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Abstract. This note introduces Marie-France and Bernard Bru's forth-
coming book on the history of probability, especially its chapter on dice
games, translated in this issue of Statistical Science, and its commentary
on the history of fair price in the settlement of contracts.

As the Brus remind us, the traditions of counting chances in dice
games and estimating fair price came together in the correspondence
between Pascal and Fermat in 1654. To solve the problem of dividing
the stakes in a prematurely halted game, Fermat used combinatorial
principles that had been used for centuries to analyze dice games, while
Pascal used principles that had been proposed in previous centuries by
students of commercial arithmetic.
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1. INTRODUCTION

Next year a long-awaited history of mathematical probability, Les jeux de

l'in�ni et du hasard (Games of in�nity and chance) by Marie-France Bru and
Bernard Bru, will be published by the Presses universitaires de Franche-Comt�e.
This issue of Statistical Science includes an English translation of the book's chap-
ter on dice games, which reminds us of the antiquity of dice and of the association
of belief with frequency that is forced on those who gamble with dice.

Les jeux de l'in�ni et du hasard is not a substitute for any of our existing his-
tories of mathematical probability. But with its extensive notes and careful philo-
sophical perspective, it provides an essential complement to those more forward-
looking histories. It takes us deep into the times it studies, drawing us into multi-
faceted worlds and characters and excavating ideas and motives that never merely
mirror and can sometimes enrich the ways we have come to use their mathematics
today. This note describes the wide sweep of Les jeux de l'in�ni et du hasard and
picks out some points that cast unfamiliar light on familiar issues in the history
and philosophy of probability.

The chapter on dice games is of particular interest because it demonstrates the
historical and conceptual depth of the duality of probability�its combination of
belief with frequency. But we also learn from the book that Pascal's and Huygens's
theory of expectation was rooted in a di�erent tradition, in which this duality was
absent or at least contingent.
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2 G. SHAFER

Fig 1. Marie-France Bru (November 22, 1943�January 30, 2012) at about 20 years of age, in
her parents' apartment in Paris.

2. GAMES OF INFINITY AND CHANCE

In the 1990s, the University of Paris mathematician Marie-France Bru began
to collaborate with her husband Bernard Bru on the history of probability and
statistics. The couple produced two jewels: an erudite edition of two unpublished
manuscripts by the mathematical statistician Ir�en�ee-Jules Bienaym�e [7], and an
insightful article, in collaboration with Kai Lai Chung, on the mathematician
�Emile Borel's long fascination with unbounded martingales [8]. The collaboration
was tragically cut short when Marie-France's health deteriorated, and she died in
2012, after a valiant struggle with Lou Gehrig's disease.

The appearance of Les jeux de l'in�ni et du hasard, which emphasizes the role
of in�nities in probability theory, gives us a new occasion to celebrate Marie-
France's memory. It is a scholarly book, with innumerable references and notes
so voluminous that they outweigh the main text. But the main text itself is often
playful, avoiding technicalities when possible and sometimes pretending to be
accessible even to children��a la port�ee de tous.

The underlying theme of the book is that history can help us understand our
ideas more clearly. Loving novelty and aspiring to profundity, we sometimes imag-
ine that we can advance our understanding by making our concepts ever more
complicated. The Brus prefer a historical approach. �To penetrate to the reasons
of things,� they advise, �look at how they have gradually been revealed in the
course of time, in their progression and in their ruptures . . . �

The book has two parts. Part I, Les probabilit�es d�enombrables �a la port�ee de

tous, delves into the history of countably in�nite probability. Part II, Les prob-

abilit�es ind�enombrables �a la port�ee de tous, delves into the history of continuous
probability.

Part I reminds us how early probability theory became entangled with the
countably in�nity. We see countable in�nities at work in Abraham De Moivre's
recurrent series and Andr�e-Marie Amp�ere's theory of the gambler's ruin. We see
the roots of �almost sure� in the work of Joseph Bertrand, its emergence in Henri
Poincar�e's probabilistic mechanics, and its �rst �owering in �Emile Borel's path-
breaking denumerable probability calculus, which produced the �rst strong law
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THE BRUS ON DICE GAMES 3

of large numbers and led to modern measure-theoretic probability.
Part II emphasizes Laplace's work on continuous probability, beginning with

the approximations that we now think of as Laplace's version of the central limit
theorem. The authors trace the 19th-century rise and the fall of Laplace's asymp-
totic probability calculus, with a particularly touching emphasis on Laplace's
e�orts to promote its use in the last years of his career. In letters to colleagues
across Europe in 1815, Laplace explained how to calibrate the uncertainty in
Alexis Bouvard's estimate of the mass of Jupiter. The odds are a million to one,
he declared, that the estimate is accurate to within one percent. Alas, there were
signi�cant errors in the data Bouvard used. Laplace died in 1827, and by 1832
scientists knew that Bouvard's estimate was in error by about two percent.

The relevance of this history to the philosophy of probability is evident at the
outset of the Brus' book. We often fall into thinking that countably additive prob-
ability was invented in the 20th century, �classical probability� being concerned
only with problems where there are �nitely many equally likely cases. But the
Brus remind us of Jacob Bernoulli's use of in�nite series in his Ars conjectandi,
published in 1713 [5]. Suppose Peter and Paul alternately toss a fair coin. If Peter
goes �rst, what is the probability that he will be the �rst to get a head? We can
�nd the answer by adding the probabilities for the �rst head coming on the �rst
toss, the third toss, and so on:

(2.1)
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Following Huygens, Bernoulli used the concept of expectation (contingent payo�)
rather than the more abstract concept of probability to solve problems of this kind;
he assumed that the values we assign to contingencies add. What is the total value
of Peter's expectation if the �rst player to get a head wins some amount of money,
say one ducat? To answer such questions, Bernoulli �rst altered the picture by
assuming that there are an in�nite number of players, a di�erent player tossing
each time. Suppose the �rst player who gets a head gets the ducat, but he passes
it on to Peter if his toss is odd-numbered. The value of the expectation of the
player who makes toss n being 1/2n, Equation (2.1) gives the sum of these values
for the odd-numbered tosses and hence the total value of Peter's expectation.1

Instead of translating Bernoulli's idea into an argument that adds probabilities,
we could translate it into an argument that adds gambling strategies. For each n,
we have a strategy that costs 1/2n and pays 1 if the �rst head is on the nth toss.
Adding the strategies for odd n, we obtain a strategy with total cost 2/3 that
pays 1 if the �rst head is on an odd-numbered toss. As this illustrates, the axiom
of countable additivity can usually be replaced, in a game-theoretic formulation
of probability theory, with the more concrete notion of adding strategies [35].

1This problem is a variant of the �rst of the �ve problems that Christiaan Huygens posed
at the end of his 1657 treatise [18]. Huygens presumably solved the problem using a recursive
argument rather than an in�nite series, but Bernoulli preferred to use in�nite series, and he
demonstrated the value of this method by showing that it can handle more complicated rules
for alternating play, as when A tosses once, B once, A twice, B twice, then each three times and
so on. Bernoulli posed these problems in the Journal des S�cavans in 1685 (August 26, page 314)
and published his solutions in the May 1690 number of Leibniz's Acta eruditorum. He explained
his method in his commentary on Huygens's �rst problem, on pages 49�57 of Ars conjectandi.
The 1685 and 1690 publications are reproduced on pages 91�98 of Volume 3 of [6].
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Fig 2. Some ancient dice at the Oriental Institute of the University of Chicago. The die on the
left was found at Khafajah, northwest of Baghdad, and dates from the Akkadian period, 2300�
2000 B.C. The dice on the right are from the Roman empire, 100�150 A.D. See [36]. Photographs
used with permission of Stephen M. Stigler.

3. THE PSEUDO-OVID'S DE VETULA

The most enduring legend about mathematical probability is that it began with
the exchange of letters between Pascal and Fermat in 1654. As Laplace put it,
these two French mathematicians were the �rst to give principles and methods for
the calculus of chances and to solve probability problems of any complexity.2 In his
in�uential book, The Emergence of Probability [15], Ian Hacking embellished this
legend by arguing that the late 17th century invented not only the mathematical
theory of probability but also a philosophical concept of probability�a concept
that combined, for the �rst time, the ideas of belief and frequency. These legends
have been endlessly repeated and have a hold on our minds, even when we readily
admit that they are simpli�cations or worse.

The Brus' chapter on dice games challenges the legend of a 17th century inven-
tion of probability by taking us step by step through calculations in De vetula, a
long medieval poem by an unknown author who claims to be Ovid. The pseudo-
Ovid correctly counts the 216 ways three dice can fall and calculates how these
216 chances are distributed over the 16 di�erent possible sums, 3 to 18, of the
points on the faces that fall upward.

De vetula touches on many topics and was used in European universities for
centuries, copied and recopied and eventually printed. Its calculations for dice have
hardly been unknown to modern historians of probability. Maurice G. Kendall
commented on them in his 1956 article in Biometrika on the beginnings of the
probability calculus [19], and Florence Nightingale David noted them in her 1962
Games, Gods & Gambling [11]. Modern editions of the Latin text appeared in the
1960s [20, 28], and Ivo Schneider translated the relevant passages into German in

2Here, translated from the French, is what Laplace writes at the beginning of his sketch of
the history of probability in the last section of his Essai philosophique sur les probabilit�es [22]:
�Since long ago, people determined ratios of chances for and against players in the simplest
games, using them to �x stakes and bets. But before Pascal and Fermat, no one had given the
principles and methods for reducing this topic to calculation, or had solved questions of this
type that were of any complexity.�
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THE BRUS ON DICE GAMES 5

Fig 3. Depiction of triga from Alfonso the Wise's Libro de los juegos (1283). Like all the other
dice games in the book, triga involved throwing three dice. It is a two-player game; the �rst player
to throw three of a kind, 15 or greater, or 6 or less wins. The Brus, who discuss Libro de los
juegos's analysis of triga in notes not included in the translation following this introduction,
tell us that it falls short of De vetula's analysis. It counts the 56 punctaturae but not the 216
cadentiae. Using De vetula's tabulation of the cadentiae, we �nd that the probability of winning
on the �rst throw is 42/216, or approximately 19%. We then �nd, using Jacob Bernoulli's method,
that the player who throws �rst has a probability of 252/455, or approximately 55%, of winning.
Photograph used with permission of Charles Knutson of MacGregor Historic Games.

his 1988 reader on the history of probability [31]. Yet this knowledge has done little
to dampen the legend of Pascal and Fermat. As David Bellhouse noted in 2000,
the poem �has for the most part been passed over by historians of probability�
([4], page 123). Bellhouse gave a much fuller account of De vetula's calculations
than had previously appeared in English, but it remains a commonplace that
mathematical probability began in the 17th century.

The Brus go beyond Bellhouse and other earlier authors on the history of
probability by emphasizing not only the pseudo-Ovid's calculations but also his
rhetoric. The poet makes clear why one must look deeper than the 56 di�erent
arrangements of the three faces: these arrangements do not each have the same
force or frequency. So here, four centuries before Pascal and Fermat, we see a
concept of probability that ties together betting (belief) and outcome (frequency).
How could it be otherwise? And how could it have been otherwise for avid and
practiced dice players in the Roman armies or among the Babylonians?

As the Brus emphasize, we have no speci�c evidence and yet much reason to
conjecture that others, in the Islamic world or earlier, preceded the pseudo-Ovid
in calculating chances for three dice. De vetula appeared in the �rst century of the
massive �ow of Islamic science into Europe through Spain and Italy [2, 23, 29], and
we know that many of the ingredients for probability theory, including algebra and
combinatorics, came by this route [12, 30]. Among the many books commissioned
by Alfonso the Wise of Castile (1221�1284), one of the great patrons of the in�ow
of knowledge from Islam, we �nd his book of games, Libro de los juegos, where
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6 G. SHAFER

dice games were not overlooked�see Figure 3. We have not yet found Arabic
texts that counted the chances for dice. Did they never exist? Were they all
destroyed by religious zealots? Or do some lie undiscovered among the thousands
of Arabic manuscripts, scattered across libraries and archives, that no one has
yet transcribed, translated, or even read for centuries? We do not know, and
we may yet be surprised. It is only in recent decades that cryptographers have
discovered how much had been accomplished in their �eld by the Arabs [1, 3]
and that economists have discerned �nancial derivatives in cuneiform tablets of
ancient Mesopotamia [37].

4. FROM DE VETULA TO LAPLACE

As the Brus explain in the chapter translated here, the problem of generalizing
De vetula's accomplishment from three to a larger number of dice and from six to
an arbitrary number of faces is an important thread in the history of mathematical
probability in the 18th century. The pseudo-Ovid's combinatorial solution was
generalized by Jacob Bernoulli, then by Abraham De Moivre and Pierre R�emond
de Montmort, and �nally by Laplace. In 1810, forty years after �rst attacking the
problem, Laplace found an approximation to the Montmort-Moivre formula for
the problem, the same normal approximation that we now frame as the central
limit theorem and that Laplace used to �nd what we now call Bayesian credence
intervals and Bernoullian (frequentist) con�dence intervals for large samples.

5. THE PROBLEM OF DIVISION

While we have no record of their considering De vetula's problem of counting
the chances for three dice, we know that Pascal and Fermat solved a number of
other betting problems. The most celebrated of these was the problem of division:
how to divide the stakes in a prematurely halted multi-round game. If Paul is one
round short of winning, and Peter is two rounds short, how should they divide
the money on the table? The correct answer is that Peter should receive only 1/4.
Pascal and Fermat arrived at this answer in di�erent ways:

• Fermat noted that if the players were to play two more rounds, then there
would be four equally possible outcomes; the winners could be (Peter,Peter),
(Peter,Paul), (Paul,Peter), or (Paul,Paul), and Paul would win the stakes
in 3 out of 4 of these cases.

• Rejecting this argument because the second round would not be played if
Paul won the �rst, Pascal gave a di�erent argument. If Peter won the �rst
round, he would play the second at even odds and at that point have an
expectation worth half the stakes. So on the �rst round he is playing at
even odds to obtain either zero or an expectation worth half the stakes and
therefore has an expectation worth a quarter of the stakes.

In a note to their chapter on dice games, not reproduced in the following trans-
lation, the Brus point out that Pascal's reasoning about the problem of division
connects with a medieval tradition distinct from the combinatorial tradition in
which we can place both Fermat's reasoning about the problem of division and
the pseudo-Ovid's analysis of the chances for three dice [10].

Pascal's mathematics certainly involved combinatorics; he saw the problem
of division as one application of his marvelous arithmetic triangle [12]. But his
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THE BRUS ON DICE GAMES 7

principles were about fairness, not about counting chances. In this respect, he was
not echoing the age-old experience of dice players and its marriage of betting with
frequency. He was echoing instead the equally ancient experience of merchants
and tradesmen, forced to settle contracts when circumstances prevent their being
ful�lled to the letter.

The problem of division had been discussed by mathematicians for centuries
before Pascal proposed it to Fermat. Those discussing it in print included Luca
Pacioli in his Summa (1494), Gerolamo Cardano (1539), and Niccol�o Tartaglia
(1556). Were these authors motivated by the concept of chance that we �nd in
the pseudo-Ovid's and Alfonso's dice games? No. These authors mention games
of skill: ball games and archery competitions. What motivated their interest in
betting in such games? The answer, surely, is that the risks resemble those taken
by businessmen. Both luck and skill play a role. As Ivo Schneider convincingly
argued in 1988, evidence abounds that Pacioli, Cardano, Tartaglia, and other
authors of their time who wrote about the problem of division were thinking
about settling unful�lled contracts. In a nutshell, �gaming was understood as a
process which recapitulated the activities of merchant adventurers in a condensed
time span� ([32], page 220).3

Pacioli, Cardano, and Tartaglia did not arrive at Pascal's solution, and his-
torians of probability have often treated their alternative solutions as mistakes.
Anders Hald, for example, observes that the arguments made by Cardano in 1539
�do not lead to the correct division rule� ([16], page 36). But when we take Schnei-
der's arguments seriously, we may wish to agree with Tartaglia that there is no
unique correct solution in general, even if the parties are bound to agree on some
solution that they consider fair.

The commercial context of Pacioli's solution of the problem of division is hardly
hidden, his Summa being a book on commercial mathematics, beginning with
arithmetic and algebra and concluding with the mathematics of bookkeeping and
�nance. It is here that Pacioli introduced double-entry accounting. He drew less
on the learning of the universities than on the tradition of the abacus schools of
northern Italy, where young men learned the mathematics of trade in the ver-
nacular. For information on the sources of this tradition on both sides of the
Mediterranean and its in�uence on the development and language of probabil-
ity theory, see Jen Høyrup [17], Edith Sylla [38], and Probabilit�es M�edi�evales, a
special issue of the Electronic Journal for History of Probability and Statistics

(www.jehps.net, volume 3, number 1) edited by Norbert Meusnier and Sylvain
Piron.

The relevance of the abacus school tradition to the problem of division has come
into better focus with the discovery of manuscripts whose authors did arrive at
Pascal's solution. In 1985, Laura Toti Rigatelli published a previously unnoticed
Italian manuscript, dating from about 1400 and preserved in the National Library
in Florence, which addresses the problem of division when the game is a version of
chess [41]. One player needs to win only one more match and the other needs to win
three. As Schneider has shown, the manuscript's reasoning conforms to Pascal's

3On the other hand, as Schneider has suggested to me in personal correspondence, the
widespread prohibition of games of chance by governmental and religious authorities may be at
least partly responsible for these authors failing to mention them.
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8 G. SHAFER

principles and is completely correct [32].4 A second, much more extensive Italian
manuscript, dating from about the same period and preserved in the Vatican
Apostolic Library, was published by Ra�aella Franci in 2002 and analyzed in
detail by Norbert Meusnier in 2007 [13, 25]. Its unknown author does not say
what game is being played, but the manuscript presents an elegant theory, again
conforming to Pascal's principles. It instructs its readers to keep the methods
secret, so that they will not lose their monopoly in using them, suggesting the
existence over some period, beginning at least two centuries before Pascal, of a
whole school that understood them.

Pascal did have games of chance in mind. He mentions tossing a coin in his sec-
ond letter to Fermat (24 August 1654), and he appeals to the idea of a game of pure
chance when he explains his two principles in his Trait�e du triangle arithm�etique

[27]. The �rst principle is that a player is entitled to an amount that he will get
no matter what happens. The second is that when one player wins what the other
loses, the amount should be divided equally. The second principle, he argues, is
justi�ed if the game is one of pure chance and there is as much chance for the
one player as for the other.5 But players in a game of skill can also use Pascal's
principles if they want, for they can agree to bet on equal terms even if they do
not agree that their skills are equal.

In our 21st century, Pascal's game-theoretic picture remains an alternative
to Fermat's combinatorial or measure-theoretic picture, an alternative in which
the connection between betting rate and outcome (frequency) is not taken for
granted. The fundamental principle is that agreed-on bets can be compounded to
produce other bets. This idea has been exploited in modern �nance theory, where
it is understood that an auxiliary principle�an �e�cient market hypothesis��is
needed in order to make the connection with outcomes. It has also been exploited
in game-theoretic probability, where the auxiliary principle can be understood as
a version of Cournot's principle [33, 34].

6. NAMING THE PROBLEMS

We should pause over one issue of translation. In French, Pascal and Fermat's
problem of division is called le probl�eme des partis. The French masculine noun
parti can be translated as �part� or �share�, but it can easily be confused with
the French feminine noun partie, which can be translated as �point� or �round�
in a game with multiple rounds. The French mathematician Sylvestre Fran�cois
Lacroix warned against this confusion in his 1816 probability textbook ([21], page
93), but the English mathematicians Lubbock and Drinkwater fell victim to it
in their anonymous text on probability ([24], 1830), translating le probl�eme des

partis as �the problem of points�. Their example was followed by Isaac Todhunter
in his authoritative history ([40], 1865) and by nearly everyone else writing on the
topic in English since.

4The manuscript is also discussed by James Franklin ([14], pages 294�296), who cites Schnei-
der but is puzzled that the game is not a game of chance.

5Here, translated from the French, is what Pascal writes in the �fth paragraph of Part III of
[27]: �If two players �nd themselves in a situation where a certain sum belongs to one of them if
he wins and to the other if he loses; and if the game is one of pure chance and there is as much
chance for the one as for the other, and consequently no more reason why the one should win
rather than the other, then if they want to separate without playing and take what legitimately
belongs to each, they should divide the sum at hazard in half. . . �
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THE BRUS ON DICE GAMES 9

On the other hand, the Brus have chosen to use le probl�eme des points to refer
to the pseudo-Ovid's problem of calculating the chances for the di�erent possible
sums of points for three (or more) dice. This makes perfect sense in French, and
it would make sense in English as well had �problem of points� not become the
standard name for the problem of division.

What should the translator do? Ignoring the standard English usage and trust-
ing the reader to note and remember that we are using the term in a nonstandard
way, I have translated the Brus' probl�eme des points into English as �problem of
points�.
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1. INTRODUCTION

Cubic dice appear in human societies at least as early as writing or numeration.
Most museums have very good specimens, sometimes dating back to 2000 or 3000
BCE, which were excavated in Mesopotamia or in the Indus Valley [Stigler 2014].
Their origin will not be discussed here, but it must at least be remarked that,
unlike astragali or other objects thrown to the ground, dice, initially made of
terracotta, are unique in that they tend to approach perfectly cubic dice, which
are equally liable to show any one of their faces, which are marked by one to six
points, thus approximating a kind of mathematical equi-probability long before
the notion was imagined or named, the notion seeming thus to have emerged in
full armor from a little piece of hardened clay into the sun of the Orient.

Of course we know about mathematical cubes whose six faces are superposable
by de�nition, studied mathematically as such ever since geometry has existed.
Here we are dealing with another type of mathematical property. Each face of
the die is mathematically equivalent when thrown; none is given an advantage
mathematically, even if it can be given an advantage physically (deliberately or
not). All faces have the same �chance� to appear, and this is an equality by de�ni-
tion. Immediately, therefore, without having to appeal to materialistic or idealistic
philosophical theses, remarkable in all respects but foreign to our account, which
is intended for children of all ages, we have a new idea, the idea of �chance�,
and a mathematical object, a �mathematical die�. And �randomness�, the starting
point for our thought and words about this mathematical object, instead of being
that blind divinity that decides our destinies, becomes then also a mathematical
randomness, a theoretical �abstract� die, as Borel [1920] wrote, which falls to the
ground without favoring in any way any of its faces or any player who might bet
on one of them.

Another very common observation comes from dice players themselves, millions

∗Deceased January 30, 2012.
†E-mail: leslogesb@gmail.com
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2 MARIE-FRANCE AND BERNARD BRU

of players over thousands of years, who all know that the faces of a good die appear
about equally often if thrown long enough, whereas by loading the die, you can
modify this approximate equality enough to enrich yourself, if you are not �rst
found out. The purely mathematical equality of dice then takes on a particular
practical form. Certainly you cannot predict the outcome of a throw of a die,
but you can bet that on a large number of throws, the six faces will appear
approximately the same number of times.

We thus have multiple de�nitions of good dice. A mathematical de�nition: each
face has the same chance of appearing. A statistical de�nition: each face appears
roughly equally often in a large number of throws. And one can add juridical,
psychological, epistemological, economic de�nitions, as many as you want. From
the earliest known texts, at least those that we shall examine here, as we shall see,
authors assimilate, amalgamate, with no comment or argument, the mathemat-
ical equality of chances with the approximate equality of statistical frequencies.
They con�ate in one and the same language these two ways of de�ning (perhaps)
the same thing. They write indi�erently that one face appears more frequently
than another or that it has more chances to appear. The two locutions are inter-
changeable. This double language, or rather this confusion of several languages,
may simply be due to the fact that the authors are hard pressed to de�ne the
�chances� of which they speak, even if they understand them mathematically well
enough to calculate them. Or it may be due to any other reason someone may
want to propose.

Be that as it may, it is a fact that this special kind of multiple de�nition
coalesces into a single physico-mathematical entity that we call a die and that
everyone is supposed to understand clearly. The chances of the faces of this die
are equal by de�nition, like the faces of a cube, and at the same time none of its
faces is physically or morally �advantaged� if it is thrown. None can really happen
much more often than another. This has always been the way, moreover, to judge
of the goodness of a die, if you do not know how it was made.

At some point in the history of science, about which we know little or nothing,
some scholars may perhaps have convinced themselves that as dice have their own
mathematical existence, there should be a �geometry of chance�, a mathematical
theory of dice, just as there is a geometric theory of cubes, and that it could be
made into a calculus. And as the dice have a physical, juridical, religious existence,
etc., these same scholars or others tried to apply this particular mathematics to
study the �games of chance� played by their contemporaries, to determine the
probability of the di�erent possible outcomes and the fair value of gambles or bets,
the value that maintains a kind of equality or justice among the participants, as
the chances are multiplied. The calculus of dice would somehow permit us, at least
ideally, to account for the frequencies of appearance of the di�erent faces of a die,
or the con�gurations of several dice when they are thrown together. One can thus
speak, without forcing the point too far, of a (mathematical) �law� of dice, what
will be called in the 18th century a law of probability that reason �ts as closely as
possible to the realities involved, just as a mathematical die is a simpli�ed image
of a good clay die. This is one example among others of the mathematical physics
of Archimedes, Galileo or Newton, for whom nature is not mathematical, but can
be described at least approximately in mathematical language.

Better still, and this time we have a reliable source, at the end of the 17th cen-
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tury the well-known scholar Jacob Bernoulli in Basel succeeded in putting into
one and the same mathematical statement the two notions we have just intro-
duced: the chance of one of the faces of a die and the frequency of its occurrences.
This is Bernoulli's theorem, which we examine in almost every paragraph of this
work. This fundamental theorem can take very diverse forms and make use of
more and more advanced mathematics, notably the mathematics of denumerable
probabilities. It continues to be the object of active research.

In this chapter, we are interested only in the a priori calculus of mathematical
dice, derived from their de�nition, six equally probable faces, what is now called
the calculation of a probability law, a calculation of a particular nature that surely
goes back very far in time, perhaps as far as the calculation of the dimensions of
a pyramid, or a circle, or a square, though we know very little about this.

By de�nition, as we have said, each face of the die has the same chance of
appearing. This is a hypothesis of a mathematical nature, a truth by de�nition,
theoretical, preserved throughout a reasoning or a possible calculation. This cal-
culation obviously depends on appropriate algebraic rules and also on the rules of
the games considered. The history of dice games is as long as the history of men.
It will su�ce here to recall that in the Roman era (to speak simply), soldiers had
the right to play dice in camp, so that Roman dice are found all over Europe. One
of the most common Roman games, found in the Middle Ages and today, consists
of throwing three dice and summing up the faces obtained. The �rst problem of
the calculus of dice could therefore be this one: Do the di�erent possible sums
of points of three dice, from 3 to 18, have the same �chance� to occur, or are
some favored over others, and if so, in what ratio? We shall call this the problem
of points.1 As for the word chance, we keep for the moment the mathematical
meaning everyone knows, a kind of special weighting that allows us to begin the
calculation, or, as d'Alembert wrote in the preliminary discourse of the Ency-

clopaedia: a �quantity considered in the possibility of events,� which �produces
the art of conjecturing, from which arises the analysis of games of chance.� Or, if
one prefers, an �abstract idea� at the foundation of the whole theory, as we know
Cournot said so emphatically [1828, 1843].

First a few simple observations that players must have made for a long time.
There is an obvious mathematical symmetry in this problem. Points 3 and 18 (all
the faces identical to 1 and to 6) necessarily have the same chance. The same
seems likely true for points symmetrical with respect to the average, which is
between 10 and 11, which thus must also have the same chance, although the
reasoning here is less obvious (in general, it consists of changing the numbering,
1 becoming 6, 2 becoming 5 and so on).

Are these chances all equal as in the case of a single die? Certainly not. It is
enough to have thrown three dice (or simply two dice as in the game of Monopoly)
a few times to realize that the sums of points near the average, 10 or 11, even 9
or 12, are more advantageous, more frequent, than the extreme sums 3 or 18, or
even 4 or 17. There must be a mathematical reason for this, and the problem is
to �nd it.

1Translator's note: Here I translate the authors' probl�eme des points into English as problem
of points. I will use problem of division for what is usually called problem of points in English:
the problem of dividing the stakes when a game is ended before either player has enough points
to win.
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2. THE PSUEDO-OVID'S DE VETULA

Here we prefer the historical approach. To penetrate to the reasons of things,
look at how they have gradually been revealed in the course of time, in their
progression and in their ruptures, if any. In the case of the problem of points,
as in all truly interesting cases, this is di�cult or even impossible because the
problem is lost in the mists of time and it is impossible to determine its origins
and traditions in the absence of clearly identi�ed written texts. Historians have
examined this question ever since the 19th century, exploring the libraries at their
disposal, and we have hardly progressed since then. Perhaps somewhere there is
a Babylonian tablet or an Egyptian papyrus dealing with the question of points,
but we do not know where they are. The �rst text usually cited on this question
dates from the middle of the 13th century, a long encyclopedic poem, entitled De

vetula, written in Latin hexameters and falsely presented as Ovid's testament. We
do not know the author, but we know that he was connected to the University of
Paris and that his poem probably served for a long time as a pedagogical resource
in the universities and schools of the Middle Ages and the Renaissance. Be that
as it may, the author by all appearances is a positive spirit, a scholar up to date
on medieval science, and if his ultimate goal is indeed the conversion of souls, as
was that of the builders of cathedrals, his poem De vetula nevertheless possesses
a certain probabilistic modernity which especially interests us here.

In the �rst book of the poem, the pseudo-Ovid enumerates and criticizes the
pleasures of life and its profane pursuits. The author treats in particular di�erent
kinds of games, games of skill and reasoning, dice games. In the last case, the
point is clearly to discourage the player from ruining himself, while awakening his
intelligence. The aim seems to have been to show how chance can be reduced to
calculation, even as neither this calculation nor anything else can ever dominate
it. The calculation, in a certain way, puts chance in its place or, we might say,
in its seat. It understands the game, but it is neutral and cannot prevent the
ruin of fathers of families and the squandering of inheritances. Perhaps this is
what Jean Le F�evre, who produced a versi�ed French adaptation of De vetula

entitled La Vieille ou les derni�eres amours d'Ovid in the 14th century, meant in
this trenchant title summarizing the Latin poet's point: �That he who knows how
to seat the dice has no advantage in the game�.

The same moralizing intention is found in the second part of the poem, in which
the author undertakes to dissuade his readers, generally clerics like himself, from
indulging without measure in the pleasures of sex, detailing the disappointments
of Ovid who, believing that he has �nally succeeded in conquering the girl of his
dreams but deceived by the night, �nds himself in the bed of an �old woman�,
a scabrous, rather obscene episode in the style of novels and medieval fables in
which the woman is in turn idealized and trivialized. But here is not the place to
detail this point any more than the third part, in which the author makes himself
the defender of philosophy and theology, alone worthy of occupying a true scholar.
The poem ends with Ovid's imaginary conversion to the true faith and a hymn to
the Virgin Mary. In short, a medieval pedagogical poem, of which we will examine
only the part that deals with the game of dice.

No doubt we should situate the calculus of dice in the Western mathemati-
cal context of the time. A relatively modest context, as it was in the time of
Roman grandeur, more concerned with earthly conquests than with those of the
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human mind. This was deplored by Jean-�Etienne Montucla in his great Histoire
des math�ematiques [1802, Volume I, page 482]. The Roman colonies of the West
hardly departed from this traditional disdain for mathematics, which was limited
to the education of youth and the practical needs of architecture, commerce, or
calendars. All the more so because mathematics had been compromised by astrol-
ogy and methods of divination, whose astral fatalism and abuse were denounced
and severely repressed by the Justinian code and several unanimous councils. Just
the same, Montucla (ibid., page 506) observes with some relief that �the thirteenth
century was almost a time of enlightenment in comparison�. It appears indeed that
the author of De vetula knew and probably taught Boethius's arithmetic, from
which he borrows the use of tables inserted in the text, the ��gures� that make
it possible to visualize the �con�gurations of points� as well as the dice's �ways
of falling�. As J.-Y. Guillaumin points out in his edition of the De institutione

arithmetica, Boethius was the �rst Latin author to use this pedagogical device,
which he borrowed from his Greek model, Nicomachus of Gerasa's Introduction

to Arithmetic and which De vetula borrowed in turn, as certain Arab traditions
did earlier [Djebbar 1985]. It is also evident that the erudite 13th century poet
used quite well the Indian positional numeration adopted by the Arabs in the 9th
century. The Arabic decimal system appears in De vetula beginning with the �rst
manuscript, in the form found in the 12th�13th centuries in the Latin translations
of Al-Khwarizmi and in the treatises of Abraham Ibn Ezra, Fibonacci, and Jor-
danus Nemorarius. We know that at the end of the 13th century, the Sorbonne
Library had several manuscripts entitled �algorismus�, notably those of John of
Sacrobosco, who was a professor of quadrivium2 in Paris from the 1220s, and who
could have had the Pseudo-Ovid as a student. The positional decimal numeration,
already advocated in the 10th century by Gerbert d'Aurillac [Bernelin c. 1000,
Beaujouan et al. 1995, Allard 1992, page xv, 1997], gives the calculus of dice a
certain versatility and may explain in part this (perhaps) new application of the
science of numbers, as it explains other applications of the time to astronomy and
mechanics.

There are surely other sources for the calculus of dice that we are completely
unaware of. Moreover, in reality we know almost nothing about the history of De
vetula, and we will say no more about it. Let us rather see what people knew
about �seating the dice� in the 13th century.

So consider three dice, which we assume to have di�erent colors, blue, white and
red, to mark their di�erence, their individuality. Since the �rst modern courses
in the calculus of probability, Borel's for example, this has been the simplest way
to present the matter. The author of the De vetula proposes to calculate in how
many ways the points can appear on the three dice. He is careful to point out that
there are at least two ways of doing this counting. First, there is what he calls
the �punctaturae,� which Le F�evre translates into French as �pointures,� that is,
the marks that appear on the dice without taking into account their color. For
example, 225 is the pointure corresponding to two dice coming up 2 and one
coming up 5. And so on for the other cases. Punctatura could be translated as
�what is going to be pointed or piqued�, or as �con�guration of points�, or however

2Translator's note: The quadrivium consisted of arithmetic, geometry, astronomy, and music;
the trivium consisted of grammar, rhetoric, and dialectic. These seven liberal arts prepared
students for professional study in law, medicine, and the church. See Figure 1.
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6 MARIE-FRANCE AND BERNARD BRU

Fig 1. Cover and third page of Margarita Philosophica (Philosophical Pearl), reproduced with
permission of the Rutgers University Libraries. This 16th century compilation, published in 1504
by Gregor Reisch, was a comprehensive university textbook. The seven liberal arts, divided into
the trivium and the quadrivium, are listed in the bottom half of the circle on the cover. The
diagram on third page shows how the author �ts these liberal arts into a larger map of philosophy.

you like. For his part, Jacob Bernoulli calls De vetula's punctaturae �modes�. Here
we adopt Le F�evre's term, pointure, which is as good as any other and which
stands out as a special mathematical term. So the poet proposes �rst to count
the pointures.

This calculation was not new to the West. We know that Wibold of Cambrai
published in the 10th century the 56 pointures of three dice by associating them
with the canonical virtues, from 111, charity, to 666, humility. This counting
became classic, in various forms, in the Middle Ages and the Renaissance. We
also know of several counts of pointures in antiquity in the somewhat simpler case
of 4-sided astragali.3 Here there are 35 pointures, named for the most important
deities, heroes, or animals�Venus, the dog, etc.�which have di�erent divinatory
values. In all the known texts there are no methods of calculation; it is a matter
of simple enumeration, say in alphabetical order. In De vetula, the pseudo-Ovid
proposes a genuine combinatorial calculation of the 56 pointures of three dice,
which we will follow step by step. One starts by counting the pointures where the
three dice present the same face: 111, 222, etc. There are obviously 6 of them.
Then we count the pointures, such as 225, where two dice present the same face
and the third a di�erent face. In order to evaluate their number, we �rst choose the

3Translator's footnote: The astragalus bone, from the ankles of sheep and other animals, falls
on one of four sides when thrown. In Greek literature, the four ways of falling were often named
with the letters A, Γ, ∆, and F or the numbers 1, 3, 4, and 6, but since the four sides are visually
distinct, it was not necessary to mark them. See the photographs in [19].
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face that is repeated, for which there are six choices, then, this choice being made,
the single face from the remaining �ve, which makes a total of thirty, multiplying
six by �ve. Finally, we have to calculate the number of pointures corresponding
to three di�erent faces, for example 123. We �nd twenty of them by enumerating
the di�erent cases according to whether the numbers marked are �continuous�,
for example 123, or �discontinuous�, for example 124 or 135. And to be surer
of ourselves, we make a table of the 56 pointures, which takes several forms in
di�erent manuscripts, culminating in the remarkable �bell-shaped� form found in
the second printed edition of 1479 and its later copies.

666 18
665 17
664 655 16
663 654 555 15
662 653 644 554 14
661 652 643 553 445 13
651 642 633 552 543 444 12
641 632 551 542 533 443 11
631 622 541 532 442 433 10
621 531 522 441 432 333 9
611 521 431 422 332 8
511 421 331 223 7
411 321 222 6
311 221 5
211 4
111 3

The reader will have noticed that the second part of the enumeration, which
leads to 6 × 5 = 30, uses the combinatorial rule of multiplication, which is im-
memorial [Biggs 1979, number 1, Allard 1994] and which the author seems to
know well. This rule allows in the same manner the calculation of numbers of
arrangements and permutations that is found very early in Chinese, Indian and
Arab mathematics [Biggs ibid.], in Fibonacci's or Jordanus's treatises, and in the
collections of problems that formed the pedagogical basis of the teaching of arith-
metic at the University of Paris in the 13th century [Beaujouan 1991, Chapter
XI; Allard 1994].

The bell of pointures allows the poet a �rst comment. The numbers go up
to the middle points 10, 11 and then back down. Thus, the points �are not of
equal force�. �The largest and the smallest of them come rarely, the middle points
frequently.�

But we still have not reached the crux of the matter. In fact, the middle points
from 9 to 12 in this bell all have the same �force� of six pointures, and the extreme
points, 3 and 4, or 17 and 18, have an equal force of one pointure. Yet the com-
mon opinion of players, from the very beginning all the way up to the Chevalier
de M�er�e, who said it to Pascal, is that point 11, for example, comes more fre-
quently than point 12. As for point 4, it is clearly more advantageous than point
3. We must therefore �nd another explanation. The �force of the pointures� is not
su�cient to explain or predict the frequency of the throws.

The pseudo-Ovid now makes this remark:
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Now, if we observe more carefully the pointures, there are some for which there is only
one way of falling, and there are some for which there are three or six, because the manner
of falling is unique when the three numbers of which we have spoken are alike. But if one of
these numbers is di�erent two are alike, three cases occur, depending on which is di�erent.
And if all are di�erent, you will �nd that they can change in six ways, because if you give
any position to one of the three, the other two exchange their positions, as permutation of
the pointures shows. In this way, the �fty-six pointures are di�erentiated into two hundred
sixteen ways of falling, and when they are distributed among the possible number of points
for the players as they should be, you will know fully what value or loss any of them can
have.

We cannot say it better. The pointure is not enough to specify the way the
three dice fall. To the 56 pointures (punctaturae) correspond in reality 216 ways
of falling (scemae cadendi) taking into account the color of the dice. For example,
the pointure 225 corresponds to 3 ways of falling, depending on whether the 5
is on the white, the red, or the blue die. The pseudo-Ovid then introduces a
special technical term for the dice's ways of falling, the cadentiae, which we will
now translate as chances. The poet tells us that the number of chances makes
it possible to know the players' real gains and losses. In the case of a single die,
each face is its own pointure and has the same chance of falling, but in the case of
three dice, the chances of di�erent pointures are di�erent; there can be 1, 3 or 6
chances, depending on the color of the dice, and therefore the points have di�erent
chances that one must calculate from the bell of pointures and the chances they
can have. This is summarized in the following table:

3 18 Punctatura 1 Cadentia 1
4 17 Punctatura 1 Cadentiae 3
5 16 Punctaturae 2 Cadentiae 6
6 15 Punctaturae 3 Cadentiae 10
7 14 Punctaturae 4 Cadentiae 15
8 13 Punctaturae 5 Cadentiae 21
9 12 Punctaturae 6 Cadentiae 25
10 11 Punctaturae 6 Cadentiae 27

Thus a total of 216 chances for the 16 possible points from 3 to 18.
The pseudo-Ovid stops there. The problem is completely solved. We can seat

three dice. A priori, nothing stops the poet from treating the case of four dice by
the same method: enumeration of pointures and then evaluation of their chances
taking into account the colors. This in fact is how Jacob Bernoulli �rst proceeds in
the �rst part of Ars conjectandi, but he concludes that this method is both tedious
and long (taediosa and prolixa). He proposes another, remarkably ingenious, step-
by-step method [ibid., page 24], which we examine later, but which perhaps would
not have convinced the pseudo-Ovid.

Just the same, De vetula is a genuine �calculus of chances� in a relatively
complex case. The pseudo-Ovid constructs the table of chances for the points of
three dice, and in two di�erent ways. By doing so, knowing it or not, he introduces
a mathematical notion of the �rst magnitude, a probability law, mathematically
mimicking the tables of numbers found in all commercial or agricultural accounts
and already on certain Sumerian tablets 4500 years ago [Stigler 2016, page 27].
Was the Latin poet the �rst? We do not know. Was he isolated? We do not know
this either, but we can doubt it and conjecture that the author of De vetula was
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taking up something he had learned elsewhere, no one knows where. He testi�es
at least to the existence, at the dawn of Western universities, of a calculus of
perfect dice, mathematical dice, and the proliferation of manuscripts and editions
all the way up to the 17th century proves without a doubt that this 13th century
calculus was not completely forgotten and continued to be taught here and there,
down to modern times, without our being able to say more.

Things changed in the 15th century in Italy and in the 16th century throughout
Europe, when mathematics acquired an autonomy and an importance it had lost
long before. Luca Pacioli could even write in his dedication of Divine Proportion

to Duke Sforza:

Among truths, as Aristotle and Averroes a�rm, those of mathematics are the most
true: they are the �rst degree of certainty, and all the other natural sciences come
after them. In this way it is clear, Great and Powerful Duke, that all other sciences
are opinions, and only these should be called certitudes. [1498, page 49 of the 1988
edition]

Kant would not say anything di�erent. The medieval calculus of chances thus
found a second life. Isolated, strange, and fascinating texts inevitably attracted
the attention of scholars who henceforth devoted themselves exclusively or almost
exclusively to the new sciences. Chairs of mathematics were created, and we may
suppose that their holders taught the calculus of chances on occasion, although
we know of hardly any texts of any importance on this subject, and those usually
quoted were published too late to in�uence the development of the calculus of dice
before Huygens's treatise [1657]. This treatise, the �rst that really counts, entitled
De ratiociniis in ludo aleae (On calculation in games of chance), was published
shortly after the exchange of correspondence between Pascal and Fermat in the
summer of 1654, marking the beginning of a new era for the calculus of chances,
punctuated by three eternal masterpieces, Bernoulli's Ars conjectandi, Moivre's
Doctrine of Chances, and Laplace's Th�eorie analytique. But we limit ourselves
here just to dice games and, to stay focused, just to problem of points, posed
in its general Ovidian form: given n dice with f faces, calculate the chances of
obtaining a sum of points equal to s.

Pascal and Fermat dealt of course with problems of dice, but there are no writ-
ten traces of their dealing with the problem of points. On the other hand, both
gave satisfactory answers to the problem of division: how to divide the stake if the
players stop playing. A problem whose origin, like that of the problem of points,
goes back very far, but that we do not consider here, for lack of space. We also
know that Pascal, Fermat, Leibniz and others developed the theory of combina-
tions in a decisive way in the West. This theory remained the main method for
calculating chances before analytic theory arrived in the 18th century, thanks to
Moivre, Lagrange and Laplace. In large measure, it still remains the main method.

To our knowledge, the �rst printed trace of the problem of points in the new
calculus of chances is found in Christiaan Huygens's treatise [1657], which intro-
duces the calculus of dice as follows:

As far as the dice are concerned, we can propose the following questions: with one die,
in how many throws should we risk throwing the six or some other point? Similarly in how
many throws should we try to throw two sixes with two dice or three sixes with three dice?
And many other similar questions.

To solve them, here is what must be considered. First with one die there are six di�erent
outcomes, each of which can appear equally easily. I assume that the die has the perfect
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10 MARIE-FRANCE AND BERNARD BRU

shape of a cube. Then, with two dice there are 36 di�erent outcomes, each of which similarly
can be obtained equally easily, for in conjunction with each of the outcomes for one die, each
of the six outcomes of the other die can happen at the same time, and six times 6 outcomes
makes 36 outcomes. Similarly, with three dice there are 216 di�erent outcomes, because in
conjunction with each of the 36 outcomes of two dice, each of the six outcomes of the third
can happen, and six times 36 outcomes makes 216 outcomes. It is clear, in the same way,
that with four dice there are six times 216 outcomes, that is to say 1296 outcomes, and that
one can thus further calculate any throw of dice, always assuming for an additional die six
times as many outcomes.

Here Huygens makes use only of the multiplication rule, already put to use
in De vetula and by all the authors who have since addressed this question, not
to mention those who used it before the 13th century. Huygens next deals with
the problem of points for two and three dice, but does not go beyond that. His
contribution is elsewhere. In fact, Huygens follows Pascal and the scholastic tra-
dition on the hope of gain, formalizing the notion of expectation, whose central
role in the theory we know, but in order to stay within the limits of the problem
of points, we do not dwell on this.

3. JACOB BERNOULLI

The �rst important contribution to the problem of points, which really brought
in a new idea that could deal in principle with any number of dice with any number
of faces, is due to Jacob Bernoulli in his commentary on Huygens's treatise, which
forms the �rst part of Ars conjectandi. We do not know the date of this text, which
is certainly between 1685 and 1705. On the other hand, we known that it was not
read outside the Bernoulli family until after the publication of Ars conjectandi

in September 1713, that is to say after the �rst contributions of Montmort and
Moivre, about which we will say more later.

As mentioned above, Jacob Bernoulli starts by counting the pointures and the
chances in the case of 4 dice. But he then proposes a method that is both clear and
easy, summarized in a table that allows the calculation of the chances of points
in general, step by step. Bernoulli does not tell the principle of his method, the
reader (especially his brother Johann) being supposed to �nd it for himself if he
can. This principle is very simple and very general, as we will see.

To simplify the presentation, we consider n six-sided dice and we assume that
we have succeeded in calculating the numbers of chances for all the points in
this case (one can suppose that n = 1 or 2; this does not change the reasoning).
Bernoulli proposes to show how we deduce from this the numbers of chances for
the points for n+ 1 dice.

For n dice, the points vary from n to 6n. Let their respective numbers of chances
be ck, for n ≤ k ≤ 6n, and to make the formulas simpler to write, set ck = 0 for
all other integer values of k. Let us throw an extra die and try to evaluate the
number of chances Ck for the sum of the faces of the n + 1 dice to be equal to
k. There are six possibilities: the additional die falls 1, 2, .. . . . , 6. If it falls i, the
number of chances for the sum of the faces of the n + 1 dice to be equal to k is
equal to ck−i. Whence Bernoulli's formula:

(c) Ck =
6∑

i=1

ck−i

Formula (c) is what we now call a convolution formula. Suitably generalized, it
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DICE GAMES 11

allows us to calculate the probability law of a sum of independent random variables
in absolute generality. But Bernoulli does not know this and he prefers to adopt
an arrangement in a table starting from n = 1 and going step by step as far as
we want.

A single die's chances are all equal to 1; we represent this with a line of 1s:

1 1 1 1 1 1

Then we copy the same line �ve times, shifting it each time one place to the right,
and we add the columns thus constituted. We obtain, by formula (c), the line of
chances for the points of two dice:

1 2 3 4 5 6 5 4 3 2 1

Then we repeat with this new line what we had done previously. That is, we write
the line �ve times, shifting each time one unit to the right, and then we add the
columns. According to the same formula (c), we obtain the chances of the points
for three dice, those of De vetula. Let us follow the algorithm for 4 dice. Starting
with the chances given by De vetula for 3 dice, we form the following table:

1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1
1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1

1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1
1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1

1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1
1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1

Adding the columns gives, by formula (c), the sequence of chances for 4 dice:

1 4 10 20 35 56 80 104 125 140 146 140 125 104 80 56 35 20 10 4 1

We can continue this way inde�nitely. Bernoulli stopped with six dice to show his
merit without excess of zeal. One had �nally passed De vetula. It had taken 450
years or so.

Bernoulli's algorithm applies without change to dice with an arbitrary number
of faces, but it does not give a complete formula for relatively large numbers of
dice. Even if the step-by-step calculation is sure to give the answer in the end, you
will be hard pressed to carry it out without error in a reasonable time when the
value of n is, say, 10. And what if n = 100 or 1000? Nevertheless, the simplicity
and elegance of the algorithm could not have failed to attract the attention of
Bernoulli's nephew, Nicolas I Bernoulli, the �rst mathematician to have access to
the manuscript of Ars conjectandi, when writing his famous thesis on law [1709].
We may suppose that it helped attract young Nicolas to the doctrine of chances,
of which he became one of the best specialists. It is also possible that he informed
Montmort quite early of his uncle's algorithm, but we have no proof of this.

4. PIERRE R�EMOND DE MONTMORT

At the beginning of the 18th century, all the scholars of Europe knew that the
great Jacob Bernoulli had written a fundamental work on the art of conjecturing.
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If one of the top mathematicians of Europe, one of the masters of the new di�er-
ential and integral calculus, had been interested in the theory of chance and its
applications to civil, moral and economic a�airs, this was a serious matter that
must not be allowed to drop. So while waiting for the repeatedly delayed publica-
tion of Bernoulli's great treatise, several hastened to mark their territory in a �eld
still virgin or nearly so. This was the case with Pierre R�emond de Montmort, who
after brie�y being a canon in the chapter of Notre Dame of Paris, married and
was now devoting himself to the science of numbers in his castle of Montmort in
Champagne. Like Father Prestet, he was from Malebranche's entourage�a man of
the world and a scholar. His prefaces are remarkably written. Montmort intended
to write a history of mathematics, which would have been the �rst in the West.
He was well along in his undertaking when death overtook him.

Montmort was also one of the �rst Western �combinatorists�, along with Nicolas
Bernoulli and Abraham de Moivre. He had that rare gift of counting con�gurations
that seem impossible to disentangle. As he con�ded to Nicolas Bernoulli, you must
have a special talent for it.

It seems to me that these demonstrations are not like demonstrations in geometry.
Those touching on numbers and combinations are in�nitely more di�cult. You can
have them very clearly in mind without being able to put them on paper.

In 1708, Montmort published under cover of anonymity a remarkable Essay

d'analyse sur les jeux de hazard (Essay analyzing games of chance).4 After Huy-
gens's treatise, it was the �rst published work on the new calculus of chances.
In the introduction, the author informs us that many of his friends �had long
urged him to try to see if Algebra could not manage to determine the Banker's
advantage in the game of Pharaon.� Informed about the potential work of Jacob
Bernoulli, he took up the question again and had the good fortune to solve it and
several others of the same kind �or even more di�cult�. Montmort did not stop
there. Far from the skepticism of the pseudo-Ovid or Leibniz, he made himself the
advocate of a doctrine of probabilities applied to �the things of life,� the tones of
which resembled those (yet to appear) of Jacob Bernoulli, or even of Condorcet
a century later:

We cannot know the future, but in Games of chance, and often in other things of
life, we can always know exactly how much more likely a certain thing is to happen
in one way rather than in any other! And since these are the limits of our knowledge,
we should at least try to reach them.

As for the problem of points, Montmort contented himself with giving a table of
chances of the points in the case of 2 to 9 dice, without any indication of methods.
The complexity of the calculation for more than 5 dice suggests, however, that
the scholar in Champagne had a valid formula for all cases, or at least a simple
algorithm, even though he said nothing about it. He did not publish his formula
and his demonstration until in the second edition of the Essay, in 1713. Meanwhile,
a mathematician of the �rst rank, Abraham de Moivre, a native Huguenot of
Vitry-le-Fran�cois exiled in London, published the formula in his memoir [1711],
the �rst version, in Latin, of his great treatise The Doctrine of Chances, which

4Translator's note: Montomort's name did not appear in either of the book's two editions;
see [20], page 287. But while being prudent with respect to political and ecclesiastical author-
ity, Montmort was proud of his work and made sure his authorship was well known among
mathematicians. Newton was among those to whom he sent copies; see [6], page 68.
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DICE GAMES 13

would have three English editions, continually supplemented and clari�ed, in 1718,
1738 and 1756. These alternating publications did not fail to arouse polemics on
the true paternity of the formula and its combinatorial demonstration, which
Moivre never published, but which could have di�ered little from Montmort's.

Without entering into too many details, we must therefore examine this demon-
stration, which is not without interest insofar as it makes use of two of the most
famous combinatorial formulas, apparently used here for the �rst time in their
full generality: the formula for combinations with repetition and the sieve for-
mula. We follow as closely as possible the plan of demonstration in the second
edition of Montmort's Essay, but not its form, which uses an arithmetic triangle
without enough notation to treat the generality of the proposition in question.
This is a di�culty encountered in all combinatorial demonstrations of the 18th
century (and earlier centuries), where you treat the case of small values of the
variables and pass to the general case informally, �by induction�, for lack of no-
tation adapted to a real proof. For ease of reading, we have chosen here a middle
way. We follow Montmort's plan with modernized notation.

In the general case, we have n dice with f faces. To simplify the formulas a
little, following a tradition that goes back at least to Moivre [1711, pages 220�221;
1718, page 17 of the �rst edition, pages 35�36 of the second edition, and pages
39�40 of the third edition], we assume that the faces are numbered from 0 to f−1.
This does not change the chances, but the values of the points are diminished by
n. We seek the number of chances that the sum of the faces of the f dice is equal
to s, for s between 0 and n(f − 1).

Write xi for the result of the ith die, for 1 ≤ i ≤ n. So it is a matter of �nding
the number of integer solutions of equation

(m) x1 + x2 + · · ·+ xn = s

such that 0 ≤ xi ≤ f − 1 for all i.
First assume that s < f .
In the case being considered, each of the variables xi satisfying equation (m) is

necessarily less than or equal to s, and therefore strictly smaller than f . Hence the
number of chances of obtaining the sum s is equal to the number of nonnegative
integer solutions of equation (m).

We have already encountered this problem. The answer is given by the formula
of combinations with repetition of s from n things, that is to say:5

(0) Css+n−1

Suppose now that f ≤ s < 2f .
In this case, there may be solutions of equation (m) containing variables greater

than or equal to f , which cannot therefore correspond to the faces of the dice that
we are considering (which are numbered from 0 to f−1). So we must exclude such
solutions from the count (0) made previously. Since x1 + x2 + · · ·+ xn = s < 2f ,

5Translator's note for readers accustomed to other notations:

Ckn =
n!

k!(n− k)!
.
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14 MARIE-FRANCE AND BERNARD BRU

no more than one of the variables xi can be greater than or equal to f . Say that
it is the �rst. Then x1 = f + t1, with 0 ≤ t1 < f , and consequently

t1 + x2 + · · ·+ xn = s− f,

all the variables being nonnegative integers and strictly less than f . The number
of such solutions is obtained from the preceding formula by replacing s with s−f :
Cs−fs−f+n−1. Since there are n possibilities for the variable exceeding f , the number
of chances of the point s when f ≤ s < 2f is:

(1) Css+n−1 − nC
s−f
s−f+n−1.

Next suppose that 2f ≤ s < 3f , and consider again equation (m). Now it
is obvious that at most two of the variables can exceed f . Suppose the �rst
two exceed f . In this case, the subtraction in (1) removes twice the number of
corresponding solutions�i.e., the number of solutions of equation (m) satisfying
x1 ≥ f , x2 ≥ f , and 0 ≤ xk ≤ f − 1 for k di�erent from 1 and 2. To compensate
for this excessive subtraction, we add this number back. But this number is also
given by formula (0) if we set x1 = f + t1 and x2 = f + t2 with 0 ≤ ti < f for
i = 1 and 2. We have

t1 + t2 + x3 + · · ·+ xn = s− 2f,

all variables being integers and strictly less than f . The number of these solutions
is given by Cs−2fs−2f+n−1. There are C2n choices of two indices from n. So the number
of chances for s when 2f ≤ s < 3f is equal to

(2) Css+n−1 − nC
s−f
s−f+n−1 + C

2
nC

s−2f
s−2f+n−1.

Now if 3f ≤ s < 4f we should subtract as before the solutions containing three
variables greater than f . The number of chances for s in this case is obviously

(3) Css+n−1 − nC
s−f
s−f+n−1 + C

2
nC

s−2f
s−2f+n−1 − C

3
nC

s−3f
s−3f+n−1.

And so on. If kf ≤ s < (k + 1)f , the number of chances for the sum s will be

(k) Css+n−1 − nC
s−f
s−f+n−1 + C

2
nC

s−2f
s−2f+n−1 − · · ·+ (−1)kCknC

s−kf
s−kf+n−1

for every integer k strictly less than n− 1.
Here is what Montmort, Moivre, and the others preferred to write: the number

of chances for the point s with n dice that have f faces starting with 0 is equal to

(s+ 1)(s+ 2) · · · (s+ n− 1)

(n− 1)!
− n(s− f + 1) · · · (s− f + n− 1)

(n− 1)!

+
n(n− 1)

2

(s− 2f + 1) · · · (s− 2f + n− 1)

(n− 1)!
− · · · ,

where the alternating sum stops as soon as one of the factors becomes zero or
negative.
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DICE GAMES 15

If we want probabilities instead of chances, we must divide this expression by
the total number of chances for n dice with f faces, that is to say fn. This gives

(s+ 1)(s+ 2) · · · (s+ n− 1)

(n− 1)!fn
− n(s− f + 1) · · · (s− f + n− 1)

(n− 1)!fn

+
n(n− 1)

2

(s− 2f + 1) · · · (s− 2f + n− 1)

(n− 1)!fn
− · · · ,

again stopping the sum as soon as one of the factors becomes zero or negative.
The general problem of points is thus completely solved. Except that as soon

as the number of dice exceeds 10, the calculations, involving n! and up to n
alternating terms, become impractical. This problem stumped mathematicians
for a long time. It was not until the beginning of the 1810s that Laplace resolved
it in a masterful way.6

5. LAPLACE

In 1812, in the Th�eorie analytique des probabilit�es (Book II, �18), Laplace gives
the �rst known approximation to the Montmort-Moivre formula. Let us state it in
the case where f = 2b+1, so that the mean point is equal to nb. The probability
of a sum s = nb+ k is approximately equal to

(dvl)

√
6

πn(f2 − 1)
exp

(
− 6k2

n(f2 − 1)

)
,

which traces De vetula's bell of chances as closely as possible.
We will not give details in this chapter of the calculations leading to (dvl).7

But let us brie�y consider the case where the number of faces on the dice becomes
in�nitely large, the number of dice remaining reasonable. This seemingly esoteric
problem has a very great importance in the history of the probabilistic theory of
errors, and it will not detain us for very long.

The �rst mathematician to consider this case was Thomas Simpson, a disciple
of Moivre and soon his main competitor.

We can picture a die with f sides as a lottery wheel with f equal sectors or
more simply as the segment [0, 1] divided into f equal parts, the faces of the die,
which are supposed to have all the same chances of being selected. If f becomes
in�nitely large, the faces of length 1/f become in�nitely small and equal to dx. A
face is located by the sum of in�nitely many such intervals dx, taken as a unit, or
by a number x between 0 and 1. We can thus see the choice of one of this in�nity
of faces as the random choice of a number x between 0 and 1, or, as was generally
said in the second half of the 18th century, as an �inevitable error� whose �law of
facility� is constant over the interval (0, 1).

The sum s of the faces of the n dice becomes in�nitely large of the same order
as f . So we set 1/f = dx and s/f = x, for x positive and less than n. The above

6E�orts by Laplace and others before 1810 are discussed by the Brus in later chapters of
their book and by Anders Hald in A History of Probability & Statistics and Their Applications
before 1750 [20].

7Laplace's work on this topic is discussed in great detail in other chapters of the authors'
book.
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16 MARIE-FRANCE AND BERNARD BRU

formula for the probabilities becomes

(SL)
dx

(n− 1)!

[
xn−1 − n(x− 1)n−1 +

n(n− 1)

2
(x− 2)n−1

− n(n− 1)(n− 2)

2 · 3
(x− 3)n−1 + · · ·

]
,

stopped as soon as one of the factors becomes zero.
The formula (SL) gives the �chance� that the sum of the n errors is between

x and x + dx. Without the dx, it represents, in current terminology, the density
of the sum of n independent random variables following the same uniform law on
(0, 1). It is the �facility� of the sum of n equally possible errors between 0 and 1.

We can plot the curves of these facilities for small values of n. They very quickly
take the form of the Laplacian or Gaussian bells.

For n = 2, the curve of facility is an isosceles triangle placed on the x-axis.
For n = 3, it is a bell formed of three pieces of parabola, and if we compare the
curve corresponding to n = 4 with the normal law with mean 2 and variance 1/3
(mean and variance of the sum of 4 independent variables uniformly distributed
on (0, 1)), we observe an almost perfect superposition, which very quickly be-
comes an identity for larger values of n. This surprising result is a special case
of the fundamental theorem proven by Laplace in 1810. The law of the sum of
n independent variables with nearly any density is very close to a normal distri-
bution with the same mean and variance, and this theorem holds just as well for
De vetula's dice with a �nite number of faces, as we saw above. Since the normal
law has been tabulated since the beginning of the 19th century, we have thus the
numerical solution of all possible and imaginable problems of points, and we stop
there.

To conclude, let us return to the formula (dvl) above. It says that a complicated
combinatorial alternating sum is nearly proportional to a simple exponential. Such
an approximation was not at all obvious a priori. It took decades for it to appear
as one of the basic formulas in the probability calculus. It is well known that it �rst
emerged in the particular case of two-sided dice, coins marked 0 and 1. The sum s
of the faces is then simply the number of 1s obtained (or the number of heads if 1
corresponds to heads and 0 to tails). It is no wonder that this particular case was
treated �rst. It is one of the most remarkable results obtained by Moivre in 1733,
published at the end of the second edition of his Doctrine of Chances in 1738
(pages 243 et seq. of the third edition). Let us recall his result in contemporary
notation.

Suppose n = 2m symmetrical coins marked 0 and 1 are thrown together. We
denote by s the sum of the faces obtained, or the number of 1s. Since at least
Pascal or Jacob Bernoulli it has been known that exactly Cs

n of the 2n possible
chances have the number of 1s equal to s. So Laplace's approximation formula
follows directly in this case from Stirling's formula [e. g. Borel [1909], No. 21]:

(ms) Cs2m
1

22m
≈ 1√

πm
exp

(
−(s−m)2

m

)
From this famous formula was born the �Gaussian curve�, the analytical �gure
that symbolizes De vetula's table of cadentiae. Laplace went from formula (ms)
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DICE GAMES 17

to formula (dvl) in his attempt to solve the problem of points for dice with any
number f of faces, a problem that stumped him for almost 40 years and whose
solution also gave him one of the main keys for applying his theory of probabilities
to natural philosophy.
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