(M')) 
1 

= 1 - µ(M) µ (M' - M). 

It is easily verified that this is indeed a measure on ?/1/I. In fact, 

( ?n /I, 11) is a probability algebra, provided only that M =/= Y "»l.. • In 

the sequel, I will refer to (1il /I, 11) as the probability algebra obtained 

from ("7li, µ) by discarding M. 

5. Orthogonal Sum of Probability Algebras 

As I mentioned above, if (171, µ) is a probability algebra and 'l2 is 

a complete subalgebra of Jn. , then ( ?1., µ. j7l ) is a probability algebra and 

is said to be embedded in (?n, µ). Now suppose that 'lrl 1, ... , 7ll. n are 

independent complete subalgebras of ?fl. . Then they are said to be 

orthogonal if 

whenever M.l /7[. for each i, i = 1, ... , n. 
1 1 

In the sequel we will sometirn.es deal with a collection of probability 

algebras that are conceived of as having nothing to do with one another 

and yet which we wish to embed as orthogonal subalgebras of a single 
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overall probability algebra. In this section, we will s e e how this can 

be done. 

Definition. Suppose (1/if 1, µi, ... , (~ , µ ), ('?Jl, µ) are probability 
n n 

algebras and that for each i, i = 1, ... , n, f.:/lt. ➔Mis a complete 
1 1 

isomorphism into with µi = µo fi. Suppose furth e r that f 1 ( m 
1 

), 

... , fn ( ?fin) are independent and orthogonal subalgebras of ?J1. 

Then (f
1

, ... , f ; ( ?ll, µ)) is called an orthogonal sum of (?1! ,µ), 
n 1 1 

The rest of this section is devoted to showing that an orthogonal 

sum exists for any finite collection of probability algebras. This will 

be done by appealing to the construction of "product measures" in measure 

theory. In particular, I will app e al to the following theorem, which is 

a long-wind e d version of th e ass e rtion that product m e asures exist: 

Theor e m. Let ( J 1, 1 1 , 1.11), ... , () n' 'J n' 1.1n) b e "measure 
_, 

spaces." In other words, for each i, i = 1, ... , n, d'. is a 
1 

a-field of subs e ts of the set J . and 1.1. is a count a bly additive 
1 1 

measure on 1/ .. 
l 

Denote by J the Cartesian product )
1 

x ... x 

er' 
V • And for each i, i = I, ... , n, define a mapping k.: 'J . .+--P(i ) 
~ n l 1 

by setting k. (A) = ,,O 1x ... x j. I x A x,.S.+l x ... x J . Let 
1 1- 1 . n 

~ be the a-field of subsets of .J generat e d by k1 ( J 1) U ... U kn ( J' n). 

Then 

(i) for each i, i = I, ... , n, 

isom.orphism of 1. into J, and 
1 

k. is a CT-complete Boolean 
1 

(ii) ther e exists a unique countably additiv e measure 1.1 on 

rj such that I.Ii = l.loki for all i and 
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v (Aln ... nAn) = V (Al) •.. V (An) 

v..he1,e..-er n ~ 1 and A.s k.( 1.) for each i, i = 1, ... , n. 
1 1 1 

This theorem is pro ve n, for example, in section 37 of Halmos' 

Measure Theory. 

Suppose now that we begin with a collection (Jrl.
1
, µ,1 ), ... , ( 711n' µ,n) 

of probability algebras and that we wish to construct an orthogonal sum. 

Then by the last theorem in section 2, we can suppose that for each i, 

i = 1, ... , n, there exists a set .J., a a- field c;J.. of subsets of ) . , 
1 1 1 
tY 

a countably additive measure v. on 'J ., an d an isomorphism j. of 'Jll. 
1 1 1 1 

, onto the quotient ':h. /I., where I. is the a - ideal of sets of measure zero 
1 1 1 

and v.(F) = µ.(M) whenever Fc:j . (M). Suppose, th en, that we let ( ,J, '1, v ) 
1 1 1 

and k
1

, ... , k be as in the preceding theorem. Then denoting by I the 
n 

a-ideal of :f consistin g of all sets of measure zero, we rr1ay set /I?. = 

'I ·'h1 ·--r. cf' /I and l e tµ be th e rr1easure on i 1< inherited from the rr1easure ,; on rf' 

Then ( 7rl, µ,) will b e a probability algebra a nd a candidate as an orthogonal 

sum of (Jrl. 
1

, µ 
1

), ... , (?'/! n' µ n). But we still requir e the embeddings 

•.• , f . 
n 

First we must u se the isomorphisms k.: fJ .➔ J to con s truct 
1 1 

isomorphisms k. ': 'J. /I. -J J:;r. It is easily seen that whe ne ve r A, B 
1 1 1 

s ;{. diff er only by a set of measure zero, their in 1ages k. (A) and k. (B) 
1 1 1 

differ only by a set of 1neasure zero. H e nc e k.' may be defin e d by 
1 

· setting k.'([E]) = [k.(E)]. It is easily verified that th e k .' defin e d in this 
1 1 1 

indeed isomorphisms into. Finally, settin g £. = k.' o j. for each 
1 1 1 

... , n, we obtain the desired embe dding s . 
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6. Bibliographic No t e s 

With the ex ception of the idea s in section 3, most of the 1naterial 

in this chapter is fairly well known to stud en ts of Boolean algebra. Bu t 

it is not as widely accessible as th e material of the prec e ding chapter. 

Several of the proofs in sections 1 and 2 can be gleaned from pp. 55- 68 

of Balmos' Lectures on Boolean Algebras, but for others I hav e been 

unable to find any references. 

For a proof of Caratheodory' s. Ext ens ion Th e orem, the reader 

may consult Rob e rt Bartle' s Theory of Int eg ration, pp. 98-104. 

Another method of proving th e main theor em of s ecti on 2 would 

be to take the quotient first and th en embe d the r e sulting positiv e measure 

algebra in a probability alg eb ra by completing th e metric space given by 

th e dist a n ce cl(A, B) = µ (A L\.B) . This approach is spelled out in D e m e tri os 

A. Kapp o s 1 Probability Alg ebra s and Stoch as tic Spaces, p. 12 and 

pp. 16-2 8 . 
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CHAPTER 5. CONDENSABLE ALLOCATIONS 

An allocation of probability on a power set-P(zf) is condensable if 

its upper probability function p,:, obeys 

P~'(A) = sup [p,:,(B) IBCA; Bis finite}. 

Condensability is a very important property. It is a property that can 

generally be expected for belief functions based on empirical evidence; 

and belief functions that are conuensable are intuitively nrnch more 

transparent than belief functions in general. 

This chapter is devoted to the mathematical and intuitive aspects 

of condensability, and aims at an understanding of the commonality 

numbers, which provide the best way of describing condensable allocations. 

1. Condensability 

The theory of degrees of belief set out in the preceding chapters is 

really built on a single simple intuition: if a given portion of our belief is 

committed to both of two propositions A and B, then it should be committed 

to the conjunction MB. It has been my claim that this intuition practically 

imposes itself -- that a probability mass 1s being committed to both of two 

propositions can only n1ean its being committed to their conjunction. 

But one who finds this perception convincing is not likely to stop 

with pairs of propositions; instead, he is likely to apply the idea to larger, 

even to infinite collections of propositions. In other words, he will insist 

that if a given probability rnass Mis comrnitted to each of a collection 73 
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of propositions, then it must be committed to the logical conjunction of 

all the elements of J3 . 
If we begin with an arbitrary Boolean algebra of propositions, a, 

there is no guarantee that a will contain an element corresponding to the 

logical conjunction of a given infinite collection of propositions ,lj ell. 
But suppose that clean be thought of as the power set of a set~ of 

possible states of nature, so that a given proposition A in U asserts that 
4 

the true state of nature is one of those in a certain subset A of✓. Then 

for any collection8 CP(J ), the set-theoretic intersection n13 must be 

interpreted as the logical conjunction of the propositions intJ; it says that 

the true state of nature is in all the sets B.,'£> , i.e., in their intersection 

nfll. In this case, our intuition t e lls us that a probability mass that is 

constrained to all the elements of "(] should also be constrained to n;B. 

This intuition goes beyond the intuition we have used thus far, and 

not all allocations of probability on a po we r set will s a tisfy it; our rules 

for allocations imply it for finit e collections 1J, but not for infinite ones. 

So those allocations that do meet this intuition deser ve a spec ial name: A 

standard allocation of probability p :1?(J )-• 7J1 over a setJ will be called 

condensable if fo r each Mi,; lr/ and 8c'P(J ), Mis constrained to u-B if 

and only if it is con s trained to each e lement Bs ·J3. 

The requirement that p must be standard should not b e overlooked; 

it means that the properties of condensable allocations depend on our 

intuition about what our probability itself looks like, as well as upon our 

intuitive underst anding of the logical structure of,P(;} ). In fact, though, 

condensability is a property of the belief function or th e u ppe r probability 

function and does not depend on which standard repr esen tation is used. 
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Theorem. Suppose p: 1?(J)....,. ?J'l is an allocation into the probability 

algebra ("?J?, µ,). Denote by C the allowment C :"'.P(J )-+7/? :A""-"+ p(A), 

by Bel the belief functionµ, o p , by p,:, the upper probabilityµ, o C , 

and by ct the constraint relation defined by "A ct M if and only if 

M:::; p (A). Then the following seven conditions are all equivalent. 

(i) pis condensable - - i.e., if (8 is a non-empty subset of 

-q?(J ), Me lJJ, and M ct B for all Bet;, then M ct nt3. 

(ii) (ii) p (n£i) = B~ p (B) for all non-empty 1.3c-P(..J). 

(iii) C (U:i23) = B~~ C (B) for all non-empty l13ci'P(,J ). 

(iv) For every non-empty ACJ , there exists a sequence 

s
1

, s
2

, ••• of elements of A and a countable disjoint partition 

M
1

, M
2

, ••• of C (A) such that Mi:::; C ( ( s)) for each positive 

integer i. 
sup 

(v) For each ACr), p,:,(A) = A'CS 
A' finite 

(vi) If '/:3 is an upward net in 1P( :J ), then p,:,(u ll3) = :~~ p,:,(B) 

(vii) If 13 is a downward net in J?(eJ), then Bel(n J)) = 

inf 
BeJl Bel (B). 

Proof: (i) => (ii). Since allocations are isotone, p (n -;13):::; p (B) 

for all Be-S, and hence p (n-0 ):::; B~p (B). On the other hand, 

B~$ p (B) :::;p(B) for all Be 1J -- i.e., B~~p(B) ct B for aU Be13.. 

So by condensability, B~ p(B) ct n~ - - i.e., B'i13 p(B):::; p (ni3 ). 

(ii) => (iii). C(Ua3 ) = p ( u-a3) = p ( WB) 

~ = p ( n 13) = /\ p ( B) = 
Be-;t;i Be1<i. 

~ V p (B) = V (; (B). 
Be~ Be-© 

(iii) 9 (iv). For every non-empty BCJ, (;(B) = VB C((s} ). se 

Hence (iv) follows by the second theorem of Chapter 4, section 1. 
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(iv)=;'> (v). We can suppose A is non-empty, and in that 

case we can choose a sequence s 
1

, s
2

, •.. of points of A such 
er, er, 

that V C (( si}) = C (A). But i1l C ([si}) = n~l, ((si' ... , sn}), and 

(; (( si}) :S C ((s 1 , s 2 }) :S, ((s
1

, s 2 , s
3

}) :S ••• is an increasing 

sequence in ·Jr(. Hence, by the third theorem of Chapter 4, 

section 1, p ,:,(A) = µ, (C (A))=µ (V C ((s
1

, ... , sn})) = s~pµ. (,((s
1

, 
sup 

... , s} )) = supp,~ ([s
1

, ..• , s }):S A' CA p>:,(A'). The 
n n n A 1 finite 

sup 
inequality A 1CA p,:,(A') :S p,:,(A) follows, of course, from the 

A 'finite 
monotonicity of p ,:, . 

(v) ~ (vi). Suppose 1J is an upward net and A is a finite 

subset of UP. Then it is easily verified by induction on the number 

of elements of A that there exists an element Bs 13 such that ACB. 
· sup 

Hence if ·JJ is an upward net, B si P*(B) :::: AC ui p,: , (A) ::: 
. ~ A finite · 

p,: ,( U 12;J). The inequality B:i P~ ' (B) :S p ,:,(B) follows, of 

course, from the monotonicity of p ,:,. 

(vi)=$> (vii). Suppose © is a downward net in P(J ). Then 

e, = [ BIBc;;~ } is an upward net in P( .J ). Hence 

Bel(n~) = 1 - p ,:,(~) = 1 - p,:,(U e,) = 1 - c:tp ,:,(C) 

sup ~ inf ~ inf 
= 1 - B~~ p ,:, (B) = B~~ (1 - p ,:,(B)) = Bd 3 Bel(B). 

(vii) =;'> (ii). Suppose -;13 CP(.J) is non-empty. Then 

e= (n kl J::; c'!.1, h finite} is a do wnward net in 1?(J ). But 

n £ = n e', and c:e.P (C) = B:a p (B). Hence 

µ. (p ( n-:13)) = µ, (pnG)) = Bel (ne) = d:f B el(C) 

inf . /\ . /\ 
= Cc;; e~ µ. ( p ( C ) ) = µ ( C e ( C ) ) = µ, ( B &£ ( B) ) . 
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Since p (n~ )CB:~p(B) andµ is positive, it follows that p (nt3) 

I\ 
== B ..,,p( B). 

t;s 

(ii) :::;> (i) If M ct B for all B~ -{3, , then MCp (B) for all 

Be "'if9, or MC B~p(B). He .nee M<-p (nCB ), or M ctn !I:1. 

Since conditions (v), (vi) and (vii) make no reference to any parti. cular 

standard representation for the belief function or upper probability function, 

this theorem justifies the assertion that condensability is a property of 

the belief function or upper probability function and does not depend on 

which standard representation is used. More generally, the theoren1 shows 

that the adjective condensable can properly be applied to the constraint 

relation, the allowment, the upper probability function or the belief function, 

as well as to the allocation p. I will follow such a usage in the sequel. 

Condition (i v ) is of particular interest for the intuitive understanding 

of condensability. It states that th e probability mass C (A) -- the total 

probability mass that can get into B - - can be divid e d into a countable 

number of discret e pieces, each of which can get into some single point 

of B. vVe will shortly see why this property deserves to be called "con

densability." 

It is condition (v) that we will d ea l with most often in the sequel. It s 

utility is obvious - - it means that the entire upper probability function is 

determined by its values on finite subsets and thus allows us to examine 

the structure of condensable upper probability functions much more closely. 

We will begin this closer examination in section 3. 

In my definition of condensability, I have requir e d that the allocation 

or belief function be on a power set f'(J ). This may seem unnecessarily 
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restrictiv e , for the definition could easily be ex t end ed to any compl e t e 

Boolean algebra in which arbitrary meets and join s can be und e rstood as 

conjuncti ons and disjunctions. It is not clear, how eve r, that there ar e 

any such Boolean alg e bras w hich are not isomorphic to po w er sets; and 

hence it is not clear whether th e seemin gly more g en eral formulation i s 

of any r e al interest. In any cas e , the upper probability function s that we 

will be concerned with will b e on power sets. 

There are many ways in which cond ensable b e lief functions are 

more attracti v e than belief functions in general. Consider, for exampl e , 

the problem of sets of ''upper probability z e ro." If the upper probability 

function p ,:,:f>( .J )-1> [O, 1] is cond ensabl e , then the s e t 

S = U( S 1 jp,:,(S') = O} 

·will ob e y p ,:,(S) = 0. ( Th i s foll ows fr om c ondition (vi) in th e pr ece din g 

th e orem.) The si gni ficance of th is fact i s that it make s it po ss ible to 

interpr et 11p ,:,(S) = 0" as really m e anin g th a t the u p p e r probability functi on 

p ,:, holds S to be imp oss ible. In the c ase of non-cond ensable b e lief 

functions -- for example, in th e case of "continuous" probability func

tions -- su c h an int e rpr e tation is, som ewha t parad oxi c a lly, imp o ssibl e . 

2. Mobile Probability Masses 

A cond ensabl e allocatio n on a po we r set'tP( ~J) c a n be int er preted 

in a very vivi d way if w e think of the set rJ geometri ca lly and think of our 

probability as bein g di s tribut e d o ve r it. M o r e pr ec i se ly, let u s thin k of 

our proba b ility not a s b e ing di s tributed i n a fixed way , but r at h e r as h av in g 
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a certain degree of mobility. In other words, the various probability 

masses in ?JJ are to be allowed to move around, to some extent, within 

J. 
The extent of the mobility is specified by the constraint relation 

ct between 1r/ and~LJ ); if a probability mass Me171 is constrained to 

a set ACJ , this means precisely that neither M nor any subelement of 

M can get out of A. A glance at the rules for constraint relations in 

section 2 of Chapter 4 will reveal that those rules are all immediately 

obvious from this geometric picture. And the condition of condensability 

is equally obvious; for if all of a probability mass is constrained to stay 

inside A for each A in some subset "/3 of'(J?(J ), then it must be constrained 

to stay inside n~ . 

An even more vivid understanding of condensability can be obtained 

fro1n condition (iv) of the theorem in the preceding section. Intuitively, 

this condition means that though the constraints on the probability mass 

, (A) might allow it to become spread out over A in a completely diffuse 

fashion (as in the case of a "continuous distribution" of probability), it 

must always be possible to condense it into a collection of discrete pieces, 

just as a diffuse mass of water vapor can be condensed into a collection of 

drops. The word "condensability" is meant to bring to mind the pas sibility 

of such a condensation. 

It is easy to think about a subset A's degree of belief Bel(A) and 

upper probability p,:,(A) in terms of this picture. Bel(A) is simply the 

amount of probability that cannot get out of A, while p,: , (A) is the amount 

of probability that can get into A. 

If we concentrate on a probability mass Me 1'11_, it is natural to ask 
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just how constrained Mis. Evidently there will be a whole, possibly 

quite large, set 1!i Co=>( .j) of subsets of J to which M is constrained. 

By condensability, M will also be constrained to ni? , and this will be 

the smallest region to which all of it is constrained -- its "tightest" 

constraint. But as we saw in section 9 of Chapter 2, the existence of 

such a "tightest" constraint for each probability mass can be described 

by saying that there exists a "constraint mapping" >..:J??-+~( .J) that maps 

each probability mass to its tighrest constraint. So condensability has to 

do with the existence of a constraint mapping. 

This may be puzzling, for in Chapter 2 we saw that any belief 

function can be represented by an allocation of probability for which a 

constraint mapping exists. But the allocation constructed there was not 

necessarily standard -- it was into a "measure algeb;ra" but not necessarily 

into a "probabi. lity algebra." And when the allocation is extended to one 

into a probability algebra, the constraint mapping may be lost. In fact, 

it will be unless the belief function is condensable. 

Theorem. Suppa se p :tP( J) ~ }7l is a standard allocation of probability. 

1hen pis condensable if and only if a constraint mapping >..:?Jl--.P(.J) 

exists for p • 

Proof: If pis condensable, then the mapping >..: 71/_ ~(_J ):M ~ 
(\ ~ IACJ, M ct A} is a constraint mapping for p. If a constraint 

mapping ).,: 1?L-+U?(J1 
) exists, then M ct A if and only X (M)CA; 

so if M ct B for all B,.; T/3 it follows that A(M)C Qi3 for all Be'(/;; and 

A(M)cn·Q3, whence M ct nte. (Z22 
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3. Upper Probabilities for Finite Subsets 

A condensable upper probability function p,:,:(P(J )➔ [O, 1] is deter

mined by its values on finite subsets of J . Denoting by ')! (J) the set of 

all finite subsets of _J , we can express this by saying that p,:, is completely 

determined by P 
0

,:,: J1( J )-+ [O, l], where P 
0

,:, = p,:, I J( J ). 
This fact leads us naturally to inquire about the properties of P 

0
*. On the 

one hand, we might ask what properties P ,:, will have on account of p,:,rs 
0 

being a condensable upper probability function; and on the other hand, we 

might look for conditions on a function f! ef (J )~[O, 1] that are sufficient 
sup 

to assure that the function p,:,: $>(;:/)-..[O, 1]:A ~ A' CA £(A) should be 
A'finite 

a condensable upper probability function. The following lemma will help 

us state such conditions: 

Lemma. Let f be a real function on the set d (J) of all finite subsets 

of a non-empty set J, and denote 

f '"""' card J U " (B; Al.' ••• , A ) = L.J (-1) £(BU(. J A.)) 
v n [ } 1e 1 n JC 1, •.. , n 

whenever n ? 1 and B, A 1 , ••• , An e,J'(J ). Now fix A 1, ••• , An, 

and for each i, i = 1, ••• , n, set 

A. = [ a . 1 , ••• , a .k } 
1 1 1 . 

1 

and for each j, j = 0, l, ... , k., set 
1 

j 
(ail, a .. } • A. = ... , 

1 lJ 

(Ao. = ,/, for all i, i = l, ... , n. ) Then 
1 



Proof: If k. = 0 for some i, then A. = r/>, and it is evident from 
1 1 

the fact that V is a successive difference (cf. Chapter 1, section 
n 

3) that \l__ (B, A
1

, .•• , A ) = O; on the other hand, the right-hand 
n n 

side above would also be zero, for there would be no terms in the 

summation. Hence we may assume that k. > 0 for i = 1, .•. , n. 
1 

In that case, 

r.h. s. = L 
(. . ) 
J 1' · · · 'Jn J 

cardJ l j. j.-1) 
(-1) \BU( U A;, 

1
)U( U A.

1 
) · 

JC .. , n} i c J if J 
1 

.l.. <j. < k. 'f - 1 - 1 

n j. #ofiforwhichj.=k. 
£(BU( u A.

1
)) (-1) 

1 1 

i= 1 1 

j. = 0 or k. for each i 
1 1 

~ card J 
= L.J f(BU(.UJ A.)) (-1) 

J } 1( 1 JCll, . .. ,n 

= V(B;Al, ... ,A). 
n n 
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Theorem. Suppose f is a real function ond( J ), the set of all finite 

subsets of a non-empty set J. Then the real function p,:, on -P(.J) 
sup 

defined by p,:,(A) = A 1C,A £(.A:) is a condensable upper probability 
A 1 finite 

function if and only if 

(i) £(¢) = 0 
sup 

(ii) AeJ( J) f(A) = 1 

(iii) If A, B e JtJ ) and A =I= 6, then E 
TCA 

card T 
(-1) £(BUT):::; O. 

Proof: First we must show that if p,:,:-~(d )-►[0, 1] is a cnndensable 

upper probability function, then f = p,:, /Jid) satisfies the three 

conditions. But (i) and (ii) are obvious. Now we may write 

[ ] E card T A= _s 1 , ... ,sn forsomen:2:l, andTCB(-1) £(BUT) then 
card J p,:, 

becomes L (-1) 
JC(l, ... , n} 

p,:,(BU(_U [s) )) = y' (B;(s
1 

}, .•. , (sn}), 
le:;J n 

and this is non-positive according to section 3 of Chapter 1. 

Next, we must show that p,;, is a condensable upper probability 

function if f satisfies the three conditions and p,:, is defined by 
sup 

p,:,(A) = A 1CA f(A). But the relations p,:,(6) = 0 and p,:,(:J) = 1 
A 'finite 

are evident from (i) and (ii). Hence, by the last theorem of section 

3 of Chapter 1, we need only show that V (B; A
1

, •.. , A ) $ 0 for all 
n n 

B, Ai, .. . ,A ~3?(J ). But we have just seen that E (-l)T(BUT) 
f n TCA 

= ~ (B; (s 1 }, ... , [ sn}), where A = (s 
1

, •.. , sn}, so (iii) above asserts 

that V (B; A 1 , ... , A ) $ 0 in the case where B is finite and the n n 

A. are singletons. The case where B and the A. are all finite 
1 1 

follows by the lemma. 

By the definition of p,:,, the values p,:,(A) can always be 

approximated by values p,:,(A' ), where A 1 CA and A' is finite, so 
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we can easily establish that V (B; A
1

, ... , A ) $ 0 in g en e ral by 
n n 

approximating each upper probability with the upp e r probability 

of a finite subs e t. Suppose, indeed, that 

0 < e = V (B;A
1

, ... , A ) = p ,:,(B) - I; p,:,(BUA.) +-... 
n n 1 

n + ( - 1) p ,:, (BUA.,U ... UA ). 
1 n 

n 
Then since there are 2 · terms on the right-hand side of this 

inequality, we can approximate B, A
1

, .•. , An by finite subsets 

B 1
, A

1
1

, ••• , A I such that P >!<(BUA., LJ ••• UA. ) differs from 
n 1 1 1k 

p,: , (B'UA. 
1

U ... UA. 
1

) by less than 1 /2•t/2"
1 

for each(i
1

, ... , ik) 
11 lk 

such that 1 Si
1 

$ ••• $ ik:5 n. Henc e , th e quantity '\7n(B 1
, A 1

1
, •• • , 

A ') would also be positive, contradicting our conclusion in the 
n 

preceding paragraph. 

Theor em . Suppos e .J is a n on-empt y s e t, (11f, µ) is a m ea sure algebr a 

and 

is such that for any , ~ 0 ther e ex ists a finite subs e t { s
1

, ... , sn} 

of J such that 

µ (C
0

(s
1

) V ••• V C
0

(sn)) > 1 - E:. 

Th en the function p,:,:'f'(J )-..[O, 1] defined by p,:,(¢) = 0 and 

p ,:,(A) = sup(µ({; (s
1

) V ... V C (s ))' n:?: l; (s
1

, ... , s }CA} 
o o n n 

for A =f. ¢ is a condensable upper probability function. 
sup 

Proof: Evidently, p,:,(A) = .f,.1C. A f(A), wh e re£(¢) = 0 and 
A 1finite 

f((s 1 , ... , s)) = µ(C
0

(s 1 ) V ••• v C
0

(sn)). And A:J(J') £(A) = 1. 

So by the precedin g th e orem w e need only show that if A, Be J(,J) 
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and A =I= 0, then 

~ card T 
Li (-1) £(BUT)::; O. 

TCA 

Now set A= (s
1

, ... , sn} and set 

M= I 
A'Yl'v if B = r/J 

, (t
1

) V ••• V C(tm) if B = (t
1

, ••• , tm}' where m:::: 1. 

Then 

L (-l)card T £(BUT) 
TCA 

= µ,(M) -Lµ(MVC (s.))+Lµ(Mvt;; (s.)VC (s.)) 
0 l O l O J 

n+l - + • . . + ( - 1) µ(M V (; ( s 
1
) V ... V ,. ( s ) ) o · "o n 

= µ ( M) - µ ( ( M V (; ( s 
1
)) /\ ••• /\ ( MV' ( s ) ) ) o o n 

= µ (M) -- µ (M V ( /\ C ( s.))) 
0 l 

$ o. 

4. Commonality Numbers 

Let p: ,PCJ )--+//( be a condensable allocation of probability, and 

~ let, be the allowment associated with p. In other words, C (A) = p (A). 

Then for each s.,;J, C ({s}) is the total probability mass that can reach 

the point s. And for any non-empty finite subset A = (s 1, ... , sn} of ) , 

C ((s
1

}) /\ ... /\ C ((sn}) is the total probability mass that can reach each 

and every point of A - - i.e., the total probability mass that can move 
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completely freely within A. 

Now if A = (/J, the total probability mass that can reach each and 

every point of A is Ym. Hence it is natural to define a mapping y. 1cJ) 
-. ir/_ by y ( rp) = Y?rl and y (( s 

1 
, .•. , s n} = C ( {s 

1
}) /\ . . . /\ , ( { s n }) . As it 

turns out, the measures of the probability masses y(A), A~ :J ( J ), are 

very important and hence deserve a name. Setting Q = µ o ')I, whereµ is 

the measure on 'JJ/, I will call Q(A) the "commonality number" for A, and 

I will call Q: 1, (j )-[o, 1] the "commonality function" associated with p. 

Notice that the commonality number Q(A) decreases as A is enlarged. 

Indeed, Q(rp) = µ,( T ?rJ. ) = 1, and Q(( s 1, ... , sn, sn+l }) = µ, (C ( (s 1 } /\ •.• /\ 

'({s)) /\ ' ([ sn+l} )) $µ ( '((sl }) /\ ... /\ C ((sn})) = Q((sl, ... , sn}). 

This contrasts sharply with the behavior of the upper probability p,:<(A) 

which begins at zero when A = rp and increases as A 1s enlarged. 

Actually, commonality numbers and upper probabilities are related 

by a much more ext ensive duality. For while the com .monality nurrbers 

give the measures of the intersections of the probability masses, (( s.} ), 
1 

upper probabilities give the rn:! asures of their unions: 

while 

Now we know from the theory of measure (and from Chapter 1, 

section 5) that the m ea sures of finite meets can always be expressed in 

terrns of the measures of finite joins and vice-versa: 
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µ,(Ml/\,. ,/\M) = Eµ, (M.) - Eµ, (M. V M.) +- •.. +{ -lt +\ {M
1
v ... VM) 

n 1 1 J n 

and 

for all M
1

, ... , Mn e m 
of J, 

So for all non-empty finite subsets (s 1 , ... , sn} 

( 
n+l Q{ s

1
, ••• , s }) = r;p,:,((s.}) - r;p,: , ([s., s.} +- ... +(-1) p,:,((s

1
, ••. , s }) 

· n 1 1 J n 

and 

·~ · n+l 
p ,:,([s

1
, ... ,s }) =:EQ{[s.}) ,-2..;Q{ .[s.,s.}) +- ... + (-1) Q((s

1
, ... ,s }). 

n · · 1 1 J · n 

It is evident from this last formula that the commonality numbers determin e 

the upper probabilities for finite subsets and hence the ent ire condensable 

upper probability function. 

So in the condensab le case commonality functions are simply another 

form in which belief functions may be specified. It wi ll be us e ful to know 

what properti es fully characterize them. 

Definition. A real function Q on th e set 1 ( $ ) of all finite subsets of 

a non- empty set j is called a commonalitv function if 

(i) Q(i6) = 1, 

inf 
{ii) A~Tl!)E {-l)cardT 

TCA Q{T) = 0, 

(iii) If A, Be r(A ), th en E {-l)ca r cl T Q{AUT) 2:0. 
TcB 

Theor em . If th e function Q on 1 ( J)) is a commonality function, then it 
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takes values in the interval [O, 1]. 

Proof: Setting B = [s} in (iii) yields Q(A) - Q(AV(s}) ~O, or 

Q(A) :2 Q(AU(s~for. all A®. 1 ( l ) and s~ j. But Q( 6) = 1. Hence 

Q(A) $ 1 for all A®. °J (~ ). 

Setting B = r/; in (iii) yields Q(A) ~ 0 for all A~ i( ,8 ). ~ 

Lemma: Suppose f is a real function on the set <J, ( ..J ) of finite subsets 

of a set J . And suppose A, B t: 'J ( J ). Then 

L (-l)card T f(T)::: L L(-l(ard R(-l)card S f(RUS). 
SCB TCAUB RCA 

Proof: 

= 

= 

L L(-l)card R(-l)card S f(RUS) 
RCA SCB 

L f(T) Lr(-l)card R+ card sf RCA; SCB; RUS = T}

TCAUB 

L f(T) (-l)card (A-B)tcard(B-A)L[(-l)card Rtcard sf 
TCAUB 

R, SCAnB; RUS = AllB}. 

But for any subset A, 

L[(-l)card R + card S IR, SCA; RUS =A}= (-l)ca
rd 

A_ 

The lemma follows. 

Theorem. Suppose p,:,: 'f ( j )-..-[0, 1) is a condensable upper probability 

function and define the function Q on f(j) by Q(r/;) 1 and 
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Q(A) = _ L (-l)card T p,;,(T) 
TCA 

for non-empty At:. 1(J ). Then Q is a commonality function. 

Proof: (i) Q( 6) = 1 by definition. 

(ii) If A=,/,, then E (-l)ca rd T Q(T) = Q(6) = 1. 
TCA 

If, on the other hand, A =/,= ,6, then we can write A = {s
1

, ... , sn} 

with n .2 1 , and 

L (-l)card T Q(T) = 1 - E 
TCA TCA 

(-l)card T E (-l)card RP"'(R) 
RCT 

T =f= rf> 

= l _ E (-l)card R p,: ,(R) { I.; (-l)card T) 
RCA RCTCA 

= 1 - p,;,(A). 

inf T inf 
Hence A~J(S) E (-l)ca

rd 
Q(T) = A~J:f.J)(l - p,;,(A)) = 

TCA 

{iii) Finally, we n ee d to show that 

E (-l)card T Q{AUT) 20 
TCB 

for all A, B 6 J ( ,2 ). If A = 6, this reduces to 

E(-l)card T Q(T) 20, 
TCB 

sup 
1 - AE-J;{_JJP':'(A) = 0. 

and we just proved this. Hence we may assume that A=/,= ¢, writing 

A= [s 1, ... ,sn}andB= (t 1 , ... ,tp}, wheren :2:l andpc:O. Then 

E(-l)card T Q(AUT) = _ E(-l)card T I; (-l)card R p,;,(R) 
TCB TCB RCA UT 
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= _ E (-l)card T E ~ (-l)card R(-l)card S p,:,(RUS) 

SCT 

= 

= 

But 

TCB RCA 

~ (-l(ard R ~ (-l)card S p,:,(RUS) ( E(-l)card T) 
RCA SCB SCTCB 

E ( -1) card R p,:,(BUR). 

RCA 

E (-1) ca rd R p,:,(BUR) $ 0 by the last theorem of the preceding 
RCA 

section. 

Theorem. Suppose Q: 'JL& )-<>[0, 1] is a commonality function, and define 

the function p,:, on -f' ( .f) by p,:,(r/,) = 0, 

p,:,(A) = _ E (- l) card T Q( T) 
TCA 

T * r/, 

for finite non-empty subsets A of J, and 

sup 
p,:,(A) = A 1CA p,:,(A') 

A 1finite 

for infinite subsets AC .J. Then p,:, is a condensable upper 

probability function. 

Proof: By the last theorem of the preceding section, jt suffices to 

prove that 

sup 
(ii) A~-;:()) p,:,(A) = 1 

and (iii) If A, B i;; J( J ) and A -=/= 6, then E (-1) ca rd T p,:,(B UT)::; 0. 
TCA 
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But (i) is given by convention. As for (ii), for finite non-ernpty 

subsets A, 

so 

p,:,(A) = 1 - E (-l)card T Q(T), 
TCA 

To prove (iii), note that 

2: (- 1) ..:ard T p,:,(BUT) 
TCA 

= _ 2: (-l)card T L(-l)ca:cd R Q(R) 

TCA RCBUT 
R =f. ,b 

= _ L ( _ 1) card J 2: (-I) card R ( _ 1) card S Q(RUS) 

TCA RCB 
SCT 

either R or S f. rp 

= L(-l)card R L(-I)card S Q(RUS) L (-l)card T 

RCB SCA SCTCA 
S=/,/JifR=rp 

= _ 2: (-l) card R Q(AUS). 
RCB . 

But L (-1) ca
rd 

RQ (AUS) ~ 0 by the definition of commonality 
RCB 

function$. ~ 

In the sequel, we Vvill sometimes examine a real function on ']:( g 
-[,b} with the question as to whether it can be 11 renormalized 11 so as to 

yield a com1nonality function. In other words, given a function Q
1 

on 

'J ( J ) - [6}, we will want to know whether there exists a constant K such 

that the function Q on ;{(,~ ) defined by 
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1 ifA=¢ 

Q(A) = 

K Q
1 

(A) if A =I= ¢ 

is a commonality function. The following theorem gives the conditions 

under which such a constant does exist. 

Theorem. Suppose j is a non-empty set and a
1 

is a real function on 

J, ( J ) - (¢}. And for each positive number K define a real function 

1 ifA=¢ 

K Q
1 

(A) if A f. ¢. 

Then QK is a commonality function if and only if 

(i) 
sup 

As(~ ( J) _ (rb}) I; (-1)1 + card T Ql (T) = 

TCA 
T f: ¢ 

(ii) If A, B t (J ( ~ ) - [¢}), then 

I; (-l)l+card T Ql(AUT) :£1/K. 
TCB 
T f. r/> 

1 /K 
J 

This theorem follows directly from the definition of commonality 

functions. 

The preceding discussion has been primarily concerned with the 

relation between Q and p,:,. The formulae connecting Q and Bel are in 

some respects simpler and worth recording: 
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Q(A) = E ( - 1 ta rd T Bel(;) 
TCA 

for all A .,; J' (.9 ) , including r/>; and 

Bel(A) = I; (-l)card T Q (';) 
ACT 

£or cofini te A and 

inf ~ 
Bel (A) = ACX I; (-1) card T Q( ;) 

A'cofinite ACT 

in general. A subset A of J is said to be cofinite if A= j ~A is 

finite. The quantity 

inf 

ACA' I; 

A l f' . A'CT co 1n1 te 

~ 

. card T 
can be thoughtof intuitively as the summation of (-1) · Q(T) over 

all finite T that do not intersect A. 

5. Restricting Condensable Allocations 

It is not difficult to prove that a complete subalgebra of a power 

set is itself isomorphic to a power set. Hence, it makes sense to ask 

whether a condensable allocation p: ?( i )-.17/ remains condensable 

when it is restricted to a complete subalgebra (}Cf( J). 
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The answer is obviously yes; for, since 

p(nB) = /\ p(B) 
B§l8 

holds for all (8 C f (,J) it will certainly hold for all tfl C (}_, 
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CHAPTER 6. EXTENSION AND COMBINATION 

In this chapter we begin to see just how flexible belief £unctions 

are. In particular, we find that belief functions on given Boolean algebras 

can sometimes be used to obtain belief £unctions oh more complicated 

Boolean algebras. · 

The central concern of the chapter is a rule that enables one to 

combine belief functions on different Boolean algebras into a single 

resultant belief function on their independent sum. A quite general rule 

is adduced for such combination, and a muc;:h simpler rule is derived for 

the condensable case. 

The existence of such a rule also leads to the exploration of the 

notion of subalgebras being "independent" with respect to a belief 

function. As it turns out, it is convenient to distinguish between the 

notions of "orthogonality 11 and 11 cognitive independence, 11 notions which 

collapse into a single notion in the case of probability functions. 

1. Extending Allocations of Probability 

In this section we will study one of the most remarkable and fruitful 

features of the theory of allocations: the fact that an allocation of 

probability on a subalgebra of a larger algebra always has a natural 

extension to the larger algebra. The existence of such an extension 

results from the fundamental intuition that any portion of our belief that 

is committed to a given proposition must also be committed to any 
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proposition that it implies - - i.e., to any more inclusive proposition. 

Suppose, indeed, that we have a standard allocation of probability 

0. is a subalgebra of a Boolean algebra of 
0 

propositions a . And suppose further that the allocation p on the sub
o 

algebra {) exhausts our opinions about the subject matter of the 
0 

prepositions in Q . Then does p
0 

endow us with positive degrees of belief 

for any of the propositions in 0. that are not in {l_ ? 
0 

It may well do so. For suppose A.,;{}_ and A I/ rJ . Then there may 
0 

be an element A e (1 such that A :$A; and in such a case the probability 
0 0 0 

mass p (A ), being committed to A , will certainly be committed to A 
0 0 . 0 . . 

as well. In general we must commit to A all the probability masses 

p (A ) for all the A e lb that are subelements of A. So altogether we o o o l{o 

must commit the probability mass v[p (A ) IA e a ; A. :$A} to A. So 
0 0 0 0 0 

the possession of the allocation p : (} -f> fJ/ and the lack of any further 
0 0 

opinions about 0.. would seem to leave us with an allocation 

p:{).-t>~:A~V(p (A )jA t>{}_ ;A SA] 
0 0 0 0 0 

on (} . But it this ap allocation? 

Theorem. Suppose a is a subalgebra of a Boolean algebra a and 
0 

p
0

: Q. 
0 

.-+11( is a standard allocation of probability. Then the 

mapping p: (l ➔Ill given by ( 1) is a standard allocation on (}. . 

Furthermore, p I (} = p • And the belief functions Bel and Bel 
0 0 0 

given by p and p respectively are related by the formula 
0 

sup 
Bel(A) = A e(}_ , 

0 0 

A SA 
0 

Bel (A ) , 
0 0 

(I) 

( 2) 
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while the upper probability functions p,:, and p, :, are related by 
0 

inf 
p,:,(A) = A e Q p,: , (A ) 

o o' o o 
A-:5:A 

0 

Proof: The ~xistence of the probability mass e s V ( p (A ) jA e {). ; 
- 0 0 0 0 

A -:5, A} depends, of course, on the fact that ( ?t/, µ) is a probability 
0 

( 3) 

algebra, so . that 1l{ is complete. If At;i tJ. , it is evident that p(A) = 
0 

p (A); hence pj(}_ = p. In particular, p(J\.A) =1Lm , and p(Y,,,,) =ll:.. 
0 0 0 0 (.ll v. ,,, 

Furthermore, for all pairs A
1

, A
2 

t (1 , 

Hence pis an allocation. Since ('JI?,µ) is a probability algebra, pis 

standard. Finally, notice that for a given Aea, [ po(Ao) IAoe&, 

A SA] is an upward net in JJt.. Hence 
0 

Bel (A) = µ (p (A))= µ(V(p (A )IA§(}_; A SA}) 
0 0 0 0 0 

= sup (µ( p (A ) ) / A e (J ; A SA} 
0 0 0 0 0 

= sup (Bel (A )jA ea, A SA}. 
0 0 0 0 0 

And 
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p,:,(A) = 1 - Bel (A) ::;; 1 - sup [Bel (A ) /A e {Q , A :'S'. A} 
0 0 0 0 0 

= inf (1 - Bel (A )1 A e a , A $ A } 
0 0 0 0 0 0 

= sup (p,:, (A )/ A ; (}._ , A$ A }. 
0 0 0 0 0 

. I will call p, Bel and p,:, the natural extensions of p , Bel and 
0 0 _,_ 

P ·•: respectively. It should be borne in mind that in general one I s 
0 

belief function on a Boolean algebra will not be the natural extension of 

its restriction to a given subalgebra. But it seems fair to characterize 

the cases where it is by saying that in those cases the restriction to the 

subalgebra "exhausts our opinions about the subject matter of the larger 

algebra. 11 More concisely, I will say that an allocation p: {1 ➔'II! is 

supported by the subalgebra 

of p / (lo. 

(l of a whenever pis. the natural extension 
0 

We have alr 1~ady seen one simple example where we wanted to 

adopt the natural extension of an allocation on a subalgebra - - namely, 

the Senate example in section 2 of Chapter 1. In that example, we 

obtained a belief function on a Boolean algebra corresponding to the 

field of all subsets of the set of twenty-two Senators. But in fact, that 

belief function was derived from a belief function (which happened to be 

a probability function) on the subalgebra corresponding to the field of all 

· subsets of the set of eleven States. It is easily seen that the belief 

function we obtained on the larger Boolean algebra is the natural exten

sion of the belief function on the subalgebra. 

Let me give another example. Suppose we have a belief function 
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concerning the possible values of an unknown quantity~ i. e, , a 

belief function Bel
0

: f ( J 
1

) ➔ [O, I], where /
1 

is the set of all possibl e 

values of the quantity .::Z and Bel
0

(A) is our degree of belief that the true 

value is in A. And suppose we have no opinions whatsoever about the 

value of a second unknown quantity Y, except the knowledge that it is ~ 
in a set /4 

2
. And suppose we would like to define a belief function Bel: 

f( j 
1 

x J 
2 )~[0, 1] which would express our opinions about the values 

of X and Y simultaneously: we would like Bel(A) to be our degree of ~ ~ 
belief that the pair (x, y) is in A, where x is the true value of X and y ,._ 

is the true value of Y. What should we do? ~ 
Well, -f () 

1
) is naturally isomorphic to a subalgebra of f(,f 

1 
x J7 

2
). 

Figure 1 gives the familiar geometric picture: the hori z ontal axis 

corresponds to J
1

, the vertical axis to .J
2

, the whole plane to .J
1 

x 

J 
2

, and a subset A of - -<1
1 

corresponds to a vertical "cylinder set" 

base'd on the subset A of the horizontal axis. 

y I I ~ I I 
r 

I I 
I I 
I 

I iA 
I~ ➔ 

: I 
X ~ 

I 

Figure 1 
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h A1 ( o · ) into .4'( J J ) . . b In symbols, the isomorp ism i: r /.l 1 ~ / ,o 1 x 2 1s given y 

i(A) ~ l(x, y) lx!i:A, ye J
2

} =Ax ,J 
2 . So we should obviously adopt as 

our belief function on f( J 
1 

x ,J 
2

) the natural extension of Bel
0 

o i - l 

on the subalgebra i(f LJ 
1

)) of fcJ l x J 2 ). This will result in the 

belief function Bel: "f(,J l x ,J 2 ) ➔ [0, 1] defined by 

Bel(A) = sup (Be1
0

o i~
1

(A
0

),A
0

&i(f() 1)), A CA} 
0 

= sup fBel (A ) I A C .,J 1, i(A ) CA} 
. 0 0 0 0 

I 
A

0 
x ..J 

2
cA} = sup (Bel (A )J A C j l' 

0 0 0 

= Bel
0 

( {x j ;{x} x j 2t_ CA}). 

In other words, A is awarded the degree of belief of the largest vertical 

cylinder set that is contained in A. 

2. Restricted Allocations 

In the preceding section, we saw how to obtain an allocation or 

I', 

belief function on a Boolean algebra of propositions IJ starting with an 

allocation or belief function on a subalgebra (1 . Actually, the same 
0 

sort of extension can be carried out even when the . original allocation is 

on a subset of (}_ which falls short of being a subalgebra by failing to 

include negations of some of its elements or disjunctions of some pairs 

of its elements. 

Of course, our definitions for the notions of an allocation and a 

belief function apply only to a Boolean algebra, but they do not involve 

negations or disjunctions in any essential way and hence can be trivially 



-143-

generalized. This is done in the following definitions. 

Definition. I will call a subset /... of a Boolean algebra (} a subtrellis 

of {l if 

(i) 1. a_ e £ , 
(ii) la. € I.' 

and (iii) A
1 

/\ A
2

e -[ whenever A 1, A 2 e I_. (This terminology 

is not standard. ) 

Definition. Suppose J__ is a subtrellis of a Boolean algebra (l . Then 

a function Bel:/..~[O, l] is a restricted belief function if 

(i) Bel( JL Q) = 0, 

(ii) 

and (iii) 

Bel( VQ) = l, 

Bel(A)::?:EBel(A.) -£,Bel(A. /\A.)+- ... +(-l)n+l 
1 1 J 

Bel(A 1 /\ ..• /\ An) 

for all collections, A, A
1

, 

A. $.A for i = 1, ... , n. 

... , A of elements of J such that 
n 

1 

Definition. Suppose -J. is a subtrellis of a Boolean algebra (} and 

( ?fl , µ,) is a measure algebra. Then a mapping p; J.➔ 7JZ is a 

restricted allocation of probability if 

(i) p( Jl Q ) = JL?n 
(ii) P( va ) = Vm 

(iii) p(A
1 

AA
2

) = p (A
1

) /\ p(A
2

) whenever A
1

, A
2 

e j_ 
is a probability algebra, then pis called standard. 

If m 
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Interestingly enough, our theory for allocations and belief functions 

remains largely valid for the restricted variety. In particular, if p: 

;/, ➔ 7l1.., is a restricted allocation andµ is the measure on '/J1, then 

Bel = µo pwill be a restricted belief function. And any restricted 

belief function can be represented in this way, where ( 'Jn, µ) is a 

probability algebra. These facts can be verified by noting that the 

proofs of Chapter 2 remain valid almost word for word for the restricted 

case. 

It might seem desirable to cast our whole theory in a more 

general form by admitting restricted belief functions as belief functions. 

But such a generalization is unnecessary, precisely because a restricted 

allocation or a restricted belief function on a subtrellis i of a Boolean 

algebra ()_ can always be naturally extended to a belief function or 

allocation on (1. 

Theorem. Suppose l is a subtrellis of a Boolean algebra (} and 

P, : £ __,,.m_ is a standard restricted allocation. Then the mapping 
0 

P: {l ➔17Z given by 

is a standard allocation on (}. Furthermore, p J /_ = p
0

• And 

ifµ denotes the measure on J7/, then the belief function Bel = µ o p 

on (}_ and the restricted belief function Bel = µ o p on-;/ are 
0 0 

related by 
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. [ " n+l Bel(A) = sup LBel (L.) -uBel (L.AL.) +- ... + (-1) Bel 
0 1 0 1 J 0 

( L 1 A ... A Ln) / n ~ I; L 1, ... , Ln e i_ ; and Li SA for 

i=l, ... ,n} 

for all As (1. 

Proof: The proof that pis a standard allocation and p / ~ = p
0 

is precisely the same as the proof of the analogous assertions in 

the preceding section. 

To verify the formula for Bel(A), notice that (p
0

(L
1

)v ••• V 

~ (Ln{n~ l,L 1 , ... , Ln e [; Li ~A for all i} is an upward 

net in 1l/. Hence, denoting byµ the measure on 111, we have 

Bel(A) = µ(p(A)) = µ (V [ p
0 

(L)/ Le I.; LSA}) 

= µ, (V [p
0 

(L 1) V ••• V p
0

(Ln}jL 1, ... , Lne I..; Li SA 

for all i}) 

=sup(µ,( p
0

(L 1 )v .•• V p
0

(Ln))/L 1, ... , Ln e J; 
L. SA for all i } 

1 

= sup (tµ(p (L~))- Eµ ( p (L. AL.))+- ..• + (-l)n+l 
0 1 0 1 J 

µ( P
0

(L 1 A •.. /\ Ln))\ L
1

, ••• , Ln e '/._; Li~A for all i} 

( n+l 
= sup LBel (L.)-LBel (L.AL.)+- ..• +(-1) 

0 1 0 1 J 

Bel (L 1 A ... A L d L 1, ... , L , f.; L. SA for all i}. 
o n .n . 1 f7,7,7,7,7,J 

~ 

Of course, I will call Bel and p the natural extension to {1 of Bel 
0 

and p , respectively. 
0 
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3. The Combination of Belief Functions 

In section 1 I discussed an example of extension that involved two 

unknown quantities ~ and y with sets .J 
1 

and J 2 of possible values, 

respectively. Beginning with a belief function Bel
0

: ~( f 
1

)-+[0, 1] and 

operating on the assumption that I had no opinions about the value of X,, 

I obtained a belief function Bel: f( .J
1 

x J 2 ) ➔[0, 1]. But of course 

even when I have no opinions about Y I can still claim to have a belief ~ 
function Bel 2 on ft j 2 ); 

Bel 2 (A) ={ 

it will be the vacucus belief function: 

0 ifAfj z 

1 if A= J 2 . 

So instead of thinking of Bel: f CS 
1 

xj 2 )--'J-[0, 1] as the result of extending 

Bel, we can think of it as the result of combining B e l 1 on fl ( J 1) with the 

vacuous belief function Bel 2 on f(.j 2 ). 

This example raises the question of whether there is a natural 

general rule for combining belief functions on different Boolean algebras. 

More precisely, when Bel
1 

is a b e lief function on the Boolean algebra 

/l
1

, and Bel
2 

is a belief function on the Boolean algebra {{_
4

, is there 

a natural way of combining the two to obtain a belief function Bel on 

Recall that ().
1 

and (} 
2 

are thought of as indep~ndent subalgebras 

of (}_, So one could begin to define Bel on {l by setting Bel(A) = Bel 1 (A) 

when Ae {1
1 

and Bel(A) = Belz (A) when Ae (j_z. But many elements of Q 
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are in neither 0
1 

nor 0..2 . For example if A
1

e 0
1 

and A 2 e {)
2 

and neither 

A
1 

nor A
2 

is the zero or the, unit, then A
1 

/\ A
2 

will be in neither {}
1 

nor 

in {)_ 
2

. 

So suppose A
1

et1.
1

, Bel
1

(A
1

) =a
1

, A 2 e02 , and Bel 2 (A 2 ) =Oz· 

Then what degree of belief should we assign to A
1 

/\ A 2 ? Well, Bel
1 

directs us to commit Cl! 
1 

of our belief to A
1

, and Bel 2 directs us to commit 

Oz of our belief to A 2 . Supposing that we .have already carried out 

Bel
1

1 s directions, then the natural procedure is to apply Bel 2 
1 s directions 

not just to our probability as a w·hole, but to every probability mass, 

including the probability mass of measure Cl! 
1 

that is committed to A
1

. 

Hence we would commit a 2 of that probability mass, or a probability 

mass of measure °J.. 0z.,to A 2 as well and hence to A
1 

/\ A 2 . At any rate, 

this would be the natural procedure if Bel
1 

and Bel 2 were derived from 

independent sources of information. 

So we have a method for determining a degree cf. belief for each 

element Ae (} that can be represented in the form A = A
1 

/\ A
2

, where 

A
1
e(l

1 
and A 2 e 0

2 : we set Bel(A) = Bel
1

(A
1

). Bel 2 (A 2 ). This quantity 

is well-defined; for if A # l, then the representation A = A
1 

/\ A
2 

is 

unique; while if A= )t.. , then either A
1 

or A 2 is the zero and Bel
0

(A) = 

Bel
1 

(A
1

) · Bel 2 (A 2 ) = O. 

But the set i= (AfA = A 1 /\A 2 ; A
1

eal; A 2t:a2 } is a subtrellis of {l.. 

Indeed, ]L = ..A.. /\ 1., V = ,f /\ V, and (Al/\ Az) /\ (Al I/\ Az 1) = (Al/\ Al 1) 

/\(A 2 /\ A 2
1) is inf whenever A

1
, A

1
1 e{1

1 
and A 2 , A 2

1e J2 . So we have 

a function Bel 0: / ~ [O, 1]: A
1 

/\ A 2 - Bel
1 

(A
1

) . Bel 2 (A 2 ) on a subtrellis 
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i . If this were a restricted belief function on f (and we have not shown 

that it is), then by the theory of the preceding section, we could extend 

it to a belief function Bel on ()_ that would be given by 

Bel(A) 
~ n+l 

= sup (l:;Bel (L.) -EBel (L./\L.) + - ... + (-1) Bel (L
1

A, •• 
0 1 0 1 J 0 

/\ L ), L
1

, ... , L e ,_p; L. ::5 A for all i} 
n n cl-_ 1 

= sup (E Be1
1

(A.) · Be1 2 (R) - E Be1 1(A. /\A.)· Bel 2 (B. /\ B.) 
1 1 1 J 1 J 

n+l I +- ... +(-1) Bell (Al/\ ... /\ An) Be1 2 (B 1 /\ ..• /\ Bn) 

A
1

, •.. ,Ane {l 1; B
1

, ... , Bne(1 2 ; and Ai/\ Bi :SA, 

i = 1, ... , n} 

But how shall we show that Bel is a restricted belief function on /_ ? 
0 

The easiest way is to turn to the theory of allocations. 

Theorem. Suppose al and {) 
2 

are independent subalgebras of a Boolean 

algebra (}, and suppose p
1 
°: (}

1 
➔ 7fl

1 
and Pz 

0
: (12 ~'}11 2 are 

standard allocations with belief functions Be1 1 = µ1 ° Pi O and 

Bel 2 = µ2 o Pz 
0

, where µ 1 and f1z are the measures on -Jrl l and ?r/ 
2

, 

re spe cti vely. Let( ( ii[,µ); i
1

: 1fl l -t 'J1Z ; i 2 : 1fl 2 __,., '?fl) be an 

. b 
Then pl = 1 1 o p1 and Pz = 

i 2 op; will be standard allocations of (1
1 

and 0.
2

, respectively, 

into ?1/_; Be1 1 = µ o p1 and Be1 2 = µ o Pz· Now define P: a~tJt by 

(1) 
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Then pis an allocation of probability. Denote Bel = µ o p. Then 

Bel I al = Bell, Bel{ (12 = Belz, and in general 

Bel(A) = sup(I: Bel
1

(A.) · Belz( B.) - I: Bel
1

(A. /\A.)· Bel
2

(B. /\ B.) 
1 1: l J l J 

n+l ) +- .•. +(-1) Bell (A 1 I\ ••• I\ An) Bel 2 (B
1 

/\ •.• /\ Bn) 

n ;;?; 1 ; Al , .•. , An e (1 I ; Bl , •.. , Bn e (} z; and Ai /\ Bi $ A, 

i = 1, ... , n }. 

Proof: Let i be the subtrellis of all elements of {j_ of the form 

Al /\A2, where Als al and A2e (}_2. Define Po: l-:::/)'ll. by po(A) = 

p
1 

(A
1

) A p
2 

(A
2

) whenever A = A
1 

A A
2

, with A
1 

e {f i and A
2

s {)
2

. 

Since the representation A= A
1 

/\ A
2 

is unique when A =f.JL , p
0 

is 

well-defined. It is easily verified that p is a restricted allocation, 
0 

and obviously p O l a 1 = P1 and po I (). 2 = Pz. By the theorem in 

section 2, the formula ( 1) defines the natural extension of p to 
0 

Cl, and Bel=µ 0 pis given by_ (2). And since Cll and a2 are 

subsets of L, Bel I a. = µ 0 p I a. = µ 0 p I a. :: #l O p. :: Bel. 
1 l O 1 1 1 

for i = 1, 2. 

From formula (2) it is evident that Bel does not depend on the 

choice of p
1 

and Pz or on the choice of the orthogonal sum ( 7l/, µ); Hence 

(2) 
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I will call Bel the orthogonal sum of Bel
1 

and Bel 2 on (}_, and sometimes 

I will denote it as Bel 1 @ Bel 2 . Notice that al and (} 2 can be independent 

subalgebras of more than one Boolean algebra; hence it may be necessary to 

specify the algebra 0. when speaking of the orthogonal sum of Bel
1 

on: {1 l 

an:l Bel 2 on J2 . But usually this will make no practical difference, for 

if {1
1 

and Q 2 are independent subalgebras of {1
0 

and (l 
O 

is a 

subalgebra of {}, then the orthogonal sum of Bel
1 

and Bel 2 on {l is 

simply the extension of the orthogonal sum on Q , and both are given 
0 

by (2). 

In particular, given belief functions Bel
1 

and Bel 2 on Boolean 

algebras @ 
1 

and (}_ 2 , respectively, (2) will give the orthogonal sum 

Bel
1 

El) Bel 2 on (}_l El) {12 . And given belief functions Bel
1 

and Bel
2 

on power sets 1( g 
1

) and f( _g 
2

), respectively, (2) will give the ortho

gonal sum Bel
1 

EB Bel 2 on the power set f (j 
1 

x J 2 ). In this latter 

case, (2) becomes 

Bel(A) = sup (z;Bel
1

(A.) Bel 2 (B.) -EBel
1

(A.(\A.) Bel 2 (B.(\B.) 
. 1 1 l J 1 J 

ntl I +- ••. +(-1) Bel(A 1 n ... r\ An) Bel(B 1 f\ ••• {) Bu) 

n ;;:: 1 , Al , ... , An C _2 -1 , B l , ..• , B n C j z; Ai x Bi CA, 

i = 1, ... , n} 

This brings us back to the example with which we began. In that 

case, Belz is the vacuous belief function, and (2 ') becomes 

Bel(A) = sup [EBel
1

(A.) -EBel
1

(A.OA.) t- ... +(-lt+l 
· 1 l J 

Bell (Al() ... () An)I Al' ... ,A.,,cgl; Ai X J zcA, 

i = 1, ... , n} 

(2 I) 
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= sup( Bel
1 

(A
1
)1 A

1 
c)

1
, A

1 
x ,J 

2
cA} 

= Bel
1 

( ( x I (x} x j 2 CA} ). 

This does indeed agree with the method of extension. 

Theorem. Suppose (} 
1 

and 0. 2 are independent subalgebras of rJ., 
and Bel: a ➔ [O, I] is the orthogonal sum of Bel

1
: (}_ l ➔ [O, 1] and 

Bel
2

: (}. 2➔ [O, 1), and let p ,:,, p
1

,:, and p
2

,:, denote the upper 

probability functions corresponding to Bel, Bel
1 

and Bel 2, 

respectiv'=:'ly. Then for all A
1 

& {}_ 
1 

and A
2 

€ ()
2

, 

and 

Proof: (i) is clear from the preceding theorem, but (ii) is mare 

difficult. Let WI/,µ), p, p 
1

, P 2 be as in the preceding theorem, 

and let,, c
1 

and C2 be the allowments corresponding to p, p 
1 

and 

~' respectively. Then p ,:, = µ o,, P
1

,:, = µ o C
1

, P
2

,:, = µ o Cz, and 

since C
1 

((}I) and Cz ( {}_ 2 ) are in orthogonal subalgebras of '?Jl, we 

can establish (ii) by showing that C(A
1 

/\ A
2

) = C(A
1

) /\ C(A
2

) whenever 

. A
1 

€ fl
1 

.and A 2 ~ @2 . But in such a case, 

= /\ ( p
1 

(A)/\ p2 (B)}Ae {1
1

; Be @
2

: A/\ B$A
1 

/\ A
2

} 

= /\ (p
1 

(A
1

) V P2 (B)jAe {1
1

; Be (}
2

; A /\B$A
1 

/\ A
2

} 
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But notice that c
1 

(A
1

) V c2 L.fL) = C 
1 (A 1) and C1 (A) V , 2 (A2 ) = 

,
2 

(A
2

) are in this last meet. And whenever As{} 
1

, Be {j 
2 

and 

A
1 

/\A
2 

:$AV B, we know (by the second theorem of Chapter 3, 

section 9) that either A
1 

:5 A or A
2 

:$ B. Hence every other 

probability x;nas s in the meet will contain either C
1 

(A
1

) or 'z (A 2 ) 

and hence, in any case, c
1 

(A
1

) /\ 'z_(A2 ). Hence the ·meet is 

4. A Combinatorial Lemma 

Lemma. Suppose m and n are positive integers, I cU, ... , n}, Jc 

(1, ... , m}, and I and J are non-empty. Set 

?( = {K\v,S-f;Kc(l, ... , n}x(l, ..• , m};I=(i\(i,j)eKfor 

some j}; J = GI (i, j)eK for some i} }. 

Then 

L_ (-1)1 + card K = (-l)card I+ card J 

Ke?( 

Proof: Set card I = i and Card J = j, and denote L = [l, ... , i} 

x (1, ... , j}, and think of L as an i x j matrix. I will call a 

subset A of L a covering of L if A contains at _l e ast one entry in 

every row and every column of L. I will call such a covering 

even or odd according as it contains an even or odd number of 

entries. I will prove the following assertion: The number of 
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odd coverings of Lis one greater than the number of even coverings if 

i + j is even, and one less if i + j is odd. In symbols; #(odd coverings) 

- # (even coverings)= {-l)i+j. 

The proof will be by induction on i+j. Since I and J are non'-empty, 

i + j 2 2; and if i + j = 2, the assertion is trivially true. Indeed, it is 

trivially true whenever i = 1 or j = 1 So suppose that i + j = k, that the 

assertion is true whenever i + j < k, and that i > 1 and j > 1. Let L he 
0 

the (i - 1) X (j - 1) matrix obtained by omitting the first row and column 

of L. Let R and C be the subsets of L indicated in Figure t. Then by 

our inductive hypothesis, our assertion holds for the (i-1) X (j-1) matrix 

L
0

, the i )( (j-1) matrix R UL
0 

and the (i-j) )( j matrix C UL
0

• 

,, 
-be;f;.,U,s c:lassify the coverings of L according as they (i) intersect 

both Rand C, (ii) intersect R but not C, (iii) intersect C but not R, or 

(iv) intersect neither R nor C. 

Consider category (i). Some of the coverings in this category 

contain (1, 1) but they will remain coverings if (1, 1) is omitted. Hence 

j - 1 
A 

r 
I 

( 1, 1) R 

C L 
0 

1. - 1 

Figure i 
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the coverings in this category can be arranged in pairs, the 

two members of which differ only in that one contains (1, 1) and 

the other does not. Hence there are the same number of even 

as odd coverings in this category. 

Consider category (ii). Each covering in this category must 

contain (1, 1). As a matter of fact, each one is obtained from a 

covering of RVL by adding (1, 1). Hence for this category 
0 

#(odd coverings) - #(even coverings) = #(even coverings of RUL ) 
0 

i+(·-1)= i+· - #(odd coverings of RUL ) = - (-1) J = (-1) J. 
0 

It can be shown quite analogously for category (iii) that #(odd 

coverings) - #(even coverings)= - (-l)i-l) + j = ('-l)i + j. 

Finally, consider category (iv). Each covering in this category 

must contain L and must also be a covering of L . As a matter 
. 0 0 

'I 

p'.f'fact, the elements of this category are obtained by taking 

coverings of L and adding (1, 1). Hence for this category , #(odd 
0 

coverings) - #(even coverings) = #(even coverings for L ) - #(odd 
0 

· · f ) ( l ) (i - 1 ) + (J. - 1 ) ( ) i +J· - 1 coverings or L = - - = -1 . 
0 

Adding the results for all four categories, we find that ev:eP"frH · 

·+· ·+· ·+· 1 
#(odd coverings) - #(even coverings) = (-1) 1 J + (-1) 1 J + (-1) 1 J-

= (-l)i+j_ 

The lemma follows immediately. f-Fel'n• this result. 

Corollary. Suppose ( m, µ,) is a probability algebra, · C and 
0 

subtrellises of IJ'rl, and 

tJ: are 
0 

µ, (E /\ F) = µ, (E) · µ,(F) 

for all Ee !, and Fe 1 . 
0 0 

(';-' 

Denote by [ and J the subalgebras 

(3) 
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of 'JJ1 generated by t, and J respectively. Then {l) holds 
o o' 

for all Ee [ and Fe ;J', 
Proof: Consider first elements E and F of 'JJ1 of the form 

and 

F = F 
O 

A FI A . • • /\ Ft= (F 
O 

V FI V . . . V Ft) - (Fl V . • • V F;), 

where E
0

, E 1, .•. , EKe £,
0 

and F
0

, F
1

, ... , Fte J,
0

• We have 

and 

E A F = E 
O 

/\ F 
O 

A EI A . • • A EK /\ FI A . • . A Ft 

= [(E
0 

/\ F 
0

) V El V ... V EKV FI V ••• V Ft] -

[(El V ... V EKVF 1 V .•• V Ft], 

f-(E /\ F) = 'I 
Ic(I, ••• , k} 

~ (-I) card I + card J • 

JC {1, ... , t} 

µ(E AF A(.A
1

E.)A(.AJF.)) 
o o ie 1 Je J 

= (-!)card I 

I C.fl k} µ(E /\(./\IE.)) 
, •• • , 0 lE: 1 

X 
(-I) card Jµ (F /\ (./\ F .)) 

Jc.(1, ... ,t} 0 Jt:J J 

= µ (E) · µ (F). 

Now by section 7 of Chapter 3, any element Ee{, can be written 

in the form 
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where for each i, i = 1, ..• , m, 

E. = E. I\ E.
1 

/\ ... /\ E.k 
1 10 1 1 . 

1 

for some elements E . , E. 1, · ... , E.k of f. Similarly, any 
10 1 1 . 0 

~ 1 
element Fe: (t' can be written in the form 

F = F
1 

V ..• VF _ , n 

where for each i, i = 1, ... , n, 

F. = F. I\ F.
1 /\ ... /\ F. ~ 

1 10 1 Lt,. 
1 

for some elements Fio' Fil, .•. , FU,; of 
1 

If E and Fare 

expressed in this way, then 

EI\ F = (El V ... V Em)/\ (Fl V ... V Fn) 

m 
= V 

i = I 

And by the lemma, 

n 
V 

j = 1 
(E.AF.). 

1 J 

m n 

µ(EI\ F) = µ(i~l jiI (Ei /\ Ej)) 

= ~ (-l)l + card K 
Kc(I, ... ,m}x(l, ..• ,n} 

K # ¢ 

µ( /\ (E./\F.)) 
(i, j)e:K 1 J 

= 2 (-l)card I 2 (-!)card J 

rc(I, ... ,m} Jc(l, .. ~,n} 

I# IP 

µ,((/\E.)A(/\ F.)). 
id 1 jeJ J 
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But 

/\ E. = (/\ E. ) /\ (/\ (Eil /\ ... /\ E.k)), 
id 

1 
iel 

10 
iel 

1 
i 

where E. , E.
1

, 
10 1 

... , E.k are all in l for all i; and ./\JF.; is of 
1 i . 0 J€ J 

a similar form. Hence by the fir st paragraph 

µ((./\IE.)/\ (./\JF.)) =µ(./\IE.)µ, (.t\ 3 F.). So 
ie 1 , J e J 1e 1 J e J 

µ (E /\ F) = _2. (-l)ltcard Iµ(:/\ E.) 
I c.[1, ••• , m} iG I 

1 

I f: 0 

y_ ~ (-l)l+card J µ ( /\ F.) 

Jc..[1, ... ,n} jeJ J 
J f: </, 

= µ, (E) · µ (F). 

5. Orthogonality and Independence 

As we have just seen, our rule of combination obeys a multiplicative 

rule for both Bel and p,~. In this section, I will explore the implications 

of these two rules. 

Definition. Suppose (} 
1 

and (} 
2 

are independent subalgebras of a 

Boolean algebra G_, and suppose Bel: fl➔ [O, 1] is a belief function. 

Then al and (12 are orthogonal with respect to Bel if 

Bel(A
1 

/\ A 2 ) = Bel(A
1

) · Bel(A 2) 

whenever A
1 

e al and A 2 £ @2 . And {Pl and (} 2 are cognitively 

independent with respect to Bel if 

(1) 
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whenever A
1 

e (1
1 

and A
2

e {l 
2

. (p,:, is, of course, the upper 

probability function corresponding to Bel.) 

A justification for the term "cognitively independent" will be offered in 

the next chapter. The te.rm "orthogonal, 11 on the other hand, can be 

justified immediately. 

Theorem. Suppose (} is a Boolean algebra, ( M, µ) is a probability 

algebra, and p: {)➔m is a standard representation for the belief 

function Bel on (}. Then two independent subalgebras 0
1 

and 

(2) 

{1 
2 

are orthogonal with respect to Bel if and only if the subalgebras 

of 91/. generated by p( (}_ 
1

) and p( {}_ 2 ) are orthogonal with respect 

toµ. 

Proof: Denote by 'Jn 
1 

and ?J12 the subalgebras of 7Jl generated 

by p ( (i 
1

) and p( a'z), respectively. Clearly, if A
1 
tu\ and A 2 ~ (} 2 , 

then p(A
1

) e: 7fl 
1 

and p(A
2

)e: 1J1 
2

, so that the orthogonality of 

?n_ l and 1JZ 2 will imply (1 ). 

Suppose, on the other hand, that (1) holds for all A
1 

e {l 1 and 

all A
2 

e {1
2

• . Then since p( (} 
1

) and p( {}
2

) are subtrellises, it follows 

by the corollary in the preceding section that 

for all M
1 

e ?Jl 1 and M 2 e 7fl 2 . Since µ is positive it follows that 

?1/. 
1 

and 1// 2 are independent subalgebras and hence orthogonal. 
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It is not obvious at first glance that orthogonality and cognitive 

independence are distinct conditions, and hence it is worthwhile to provide 

examples showing that each of the conditions can hold without the other 

holding. To this end, set a= f ( J), where ) = (a, b, c, d} as shown 

in Figure 3. And set {J_ 
1 

= ( </>, (a, b}, (c, d}, J} and {f 2 = ( </> (a, c}, 

[b, d}, ,/J }. Then {/_ l and (}_z are independent subalgebras of fl . Let 

us define two belief functions Bel
1 

and Belz on {las follows: Be1
1 

is 

given by the basic probability numbers (mA} As (1, where 

mJr/).~~"1 1/4, 

m(a, b} :: 1/4, 

m(a, c} :: 1 /4, 

m(aJ :: 1 /4, 

and m A = 0 for all other As 0_. And Bel 2 is given by the basic probability 

numbers (m 1A}As (R' where 

m J = 1/4, 

m'( b } = 1/4, a, , C 

m'(a} = 1 /2, 

and m'A = 0 for all other Ae&. Then it can be verified that (} 
1 

and {l z 

are orthogonal but not cognitively independent with respect to Bel
1 

and 

cognitively independent but not orthogonal with respect to Belz, 

a b 

C d 

Figure 3 
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As we saw in section 3, when a belief function on(} is the 

orthogonal sum of belief functions on independent subalgebras {}_ l and 

a 
2

, those subalgebras are both orthogonal and cognitively independent 

with respect to that belief function. In fact a converse of this theorem 

is also true; if two independent subalgebras are both orthogonal and 

cognitively independent with respect to a belief function, then on the 

subalgebra generated by the union of the two subalgebras that belief 

function will agree with the orthogonal sum of its restrictions to the t\\O 

subalgebras. This assertion follows from the following theorem. 

Theorem. Suppose {I I and (} 
2 

are independent subalgebras of a 

Boolean algebra (}., and suppose {l_ is the subalgebra generated 

by {j__ l U (} 2 . Suppose Bel: (e➔ [O, l] is a belief function and 

p: {t ➔ 'J!t is a standard representation for Bel. Then the follovving 

conditions are all equivalent: 

(1) lj l and (}_ 
2 

are orthogonal and cognitively independent 

with respect to Bel. 

(2) (}_ l and {}_ 
2 

are orthogonal with respect to Bel and 

p (AV B) = p (A) V p(B) whenever A e (17
1 

and B i:: (1
2

. 

(3) 0
1 

and (} 2 are orthogonal with respect to Bel and 

i::(A) = v[ p (Al/\ A2) Ali:: Ql; A2i:: a;; Al I\ A2 $A} for all 

Ae 0.. 
(4) For all A e (}_, 

Bel(A) = sup {I; Bel (A.) Bel (B.) - I; Bel (A./\ A.) • Bel (B. /\ B.) 
1 1 1 J 1 J 

ntl \ +- ... + (-1) Bel(A 1 I\ .•• I\ An) Bel(B 1 /\ ... /\ Bn) 

n;::: l; A
1

, ... , Ane lj1 ; B 1, ... , Bme {}2 ; and Ai/\ Bi ScA, 

1=1, ... ,n}. 

!!tfflH:ffilMHMHAAA;w.;:;:mc:am1runnaauuwwat.nsat!Baaaaatn II tu 11 ,u :::u 
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Proof: (1) '9 (2). Suppose Aetl.
1 

and Bs (} 2 . Then by orthogonality 

and cognitive independence, 

1 - Bel(AV B) = p,:,(MB) = p,:,(A) p,:,(B) 

= (1 - Bel(A)) (1 - Bel(B)) 

= 1 - Bel(A) - Bel(B) + Bel(A I\ B), 

Hence 

Bel(A V B) = Bel(A) + Bel(B) - Bel(A I\ B), 

or 

µ(p (AV B)) = µ (p (A) V p (B)). 

Since µis positive, it follows that 

p (AV B) = p (A) V p (B). 

(2) ~ (3). Since {}_ is the subalgebra generated by (1
1 
U (1 

2
, 

every element Ae (} must be of the form 

A = (Al Bl) "1 ••• 1/ (An A Bn), 

where the Ai are all in {i l and the Bi are all in (} 2 . 

(2)' 

r:{A) = p(A 1 /\ B 1) V ..• V p(An /1. Bn)' 

and (3) follows. 

(3) =? (4). For any Ae {l, 
Bel(A) = µ (p (A)) 

'7 
Hence,' by 

= µ,(V [P (Al /\A2)\A1~{)1; A2e{}2; Al /\A2:S.A}) 

and A. /1. B. :::;'. A for all i] ) 
1 1 
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and A. /\ B. ~ A for all i1 
1 1 . 

= sup [ :EBel(A.). Bel(B.) - L Bel(A. /\ A.) · Bel (B. /\ B.) 
1 1 1 J 1 J 

n+l I +- ... + (-1) Bel(A 1 /\ ... /\ An) Bel(Bl/\ ... /\ Bn) I 

n~ l; A 1, ... , An e Q1; B
1

, ... , Bn e Q
2

; 

A. /\ B. SA, i = 1, ... , n}. 
1 1 

(4) ~ (1). This is merely a restatement of the last theorem 

of section 3. ~ 
~ 

Finally, it is useful to note that the formulae in (2) and (3) can also 

be stated in terms of the allowment ,. In terms of ,, (2) becomes 

(2') 01 and a 2 are orthogonal with respect to Bel and 

, (A/\ B) = b (A)/\ b (B) whenever Ae 0
1 

and Be {}
2

; 

and (3) becomes 

(3 1) 0
1 

and 0. 2 are orthogonal with respect to Bel and 

6. The Finite Case 

Recall that a belief function Bel on a finite Boolean algebra (} is 

completely determined by the basic probability numbers mA for Ae {j. 

These numbers are non-negative, m.lL. = 0, and Bel is given by 
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Intuitively, the basic probability number mA measures the total 

probability mass that is constrained to A but not to any proper sub

element of A. In other words, if p: {}_-:/Jr?. is an allocation representing 

Bel, then 

mA = µ( p (A) - V ( p (A 1)jA 1 < A}), 

where µ is the measure on 'Ill. It is worth noting how these basic 

probability numbe .rs behave under combination. 

Theorem. Suppose p : (l_ ➔'JJ'l is a standard allocation on the finite 

Boolean algebra (}_, and suppose the independent subalgebras 

{)_ 1 and 0
2 

of (1. are orthogonal and cognitively independent vi th 

respect top. Denote by ( mA} AE: (1. the basic probability numbers 

for p, by (nA } A a the basic probability numbers for p / (}
1 

and 
l 1~ 1 

by (pA
2

} Aze: a
2 

the basic probability numbers for p/ {}_2 , Then 

Proof: First consider the case where A f. A
1 

/\ A
2 

for any A
1 

e: {1
1 

and A 2e (}
2

. In that case, A
1 

/\ A
2 

<A whenever A
1 
e:0.

1
, A

2
e {1

2 
and 

A
1 

/\ A 2 S A. Hence 

p(A) = v ( p (A
1

) /\ p (A
2

)/A
1
~(R

1
; A

2
e {1

2
; .A.

1 
/\ A

2 
SA} 

= V ( p (Al)/\ p (Az) IA/ ()l; A2e (}2; Al/\ A2 <A} 

= v( p(A
1

) /\ p (A 2 }jA
1

e: 0
1

; A 2 e0 2 ; A 1e(J; A
1 

/\ A
2 

SA' <A} 
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= V ( V { p (Al) /\p (A2)l Al@ (11; A2e0.2; Al/\ A2 SA 1}/ A 1 < A} 

= V { p (A') IA' < A }, 

mA = µ, (p (A) -V {p (A 1)/A 1 <A})= µ,(_A.)= O. 

Now consider the case where A= A
1 

/\ A
2 

with A
1 

e Q
1 

and A
2

c {1
2

. 

In that case, 

( p (Al) - V { p (Al1)/A11~ {£1; Ali <Al}) 

/\(p (Az) -V {p (A 2
1)\A 2

1e(e2 ; A 2
1 <A 2 }) 

= p ( A 1) /\ p ( A2) - V ( p. ( A 1 i) , A 1 i e {f I; A 1 i < A 1} 

- V f p (A21)( A21e {12; Az1 <Az} 

= p (Al)/\ p (Az) - V [ p (Al I) V p (Azl)f Al I@ (}_ l; A21~ 02; 
Ali <Al; Az i < Az} 

= p (Al) /\ p ( A 2 ) - V ([ p (Al 1
) V p ( A 2 

1)] I\ p (Al) /\ p ( A
2

) I 
A 1 1 ~ (}_1; A2 1

@ {j_ 2; A 1 1 < A 1; A2 1 < A2} 

= p (A 1) /\ p (A 2 ) - V {[ p (A
1 

') /\ p (A
2

)] V [ p (A
1

) /\ p (A
2
•)]1 

Al's Ql; A2'e (}_2; Al 1 <Al; A2' <A2} 

= p (Al)/\ p (A2) - V ( p (Al')/\ p (A2 ')'Al'€ (}_1; A2' e.{12; 

A
1

1 :5 A
1

; A
2

1 :5 A
2

; either A
1

1 <Al or A
2

1 <A
2

} 
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= P (A1 A Az) - v ( P (A1' A A2')/A1 't (}1; A2'e;: {}2; 

A 1
1 s A 1 ; A 2

1 ::::;A2 ; either A
1

1 <A
1 

or A
2

1 <A
2

} 

= p (A) -V tP (A 1){A 1 < A} 

The last few equalities depend on the thorem of Ch?-pter 3, section 9. 

Since p ( () 1) and p ( {l 2 ) are in orthogonal subalgebras of 7J1, 
the measure of p (A) - V {p (A') jA 1 <A} must equal the product of 

the measures of 

and 

In other words, mA = nA p A • 
1 2 

7. The Condensable Case 

In this section, we will see how the orthogonal sum of two condensable 

belief functions can be described in terms of the commonality numbers. 

When we are dealing with two condensable belief functions, say one 

on -f ( J 1) and one on 'f( J 
2

), it is most natural to consider their 

orthogonal sum on -f (fl,1 x) 2 ). This orthogonal sum will itself be 

condensable, as we see from the following theorem. 

Theorem. Suppose Bel: -{(,f 
1 

x) 2 ) ➔ [0, 1] is a belief function, 

1'( j 1) and f( J 2 ) are orthogonal and cognitively independent 

with respect to Bel, and Bel }f (,,j 
1

) and Bell? (,J 
2

) are 
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condensable. Then Bel is condensable. 

Proof: Let i;;: -f (g 
1 

x) 
2

) ➔ ?11. be a standard allowment for Bel, 

and recall that(; is condensable if and only if 

(; (A) = V (; (( s } ) 

s~A 

for all AC)\ x J 2 . Now by orthogonality and cognitive independence . 

((A) = /\ (, (A
1 

x ,J 
2 ) v, ( J 

1 
x A

2
) f A

1 
c,J 

1
; A

2 
cj 

2
; 

(Al x ,J 2 ) l} ( j l x A 2 ) ::> A} 

for all Ac :J 
1 x J 2. Sin~e the restrictions to '/( J 

1
) and f ( J 

2
) 

are condensable, this becomes 

(; (A) = I\ ( ( S ~A i;; ((s I} x J 2)) v (s v@A (; () 1 x ( s2} )) f 
1 I 2 2 

A
1
C ,J\; A 2 C J\; (Al x J 2 ) U( )

1 
x A 2 ):::, A}. 

=V (,( (s
1

}xj 
2

)~C(J
1

x(s
2

})l(s
1

, s
2

) eA} 

= ( s 1, ~ 2) eA ( /\ ( (; ( A 1 x _J 2) V ' ( J 1 x A2) \ A 1 C i 1; 

A2 C j 2; (Al x ) 2) V (.JI x A2) J ( (s l' s2)}} ) 

And furthermore, the commonality numbers for Bel are obtained from 

those for Be1}f( J 
1

) and Bel/ -f ( .J 2 ) by a simple multiplicative rule. 

Theorem. Suppose Bel: '17( f 
1 

x) 
2

) is condensable and J1 (f ).i and 

f ( f 2 ) are orthogonal and cognitively independent with respect 



to Bel. Let 

Q 1 : x( g I ) ➔ [ O' l]' 

o2 : ;h(J 2 ) ➔[o, 1], 
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and 0: 1( j 1 X J z)-> [O, 1] 

be the commonality functions for Bel /-f ( J 
1

), Bel }f (,J 2 ) and 

Bel, respectively. Then 

' Proof: Letting C be the allowment andµ the measure on the 

probability algebra, we have 

Q(((a
1

, b
1

), •.• , (a , b )} ) = µ ( (; ([~
1

, b
1
J}) /\ ... /\ (; (qa , b )})), · n n n n 

But by (2 1 ) from section 5, we know that 

for all i. Hence 

(; ( [(a 1 , b 1)}/\ .•. /\ (; ( [(an bJ}) 

= (C([a
1 

}xJ 2 )A ••• /\(; (( an}x.J
2

))/\ (C (j
1

xfb
1

}) 

/\ . . . /\ (; ( j I x ( bn} ) ) ; 

and the theorem follows by orthogonality. 
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8. An Example of Combination 

In this section I will illustrate the rule of combination with a 

simple example. 

Suppose Mr. and Mrs. Jones are discussing over their breakfast 

coffee whether they should attend a ballet in the evening. Mr. Jones has 

no opinions about how enjoyable the ballet may prove to be, yet has 

opinions about whether it will rain, while Mrs. Jones has no inkling as 

to whether it will rain yet has definite ideas about the quality of the ballet. 

Assuming that they trust each other's judgments in their respective areas 

of competency, how might Mr. and Mrs. Jones combine their opinions 

in order to obtain, as it were, a joint opinion about the possibility of 

attending an enjoyable ballet without getting wet? 

Let us be more concrete. Suppose Mr. Jones has a belief function 

Bel
1 

on f( f 
1

), where f 1 = (rain, no rain}, and Mrs. Jones has a 

belief function Belz on .f'( j z), wh e r e J 2 = (enjoyable ballet, unenjoyable 

ballet}. And suppose Bel
1

· and Bel
2 

are given by 

Bel
1 

(¢) = 0 

Bel
1 

((rain}) = 1 /2 

Bel
1 

((no rain}) = 0 

Bell ( J l) = 1 

Bel 2 (¢) = 0 

Bel
2

((enjoyable ballet } = 1/2 

Belz ([ unenj oyable ball e t} = 1 / 3 

Belz ( J 2 ) = 1. 

These two belief functions can also be described by saying that Bel
1 

is 

given by the basic probability numb e rs (n A} A c,J and Bel 2 is given by 
1 

the basic probability numbers (p A }A c,J , where 
2 



nr/, = 0 

n[rain} = 112 

n - 0 
(no rain} -

n J = 1/2 
I 
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P[ enjoyable ballet}= I /2 

Pfunenjoyable ballet} = 1 / 3 

p o = I/ 6. 
d 2 

In other words, Mr. Jones puts half of his probability on the 

occurrence of rain and does not commit the other half, while Mrs. Jones 

puts half of her probability on an enjoyable ballet and a third of it on an 

lmenjoyable one. If we represent each person's probability by a mass 

that is uniformly distributed over a line segment~ then we can depict 

this situation as in Figure 4. 

0 

0 

rain uncommitted 

1/2 I 

Mr. Jones' Probability 

enjoyable 
ballet 

unenjoyable 
ballet 

uncommitted 

1/2 5/6 I 

Mrs. Jones' Probability 

Figure 4 

We require a combined belief function Bel on {7( ,i 
1 

x / 
2

); and 

in particular we require a degree of belief and an upper probability for 

the subset [no rain} x [enjoyable ballet} of J 
1 

x J 
2

. 
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Let us consider the matter fr@m Mrs. Jones' point of view. Her 

belief function Bel
2 

can be described by the three basic probability masses 

shown in Figure 4. Now she is confronted with Mr. Jones' opinions about 

the weather and decides to adopt them as her own. What does this mean? 

Well, the message from Mr. Jones can be stated simply: Put half your 

probability on rain. The natural thing for Mrs. Jones to do is to carry 

out this recommendation for each of her three basic probability masses: 

she should commit half of each of them to rain. 

The result can be depicted geometrically if we use a square 

instead of a line segment to represent Mrs. Jones' probability. In the 

first panel of Figure 5, Mrs. Jones' three basic probability rra sses are 

depicted, each labelled with its "region of mobility". The second panel 

shows the situation after she has committed half of each of her 

probability masses to rain hut left the other halves uncommitted 

between rain and no rain. 

' I 

,.--, 
.µ 
(l) 

;::1 
cu 

,.0 

(l) 
rl 
,.0 
cu 
:>-, 
0 . ....., 
C: 
(l) ..____, 

,--, 
.µ 
(l) 

rl 
rl 
cu 

,.0 

(l) 
rl 
,.0 
cu 
>-
0 . ....., 
C: 
(l) 

§ 
o....;..., 

l ____________ ----------~--~ 
Figure Sa. Before 
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I 
I 

J 
JI 

j I 
I ! I 

' 
X I 

[enjoyable 
X i gX 

I (unenj oyable 2 
I ballet} ballet} ! 

I l 

i 
' [rain} [rain} /[rain} 

X X X 

[enjoyable pmenjoyablr J ballet} · ballet} 2 

t 

1/2 5/6 I 

Figure Sb. After 

So we obtain six basic probability masses, with the following 

corresponding basic probability numbers: 

m[ . } ( . b } = I/ 4 rain x enJoyable allet 

m[rain} x funenjoyable ballet} = l/ 6 

me . } o = 1/12 
1. rain x .,<j 

2 

m ~ 
1 

x [enjoyable ballet} = 1 / 4 

m V - 1/6 
<l 1 x {unenjoyable ballet} -

m O 1 = 1/12. 
<fl X ~ 2 

The basic probability numbers mA for other Ac }
1 

x J 
2 

are, of course, 

zero. 
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The belief function Bel on f ( ~ 
1 

x ) 2 ) can be easily computed 

from this table of basic probability numbers. For example, we find 

that 

Bel((no rain} x (enjoyable ballet}) = 0 

and 

p,:, ((no rain} x (enjoyable ballet}) = 1 / 3. 
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CHAPTER 7. DEMPSTER'S RULES OF CONDITIONING AND 

COMBINATION 

In this chapter I adduce Demster's rules for modifying a belief 

function on the basis of new evidence or opinion. Dempster' s rule of 

conditioning tells us how to modify a belief function Bel: (j_ ➔ [O, I] 

when we learn that Ae {i_ is true. His more general rule of combination 

tells us how to modify Bel when the evidence underlying it is pooled with 

independent evidence underlying a second belief function Bel': (j_ ➔ [O, l]. 

In section 7, we will see how the rule of combination provides 

a justification for the term 11cognitively independent," which was 

introduced in the preceding chapter. 

1. Dempster' s Rule of Conditioning 

The central feature of the theory of subjective probability is its 

rule of conditioning. The rule is open to criticism but it has a tremendous 

intuitive appeal and has always been accepted by students . of subjective 

probability. In this section, I will describe the rule from an intuitive 

point of view and introduce the analogous rule for belief functions. 

Suppose we are dealing with a set ) which is the set of all possible 

values of some quantity;!., whose true value is unknown, and suppose 

we have a probability function 

P: f () )➔[O, I], 
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P(S) being our degree of belief (or subjective probability) that the true 

value of sis in S. Then we can describe our situation intuitively by 

saying that our probability is distributed over the set .,J. Now suppose 

we learn, from new evidence, that the true value of;!,, is really in a 

proper subset ,J of O • Then if P( .J ) < 1 our probability function P 
0 ~ 0 

will evidently require modification, for we will now wish to assert a 

degr·ee of belief 1 in J . How should P be modified? 
0 

The obvious thing to do is to 11throw away 11 that portion of our 

probability that was distributed over J ; it was committed to something 
0 

that is now seen as impossible, so it seems that the only thi.'1g that can 

be done is to discard it. This will leave us, of course, with a total 

amount of probability that has measure P( .J ), which may be less than 
0 

one. Hence we will want to 11renormalize 11 the rre asure of all our remaining 

probability, multiplying all the measures by 1/P(j ) so as to bring the 
0 

measure of the total back up to one again. 

This procedure will result in a new probability function P 1 over 

J, one that now gives P 1 
( J 

0
) = 1. In order to describe this probability 

function explicitly, let us refer to Figure 1 and calculate the value of P 1 

for each of the sets s
1

, s
2 

and s
3 

shown there. First of all, all the 

probability that was committed to s
1 

has been thrown away; hence we now 

have 

pi (Sl) = 0. 

As for s
2
, none of the probability associated with it has been thrown 

away, but its measure has been renormalized, so we have 

( 1 ) 

(2) 



)o 

Figure 1. 

Finally, consider s
3

• Some of the probability that was distributed 

over Sy namely the portion which was distributed over s 3n ta, has 

been eliminated. Hence the portion remaining is what was distributed 

over s3nJO, which did have measure P(s3nlo) and now has measure 

An examination of (1), (2) and (3) shows that (I) and (2) are actually 

special cases of (3) , which is thus the general rule for conditioning P 

on). 
0 

The fact that P 1 is conditional on J is often indicated by denoting 
0 

it by P ,.J 
O 

or P( • \ j 
0

). In these notations, our 'rule becomes 

PJ (S) = P(S nJ )/P( .J ) 
0 0 

0 

or 

P(s(J ) = P(S ng) / P(,J ) 
0 0 0 

for all SC .J . This is the classical rule for conditional probability; it 

is easily verified directly that P(· I J 
0

) does indeed satisfy the axioms 

for probability functions, provided only that P(,J ) >o. Of course, if 
0 

(3) 

(4) 
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P( J 
0

) = 0 then our new knowledge that the true value of sis in .J is . ~ 0 

in direct contradiction with P, and the conditioning cannot be carried out. 

An analogous rule applies, of course, to a probability function P 

on any Boolean algebra a. If P(A) > 0, then conditioning Pon A yields 

a probability function P(-j A) on tJ given by 

P(BJA) = P(B A A) / P(A) 

for all Be (i. 

The intuition behind this classical rule generalizes directly to the 

case of belief functions. For suppose we begin with a belief function 

Bel: j'(,J )➔ [O, l] 

and then learn that the true value of s is actually in D C j. What do ~ ---Oo 

we do? Well, we eliminate the probability that is committed to T. and 
0 

renormalize the rest; the measure of the probability eliminated is Bel 

(--0-), so the measure of the remainder will be 1 - Bel(L) and the 
,d O 0 

constant of renormalization will be ( 1 - Bel( J 
0

)) -
1

. There is only one 

new idea that must be introduced: since our probability is allocated in 

a semi-mobile way over ) rather than being distributed in a fixed way, 

we must recognize that the restriction 1o ) may further restrict the 
0 

mobility of some of our probability without eliminating it entirely. This 

means that some of our probability that was not committed to a set 

S eJ may become committed to S by the restriction to ,,J . In fact, 
0 

(5) 

any probability that was committed to sug before will now be committed 
0 

to S, unless it was committed to J
O 

and hence must be eliminated. In 

general, then, the amount of probability committed to S after conditioning 

will be the measure of the probability previously committed to SU J
0 



-177-

less the measure of the probability eliminated, or 

Bel(SU J
0

) - Bel(.J
0

). 

But this must be renormalized, so we obtain 

Bel(SUT) - Bel(J) 
Bel(S I J ) = 

0 0 

0 
1 - Bel( J 

0
) 

as .our degree of belief in S conditional on J . 
0 

As it turns out, this rule is stated more easily in terms of the 

upper probability functions. Ir.deed, 

p,: , (s j ,J ) = 1 - Bel(S I l ) 
0 0 

= 1 -
Bel(StJT) - Bel(T) 

0 0 

1 - Bel( .J 
0

) 

1 - Bel(SU-~-) 
0 

= 
1 - Be1(1:) 

1 - Bel(sn .J 
0

) 

= 
1 - Bel( j 

0
) 

or 
p,:,(s n g ) 

0 

This is Dempster' s rule of conditioning. It is easily verified that p,:, 

(· I j 
0

) does indeed satisfy the rules for upper probability functions, 

provided only that p ,:,( ,J ) >O. If p, :,( ,J ) = 0, then our new knowledge 
0 0 

that the true value of s is in ,,J is in direct contradiction with p,:,, ~ 0 

(6) 

(7) 
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and the conditioning cannot be carried out. 

Dempster' s rule of conditioning need not, of course, be restricted 

to upper probability functions on power sets; it can be applied to the 

conditioning of any upper probability function · 

p ,:,: {J_ ➔ [O, l] 

on any proposition Ae (}_ such that p ,:,(A) > O. The resulting conditional 

upper probability function p,:,(-j A) is given by 

p,:<(A) 

for all Be {). . If p,:, is actually a probability function, this rule reduces 

to (5), the classical rule of conditional probability. 

There is a difficulty with the application of the classical rule, 

and the generalization (8) might seem to suffer from the same difficulty. 

The difficulty is that we sometimes feel that P(A) = 0 does not really 

mean that A is impossible. In the case of a "continuous'' distribution of 

probability P over a set J, for example, P(( s}) = 0 for every se); yet 

this is not taken to mean that it is impossible for the true value of~ to 

be s for every se J Hence in general it may be impossible to carry out 

the conditioning even in cases where we would like to do so. Interestingly 

enough, though, condensable belief functions are exempt from this 

difficulty. Indeed, when an upper probability function p ,:, : f (,J )"7" (0, l] 

is condensable we are entitled to interpret p,:,(s) = 0 as meaning that p,: , 

holds it to be impossible for the true value of s to be in S. (See the end 

(8) 
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of section 1 of Chapter 5.) Hence our inability to condition a condensable 

upper probability on a set of upper probability zero need never be 

embarrassing, and the rule of conditioning appears to be most adapted 

to the condensable case. 

It is easily verified that if p,:,: f( j ) ➔ [o, I] is condensable and 

p,:,(A) > 0, then p ,:,(, / A) will also be condensable. And the commonality 

numbers are affected by conditioning in a very simple way. The 

commonality function Q for p ,:, is given, of course, by 

Q(B) = - I; (- 1 tard T p ,:,(T) 
TCB 

for finite non-empty subsets B of J. And the commonality function Q 

( • \ A) for p,:,(-1 A) will be given by 

Q(Bf A)= - r; (-l)card T p ,:,(TIA) 
Tc B 

= _ z; (-l)card T 

TcB 

= 
-1 

p,:,(A) (~ 
Re BOA 

p,: , ((Rus)nA)) 

p,:,(TnA) 
p,:, (A) 

(-l)cardR (-l)cardS 

= - 1 
p,:,(A) 

( L (-l)cardR p ,:,(R))( ~ (-l)cards). 
Re BOA ScBnA 

Now if BCA, then the last factor is equal to one; otherwise it is equal 

to zero. Hence 
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I if B = ,/, 

Q(B) 
p,:,(A) if,/, 1 Be A, 

o otherwise. 

So conditioning a condensable allocation can be carried out by renor

malizing the relevant commonality numbers. 

In the case of a belief function on a finite Boolean algebra O, 
it is also possible to describe the conditioning process in terms of the 

basic probability numbers. Suppose indeed that Bel: (1~ [0, 1.] is given 

by the basic probability numbers (mA} Ae (1_ ; Then upon conditioning 

on A, the basic probability mass that was associated with A'e a will 

be constrained to A' /\A. Hence there will come to be associated ,vith 

Be{). a total basic probability mass of measure 

~ (mA, j A 1 /\ A = B } • 

In particular a basic probability mass of measure 

!; (mA,I A' I\ A =J.J = Bel (A) 

will come to be associated with .A. This latter probability mass must 

of course be eliminated, and we must re normalize by the factor (P':<(A) )-1, 
thus obtaining the new basic probab _ ility numbers {m 'B} B ... IJt .. u: given by 

!; ( mA,,A' /\ A = B } 
m' = 8 P* (A) 

for all B ~ _A(l and, of course, ~ = o. 
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2. The Conditional Allocation 

Dempster' s rule of conditioning is most simply described intuitively 

in terms of mobile probability masses: in order to condition Bel: (1 ➔ 

[o, I J on A e (}, we add to the constraints on all our probability masses 

by constraining each one to A, and hence to A /\A I for all A I e (). to 

which it was previously constrained; we then eliminate all the probability 

that is constrained to .A by this process. In order to represent this 

process mathematically, we must use the formal procedure that we 

learned in section 4 of Chapter 4 for 11discarding 11 a probability mass 

from a probability algebra. 

Theorem. -Let p: (}. ➔ 71/. be an allocation into the probability algebra 

( 'JJl., u). Suppose A eQ and p(A) I= Y. Let I be the ideal in 

generated by p(A), and l~t(?n/I, \)) be as in section 4 of Chapter 

4. Let f: ?J1 ➔ ?n /I be the canonical homomorphism. Then 

p~: a. ➔ ?11/I : A I,_.,, f( p (A I VA) ) 

is an allocation, and Be lA = \) o p A is given by 

Bel A (A 1
) 

.· ) ' ! for' all A I ~ a . 
= Bel(A 1 VA) - Bel(A) 

I - Bel{1\) 

Proof: It is easy to verify that p A is an allocation: . 

. , 
(i) PA (JL) = f(p(A)) = ./L, 
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(ii) pA(Y) = f(p (A VY))= f(l"') =--V: 

= f( p (A
1 

VA)) Af( p (Az VA)) 

And 
1 

Bel A (A') = v (f (p(A' VA))) = µ. ( p (A' VA) - p (A)) 
1 "' u(p(A)) 

= 
Bel (A' V A) - Bel(A) 

1 - Bel(A) 

by the formula in section 4 of Chapter 4. 

The allocation p A is called, of course, the conditional allocation obtained 

from p by conditioning on A. 

3. Two Examples of Conditioning 

In this section I will illustrate Dempster's rule of conditioning 

with two simple examples. 

A. The Senate Example 

First let us reconsider the example from Chapter 1 that involved 

an allocation of probability over the set of twenty-two Senators. That 

set is pictureJ again in Figure 2. Recall that our allocation of probability 

involved eleven basic probability masses, one corresponding to each 
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Langdon (D) Wingate (D) 

Few (D) Gunn (D) 

Lee (D) Grayson (D) 

Izard (D) Butler (D) 

Johnson (D) Ellsworth (F) 

Maclay (D) Morris (F) 

Strong (F) Dalton (F) 

Paterson (F) Elmer (F) 

Bassett (F) Read (F) 
·-

Carroll (F) Henry (F) 

King (F) Schuyler (F) 

Figure 2. 

State, and that each of these is free to move back and forth between the 

two Senators from the State to which it corresponds. We concluded that 

the degree of belief and the upper probability for the proposition A = 

11A Democratic-Republican will be chosen" were given by Bel(A) = 4/ 11 

and p,:<(A) = 6/11. 

Now Senator Maclay of Pennsylvania was particularly well known 

as a staunch anti-Federalist. Let us suppose that we begin with the 

allocation of probability just described but that we then learn -- say from 

a friend galloping past who pauses only to mention the fact with a sigh 

of relief -- that Maclay was not chosen. After the receipt of this informa

tion~ what degree of belief and upper probability ought we to accord to 

the proposition A? 
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Well, we must condition our allocation of probability to the set 

{Maclay}, i. e,, to the set of the twenty-one Senators other than Maclay. 

This conditioning will not eliminate any of our probability, and it will 

change the region of mobility of only one of the eleven basic probability 

masses. The basic probability mass corresponding to the State of 

Pennsylvania, instead of moving freely between Senators Maclay and 

Morris, will now be constrained to Senator Morris. Hence there will 

still be only four basic probability masses constrained to Democratic

Republican Senators, but six of the seven remaining ones will be constrained 

to Federalist Senators. So conditionally we will have a degre of belief 

of 4/ 11 for A but an· upper probability of only 5 / 11. 

B. Conditioning on the Diagonal 

In section 1 of Chapter 6 we considered an example in which we 

began with a belief function 

which expressed our degrees of belief about the true value of an unknown 

quantity~• J 1 being the set of possible values of~. We also considered 

a second unknown quantity Y, about the true value of which we had no ~ 
opinions save that it was in .J 

2
; and we used Bel

0 
to obtain a belief 

function 

which expressed our degrees of belief in joint propositions about the 

true values of X and Y. 
~ ~ 

Bel was given by 
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Bel(A) being our degree of belief that the pair consisting of the true 

value of X and the true value of Y was in A, ~ 
Now let us suppose that ) 

1 
and j 

2 
are actually the same set: 

j l = ) 
2 

= ) ; so that our belief function Bel is actually on r( j xj). 

Now suppose that we suddenly learn that the quantities ~ and I are 

identical - - that they have the same value. Then how should be modify 

Bel? 

Evidently., we should condition Bel on the "diagonal" - .,. on the set 

D = { (s,s)I sf;)}. 

This does not result in the elimination of any probability, for 

Bel(D) = Bel
0 

( {x 1 [x} x ,J 
2
c [(s, s) s e ,J } } ) 

= Bel (~) = 0. 
0 

So the conditional belief function BelD is given simply by 

BelD·(A) = Bel (A V D) 

=Be1
0

( {xf(x}xj
2

cAvD}) 

= Bel
0 

( { x I (x, x) 4i! A} ) 

We might be interested in particular in BelD /f ( J 2), which 

would give our conditional degrees of belief that the true value of ! is 

in various subsets of )
2 

·;,, ,6 . Denoting this be lief function by 

Bel' : 'P ( J 2) ➔ [ o, 1 J, 
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we would have 

Bel' (A) = Bel 0 () l x A) = Bel 
0 

= Bel (A). 
0 

( [x I (x, x) g J
1 

x A }) 

Hence our conditioning has resulted in the same degrees of belief for 

Y as we formerly had for X. Nothing could be more reasonable. 
~ ~ 

4. Dempster 1s Rule of Combination: Finite Case 

Suppose we have two belief functions Bel
1 

and Belz on the same 

Boolean algebra (J, and suppose the two are based on independent 

sources of evidence. Then it would be pleasant if we could combine them 

in some orthogonal way so as to produce a single resulting belief function 

on a; this would correspond to pooling the evidence from which the two 

belief functions arose. How might we carry out such a combination? 

This question can be approached most easily in the case where fl 

is finite. In that case, it should be recalled, a belief function Bel on {]_ 

can be described by "basic probability numbers 11 {mA} A e {)" The 

intuitive understanding is that the basic probability number mA represents 

the measure of a "basic probability mass II which is constrained to A 

but not to any proper subelement of A. Suppose we have two belief 

functions Bel
1 

and Belz on O, with basic probability numbers {n A} At {l 

and [pA}Ae (1• respectively. In order to think about combining Bel 1 

and Belz, let us think of Bel
1 

as our own original belief function,while 

Belz is the belief function of a second person whose opinions we wish to 
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combine orthogonally with our own. How can be use Be 12 to modify 

our original beliefs? 

Well, let us consider each of the other person's basic probability 

masses separately. The basic probability mass which he associates 

with A is committed to A but to no proper subelement of A. As far as 

that probability mass is concerned, the natural thing seems to be to 

condition Bel
1 

on A. In other words, we should restrict each of the 

basic probability masses for Bel 1 to A> thus obtaining a basic probability 

mass for each Be{f_ of measure 

But this should apply only for Bel 2
1 s basic probability mass for A, which 

has measure p A. Doing to the same for each A~ {1, we would obtain the 

total 

(1) 

as the measure of the new basic probability mass associated with B. 

The difficulty with (1) is, of course, that it may be positive for 

B = .J\. ; there may be some probability that is constrained to ..A. as a 

result of this rule. Hence we must discard that portion of our probability 

and renormalize the measure of the remainder. This results in a new 

belief function Bel with basic probability numbers (mB }B ~ (/., where 

(2) 
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for B # J., and m.J\. = O. 

The numbers (mB )Be {l defined by (2) are evidently non-negative, 

so in order to show that they determine a belief function it suffices to 

show that they add to one, and this is easily verified. The only difficulty 

that might arise is that we might have 

(3) 

in such a case the denominator in (2) would be zero and the combination 

could not be carried out. But since I; 
Af. 

p A = 1, {3) would imply that 

for all A for which p A > O. Denoting the A fo .r which p A > 0 by A
1

, ••• , 

Ak, we find that 

.. 
Bel 1 {Ai)= I; [ nA 1 \A 1 SAi} = I; (nA,I A'/\ Ai =.A}= 1 

for each i, i = 1, •.• , k. Setting C = A 
1 

V ..• V Ak, this impli e s that 

while 

Bel {C) = I; p A = 1. 2 A SC 

So the combination of Bel
1 

and Bel
2 

is impossible only when there 

exists C e(l such that P 
1 

>!<(C) = 0 but Bel
2 

{C) = 1; i.e., when the two 

belief functions contradict each other. 
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5. Dempster' s Rule of Combination: General Case 

There are several approaches that we might take to adduce Dempster 1s 

rule of combination for the infinite case. One approach would be to 

develop the theory of integration for probability algebras and use it to 

adduce integrals analogous to the sums in formula (1) of the preceding 

chapter. An approach that we are better equipped to pursue is to draw 

an analogy with the rrorthogonal combination" of Chapter 6, modifying that 

method by adding the element of renormalization. This is the approach of 

th,2 following theorem. 

Theorem. Suppose Bel 1 : fl.➔ [ 0, 1 J and Be 12 : (}~ [ 0, 1] are both 

belief functions, with standard representations p
1 
D.: (}...J:, Jl/

1 
and 

p2 
6

: fl.. ➔ 1fl 2 • Let ((IJrl, µ); i 1 : ?J1 l ➔'?Jl ; i 2 : ?// 2 ➔ 7Jl) be an 

orthogonal sum of (171
1

, µ
1

) and (?'/1
2

, µ
2

). Denote p
1

1 = i
1 

o p
1 

D. 

I • /::, 
and p

2 
:::: 1 2 o p

2 
• And suppose that 

M:::: V (pl 1 (A) /\ P2
1 

(A) ) f- y ir[• 
A e (1 

Denote by I the principal ideal of lJZ generated by M, and let 

(11//I, v) and f: '?J? ➔ mil be as in section 4 of Chapter 4. Then 

p': (l➔ 7!l./I:A--OJf(v ( Pi'(A 1) /\ p
2

1 (A
2

)/A
1

,A
2

~ 0; 
A 1 /\A 2 ~A}) 

is a standard allocation of probability on {}_. And the belief function 

Bel = v o p 1 is given by 

Bel(A) = k(A) - k 
1 - k 
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where 

k(A) = sup [ ~ Bel
1 

(A.) Be1
2

(B.) - ~ Bel 1 (A. /\ A.) 
1 1 . 1 J 

ntl 
Bel

2
(Bi /\ Bj) +- •.. +(-1) Bel 1 (A 1 /\ .•• /\ An) (l) 

Belz(Bl /\ ••• /\B )In~ l; A., B.e(}; A. /\B. SA] n · 1 1 1 1 

and k = k(J.) = µ(M) 

= sup l ~ Bell(Ai) Belz(Ai) - ~ Bell (Ai/\ Aj) Belz 

- - ntl (Ai /\ Aj) +- , •• + (-1) Bel 1 (Al A ••• /\ An) Bel 2 (2) 

(A 
1 

/\ • .. /\ A ) I n ~ 1 ; A 
1

, ••• , A e (1 ] . n · n 

Proof: To show that p' is an allocation, notice that 

(i) p'(J..) = f(V [ Pr'(Al) /\ Pz'(Az)IA1,A2isa; Al /\A2 :s_A.}) 

= f(M) = __A, 

= £(V) = y, 

and (iii) p'(A) /\ p'(B) = f(V [ P1'(R) /\ Pz'(S)\R /\ S $A})/\ 

f(V [ p
1

1 (T) /\. Pz'(U}jT /\ U :::;B}) 

= £( v [ p1
1 (R) A Pz'(S) "p 1 '(T) "p 2 '(u}j 

R I\ S $ A; T /\ U :::;B }) 

= £( V [ P1'(R /\ T) /\ Pz'(S A uqR /\ S $A; 

TAU$B }) 

= £ ( v [ p1 ' (A 1) "Pz' (A 2) I A 1 " A 2 s A " B } ) 

= p' (A /\ B). 
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Now by the formula in section 4 of Chapter 4, 

where 

Bel(A) = v(f(V ( p1
1 (A 1) A p/(Az)IA 1 AAz'!::A} )) 

= 1 - ~Orl) µ (V(pll(Al) A '2'(Az)\A1 A Az ~A } - M) 

= l _ ~('»l) LJl (V (p1'(Al) A Pz'(Az)\A1 I\ Az $A}) 

- µ. (v ( p1
1 (A 1) A Pz'(Az)IA 1 A Az :5..1\.}) J 

1 = ~ (k(A) - k), 

k(A) = µ(v (p 1
1 (A 1) A Pz'(Az)/A 1 A Az :5 A}) 

= u(v([P1'(A1) I\ Pz'(Bl) Jv [P1'(Az) A Pz'(Bz)Jv ••• V 

r P1 1 (An) I\ Pz 1 (Bn) J IAi I\ Bi :5 A for each i } ) 

A. A B. $A for each i } 
1 1 

= sup [ I; Bel 1 (Ai) Belz (Bi) - E Bel 1 (Ai I\ A} Belz 

n+l 
(B. /1. B.) +- ... + (-1) Bel

1
(A

1 
A ... I\ A) 

1 J n 

Belz(B
1 

A ... /\ B ) \ n ~ l; A., B.e /);A.I\ B.~A}, n 1 1 lJ. 1 1 

and k = k(_/\_) 

= µ( v( p1 '(A 1) A iz '(Az) IA 1 A Az :5 .A}) 

= µ ( A~ a [P_i I (A ) A Pz I (A) } ) 
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= sup {E Bel(A.) Be1
2

(.A.) -'-E Bel
1

(A. 11 A.) Bel 2 (.A. 11 .A.) 
.fl 1 1 J 1 J 

~l - , + - ... + (-1) Be1 1(A 1 II ... /\ An)• Bel 2 (A 1 /\ ... /\An) 

n ~ 1; A 
1

, ... , An ( (}. } . 

Definition. Suppose Bel
1 

and Bel
2 

are two belief functions on a Boolean 

algebra (}_. If k, as given by (2) above, obeys k < l, then the 

belief function Bel defined in the above theorem is called the 

orthogonal sum of Bel
1 

and Bel
2 

and is denoted Bel
1 

EB Bel
2

. If 

k = 1, then the orthogonal sum 0£ Bel
1 

and Bel
2 

i5 said not to 

exist. 

Notice that the formulae giving the orthogonal sum do not depend 

on the particular representations p
1 

', Pz' and p'. 

The preceding is a definition of "orthogonal sum" in the case of 

two belief functions on the same Boolean algebra. But in the preceding 

chapter we defined the notion of an orthogonal sum of two belief functions 

on different independent subalgebras of a Boolean algebra. The following 

theorem shows in what sense the present definition is a generalization of 

the previous definition. 

Theorem. Suppose ~ and (}.2 are independent subalgebras of a 

Boolean algebra {j__ And suppose Bel
1

: {1 1 ➔ [0, l] and Belz: 

(12 ➔ [O, l] are belief functions. Denote by Bel
1

' and Be1
2

1 the 

natural extensions of Bel
1 

and Belz, respectively to t1. Let 

Bel
1 

EB Belz be the orthogonal sum of Bel
1 

and Bel
2 

on (}, as 

defined in the preceding chapter. And let Bel
1

1 © Bel
2

' be the 
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orthogonal sum of Bel
1

1 and Bel
2

1
, as defined above. Then 

Bell EB Bel 2 == Bel 1 ' @ Bel 2 '. 
n r · •, f v r !-±J '[.; ·! p ~., 

Proof: Let Pi_ 
0

: o,l ➔ '7J{
1 

and~ 
0

: (}
2 

-">..W
2 

be as in the first 
('(JL1 i ! ' .. ,,, \ 

theorem of section 3 of Chapter 3. Let ( ( Jl(, u); i 1: ;J1 I ➔?7/; 

i
2

: Pf/. 
2 

-) 1/1. ), Pi_ and Pz and p be as in that theorem as well. 

Then Bel
1 

ED Bel
2 

= µ o p, where 

But Bell 1
: a➔ [O, 1] and Belz 1

: ()_ -> [O, 1] are given by the allocations 

and 

So Bel
1

1 Gl Bel 2 
1 is given by 

h I - • t:, ' - • t:,d w ere p1 - 1 1 o p1 , '2 - 1 2 o Pz an 

r = A~O (P1 '(A) Apz'(A) ) 

= Ai a (il( V [ P/(A1dA1<ii {Jl; Al SA}) Ai2( V { P/ (Az) I 
Azl\ (Q2; Az SA} ) ). 

= A~/}_(V(i1(Pi_t:,(A1))Ai2(P/\A2)) I All\(11, Aze(}2; 

A
1 

SA; A
2 

SA } ) 

= l, 
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since (}.
1 

and (} 
2 

are independent. Hence ('JJ1/I, v) = ( iJ1, , µ) and 

f is the identity mapping. And p' is given by 

p (A) = V ( p
1

1 (Al) /\ Pz' (A 2 ) )Al, A/~ (j; A 1 /\ A 2 SA } 

=V(i
1 

(V[P/(A
1

1)jA
1 

e {11; A 1 'sA 1} )Ai 2 (v(p/'{A 2
1}J 

Az'e((,.; A2'SA2} )IA1,A2ecJ; Al /\AzSA} 

= V f { V E P1 ( A 1 I ) r A 1 e () 1 ; A 1 I ,S A 1} ) /\ ( V ( Pz { Az I ) l A 2 Cl: (1 z; 

Az'SA2} )lA1, Az e{}.; Al /\AZSA} 

=v{v{p1(A1')"Pz(Az')\A1~{)1; A1'SA1; Az'sAz 1/ 
Al, Az € (1 , Al /\ Az s A } 

= p (A). 

So p' = p, and hence Bel 1
1 El) Bel 2 ' = Bel 1 El) Be1z, 

So our present notion of combination is quite general. Of course, 

one can combine more than two belief functions at a time; the more general 

definition should be obvious. The operation of combination is commutative 

whenever it can be carried out, and it ra s a unit -- the vacuous belief 

function - - which when combined with any belief function always yields 

that belief function again. The operation of conditioning is also a special 

case of combination, as the following theorem shows: 

I 

I 
,I 
!1 
!I 

11 

1: 
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Theorem. Suppose Bel:{)➔ [O, l] is a belief function, Ae: 0 and p,:0 (A) >0. 

Let Belz: {j_ ➔ [O, I] be the belief function defined by 

{

l if A:::;A' 

Belz(A') = O 

otherwise. 

Then BelA = Bel El} Belz. 

Proof: :I£ A'e: Q, then 

Bel (A')= 
A 

Bel(A' V A) - Bel (A) 

1 -, Bel (A) 

Now if we let pl', Pz' and ( 71!, u) be as in the first theorem of this 

section, we have Bel = µ o ~ ', and Pz' is given by 

p I 
z {

y if A:::;A' 

(A') = 

_A otherwise. 

Hence 

k(A') - k 
Bel El} Bel 1 (A')= l _ k 

where 

and 

k = µ (A I~ (l (~ I (A I) /\ Pz' (A') ) ) 

=µ(Vfp 1
1 (A')/A:::;A' }) 

= u (p 
1

1 (A) ) = Bel (A), 

k (A')=µ ( v ( p1 ' (A 1 ) "Pz'(Az)JA 1 /\Az $A'}) 

=µ(V[p 1 '(A 1)jA 1 ,Aze:a; A 1 "Az$A'; A$Az }) 

= u ( p ' (A' V A))= Bel (A' VA) • 
1 
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6. The Condensable Case 

In the previous section we saw that Dempster' s rule of combination 

could be adduced for belief functions in general. But in fact, this rule, 

like the rule of conditioning, is most adapted to the condensable case. 

For in that case the rule can be stated quite simply in terms of the 

commonality .numbers, and it will fail only when the belief functions 

contradict each other. 

Theorem. Suppose Bel
1 

and Bel
2 

are condensable belief functions 

on f ( j ). Then Bel
1 

ID Bel
2 

fails to exist if and only if there 

exists S c,8 such that Bel
1 

(S) = Be,__(S) = 1. And in the case 

where Bel 1 ID Bel
2 

does exist, it is condensable, and its commonality 

function Q is given by 

Q(S) 
1 = ~ ( 1) 

for all finite non-empty subsets scJ , where Q
1 

and Q
2 

are the 

commonality functions for Bel
1 

and Bel
2

, respectively, and k is 

the constant given in the first theorem of section 5. 

Proof: This theorem is most easily established by comparing 

the construction in section 5 with the construction in section 3 of 

Chapter 6. 

Think of Bel
1 

and Bel
2 

as belief functions on f' ( J 
1

) and "1'( J 
2

), 

respectively, where ) 1 and J 
2 

are distinct copies of j. Let 

Pi_ 
1\f cJ ) ➔ 11/ l' p/: tcJ )---417l 2' ?/?_ il, i2, P1 ', Pz ', Mand p' , 

be as in the theorem of section 5. 
0 0 

And let p
1 

and p
2 

be identical 
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· h b. d b. • 1 t th t h h h f wit p
1 

an Pz respective y, excep a t ey are t oug to as 

being on the copies f (,g 
1

) and fLi 2 ), respectively. Let p1, 

Pz and P be the allocations based.on p1 ° and p2 °according to the 

formulae in section 3 of Chapter 6. 

Then 

Let 

p(D) = v { P1 (Al)" Pz (A2) I Ale .J 1; AzcJ 2; Al x A2ci5}. 

=V{p1'(A1)"P2' (Az)I A1,A2c); A/1Az = </J} 

=V{p1'(A)/\P2' (A°)I AC)} 

= M, 

d . 1 for all S c Q , 1·f S' an 1n genera , .,o 

then 

p(s'u:5) = v ( p
1 

(A
1

) "P
2

(A
2

) I A 1 c J 1; A 2c .J 2; A 1 x A 2c s'ui5} 

= vf Pi '(A
1
) "Pz'(A 2)1 A 1, A 2cJ ; Al' A 2 c s }. 

By comparing the theorem in section 2 with the first theorem in 

section 5, we see that p' is obtained from pby conditioning on D and 

then identifying D with J by the mapping (s, s)~ s. 

Hence our formula ( 1) becomes transparent; the multiplication 

follows from the similar rule in section 7 of Chapter 6, while the 

constant 1 /(1 - ~ results from the conditioning. 



-198-

7. Cognitive Independence 

In the preceding chapter I suggested that two subalgebras al and 

(1 
2 

of a Boolean algebra a deserved to be called cognitively independent 

with respect to a belief function Bel on (}_ if 

p ,:,(A /\ A ) = p,: , (A ) · p ,:, (A ) 
1 2 1 2 ( 1) 

for all A
1 

& (l l and A 2 c a 
2

. We are now in a position to examine the 

basis of that suggestion. 

What ought we to mean when we say that two subalgebras are 

cognitively independent with respect to our opinions? Intuitively, we 

ought to mean that the assimilation of new evidence or opinion about the 

propositions in one of them would not change our degrees of belief in 

the propositions in the other. But Dempster' s rules of conditioning and 

combination provide us with a mathematical representation of how new 

C0.11 

evidence or opinion can be assimilated, and hence weJlmake this intuitive 

understanding mathematically precise. 

Indeed, if our new evidence about ()_ l comes down to the knowledge 

that A
1 

f: {1
1 

is true, then we would modify Bel by conditioning it on A
1

. 

And, more generally, if our new evidence induced a belief function Bel
1 

on Q
1

, then we would modify Bel by replacing it with Bel~ E9 Bel, where 

Bel
1

1 is the natural extension of Bel
1 

to (}. And as the following 

theorems show, these sorts of modifications in Bel will always fail to 

modify the degrees of belief in elements of {1
2 

if and only if (1) holds. 

Theorem. Suppose Bel: /J-_,. [O, 1 J is a belief function and [}_l and fJ.
2 

are independent subalgebras of (}_, Then (}.
1 

and fl.
2 

are 

cognitively independent with respect to Bel if and only if 
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Bel A I {), 2 = Bel I ()_2 whenever Al .; (}. l and p ,:,(Al) > o. 
1 

Proof: Be1A I {j_ 
2 

= Bel I{}_ 
2 

whenever Al e {/_ l and p ;:,(Al) > 0 
1 

if and only if 

p,:,(A ) = 
2 

p ,:, (A A A ) 
2 l 

p,:,(A ) 
l 

for all A
1 

e al and A
2

e 0,_
2 

such that p>:,(A
1

) > O. But this 

equation holds for all A
1 

e (}_ 
1 

and A
2 

~ (} 
2 

such that p,:,(A
1

) > 0 

if and only if 

p,:, (A A A ) = p,:,(A ) p,:,(A ) 
l 2 l 2 

for all A
1 

e 0.
1 

and A
2 

e (}
2

. ~ 

Theorem. Suppose Bel: a ➔ [O, l] is a belief function and {)l and (} 
2 

are independent subalgebras of (}_ Then J 
1 

and (} 
2 

are 

cognitively independent with respect to Bel if and only if Bel
1

1 0 

Bel I a 2 = Bel/ (i 2 whenever Bell' is the natural extension to 

of a belief function Bel
1 

on (}_ 1 and Bel
1

1 0 Bel exists. 

Proof. In view of the preceding theorem, it suffices to show that 

(1) and the existence of Bel
1

1 0 Bel implies that 

(Bel
1

1 © Bel) (A) = Bel (A) 

for all At.0
2

. But by the formulae of section 5, we find that 

(Bel
1

1 E& Bel) (A)= (u(V(p
1

(A
1

)Ap
2

(A
2

)IA
1

,A
2 

<-{}_; A
1 

AA
2

sA}) 

- µ( v{p1(A1)"Pz(A2dA1,A2 ~&; A1 AA2SA})) 1 

(1 - µ ( v [ P1 (A 1) Ap2 (A 2 )!Al' A 2•0, A, A2 sA J l) 
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where p
1

: {}_ ➔rrl, and p
2

: a ➔'Jn are allocations which represent 

Bel
1

1 and Bel, respectively, and which map (}_ into orthogonal 

subalgebras of 1)1. Now Bel
1

1 is supported by {1_ 1; hence 

for all A
1 

€ {j, and it follows that 

(Bell 1 © Bel) (A) = 0 ( V [ '1. (Al)" Pz(A V Al) I Al€ a 1} ) -µ ( V [ p 1 

(Al)A Pz(A1dA1e{11})) / (1,.. µ(V (p1(A1) (2) 

"Pz(A1dA1§al1)). 

But 

sup . . -
= A A. IA µ ( ( Pl (A 1 ) fl p2 (A V Al) ) V .•. V 

l'""' nGL,(l 

_ sup [" - . -A A n"-'µ(pl(A.)flPz(AVA.))-I:µ(pl(A . flA . ) 
l 

, . . . , eu 1 1 1 . <. 1 J n 1 1 J 

"Pz (Av (1\" Aj) ) ) + - ... ] 

sup [ = A A (R· I:Bel 1 (A.) Bel (AV A.) - I: Bel 1 
1

, .•• , e 1 . 1 1 .<. n 1 1 J 
(A . IIA.) 

1 J 

Bel (AV (A. A A . ) ) + - •.• ] . 
1 J .· 

Now since 0
1 

and ~ are cognitively independent with respect to 

Bel, we have 

p ,:, (A fl B) = p,:, (A) • p ,:, (B), 
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or 

Bel(A VB) = Bel(A) + Bel(B) - Bel(A) Bel(B) 

whenever A@ 0
2 

and Be (}
1

• We are indeed assuming that Ae fl 2 , 

so our preceding formula becbmes 

µ( v ( p
1 

(A
1

) "P
2

(A v A 1) I A 1 c {:11}) 

= A supA . e ()_ ri; Bel
1

(A.)((Bel(A) + Bel (A.) - Bel(A) Bel(A.)) 
l' · · ·' n 1 ~i 

1 1 1 

- .E Bel
1 

(A, /\ A.) {( Bel(A) + Bel(A. /\ A . ) -
•. < • l J l J 
l J . 

- Bel(A) Bel(Ai /\ Aj) ) + - . • . ] 

=· A sup A. lb [Bel(A) (rBel
1

(A.) -:E Bel 1(A. /\A.)+ - .•. ) 
1•···• neUl 

1 1 
J 

+ ( 1 - Bel(A) ) ( .E Bel 1 (A.) Bel(A.) -
l l 

- £ Bel
1

(A. /\ A.) 
1 J 

Bel(A. /\A.)+ - ..• ) ] 
1 J 

sup [ =A A IJ Bel(A)(µ(p 1(A 1)V ..• v p1(An))) 
1, ... , n~U'.1 

t(l-Bel(A))(u((p
1

(A
1

)/\p 2 (A 1))V ... V 

( P1 (An)" Pz(An) ) ) ) ] 

sup = Bel(A) A A ~ µ ( pl (Al) V ••• Vo. (A )) 
l'"'' ne()(.l 'l n 

sup . . -
+ (1 - Bel(A)) A

1 
..• ,Ane{1

1
µ(( p1(A 1)Ap 2 (A 1 ))V •.• V 

(Pl (An) A p 2 (An) ) ) 
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So, setting 

P) becomes 

( Bel
1

1 © Bel) (A) = Bel(A) + ( 1 - Bel(A)) k - k 
1 - k 

= Bel(A). 
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8. Conclusion 

It is evident that Dempster's rule of combination "I.Vi.11 play a 

central role in any application of the theory of belief functions, for we 

always encounter the need to combine evidence. In view of this 

importance, the rule deserves a much closer scrutiny - - we need to 

examine a good many examples of its application so as to understand 

its behavior clearly. I cannot undertake such an examination here, but 

I have made some efforts to examine its behavior in the paper entitled 

11A Theory of Statistical Support. 11 

I have not developed the formulae for combining more than one 

belief function at a time, but it should be evident that such combination 

is possible. Furthermore, it can be carried out stepwise, and the order 

will not matter: the operation of combination is commutative. This is 

particularly obvious in the condensable case, for aside from an 

appropriate renormalization, the combination of condensable belief 

functions is affected merely by multiplying the commonality functions. 

It should be noted that this operation of combination is not idem

potent. In other words, Bel EB Bel is not, in general, equal to Bel. 

This fact is best explicated if we think in terms of the evidence under

lying Bel. Since the operation of combination corresponds to the 

pooling of evidence, Bel EB Bel will be appropriate for the situation 

where all the evidence is twice as strong as that underlying Bel. 

It is not so easy, of course, to go back and forth from the 

commonality functions, which are easy to manipulate, to the belief 
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functions and upper probability functions, which are of greater 

immediate interest; the formulae for doing so that were adduced in 

Chapter 5 are hardly of practical use. Hence any application of 

this theory will involve the rather difficult task of developing effective 

computational methods for combination. This difficulty is central 

in the theory of Dempsterian inference, for which the present essay 

is meant as a foundation. 
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