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ABSTRACT

In 2001, Vladimir Vovk and I demonstrated how game
theory can replace measure theory as a foundation for clas-
sical probability theory, discrete and continuous (Probabil-
ity and Finance: Its Only a Game!, Wiley 2001). In the
game-theoretic framework, classical probability theorems
are proven by betting strategies that make a player rich
without risking bankruptcy if the theorem’s prediction fails.
These strategies can be specified explicitly, and so the theory
has a constructive flavor that lends itself to applications in
economics and statistics.

Defensive forecasting is one of the most interesting
of these applications. It identifies a comprehensive betting
strategy, which becomes rich if the probabilities fail in a
relevant way (say by being uncalibrated or having poor
resolution), and it chooses probabilities to defeat this com-
prehensive betting strategy. The fact that this is possible
gives us new insight into the very meaning of probability.

1 INTRODUCTION

Cournot’s principle says that an event of small or zero
probability singled out in advance will not happen. From
the turn of the twentieth century through the 1950s, many
mathematicians, including Aleksandr Chuprov,Émile Borel,
Maurice Fŕechet, Paul Ĺevy, and Andrei Kolmogorov, saw
this principle as fundamental to the application and meaning
of probability. In their view, a probability model gains
empirical content only when it rules out an event by assigning
it small or zero probability.

In his doctoral dissertation, published in 1939,
Jean Ville showed that Cournot’s principle can be
given a game-theoretic interpretation.Shafer and Vovk
(2001), (<www.probabilityandfinance.com> ) ex-
tend Ville’s game-theoretic approach to cases where suc-
cessive forecasts fall short of a full probability distribution
for the quantities forecast.

2 THE ORIGINS OF COURNOT’S PRINCIPLE

An event with very small probability ismorally impossible;
it will not happen. Equivalently, an event with very high
probability ismorally certain; it will happen. This princi-
ple was first formulated within mathematical probability by
Jacob Bernoulli. In hisArs Conjectandi, published posthu-
mously in 1713, Bernoulli proved that in a sufficiently long
sequence of independent trials of an event, there is a very
high probability that the frequency with which the event
happens will be close to its probability. Bernoulli explained
that we can treat the very high probability as moral certainty
and so use the frequency of the event as an estimate of its
probability.

Augustin Cournot, a mathematician now remembered
as an economist and a philosopher of science (Martin 1996,
Martin 1998), gave the discussion a nineteenth-century cast
in his 1843 treatise on probability (Cournot 1843). Because
he was familiar with geometric probability, Cournot could
talk about probabilities that are vanishingly small. He
brought physics to the foreground. It may be mathematically
possible, he argued, for a heavy cone to stand in equilibrium
on its vertex, but it is physically impossible. The event’s
probability is vanishingly small. Similarly, it is physically
impossible for the frequency of an event in a long sequence
of trials to differ substantially from the event’s probability
(Cournot 1843, pp. 57 and 106).

At the turn of the twentieth century, it was a common-
place among statisticians that one must decide what level
of probability will count as practical certainty in order to
apply probability theory. We find this stated explicitly in
1901, for example, in the articles by Georg Bohlmann and
Ladislaus von Bortkiewicz in the section on probability in
the Encyklop̈adie der mathematischen Wissenschaften(von
Bortkiewicz 1901, p. 825) (Bohlmann 1901, p. 861). Alek-
sandr Chuprov, professor of statistics in Petersburg, was
the champion of Cournot’s principle in Russia. He called
it Cournot’s lemma (Chuprov 1910, p. 167) and declared
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it a basic principle of the logic of the probable (Sheynin
1996, pp. 95–96).

Saying that an event of very small or vanishingly small
probability will not happen is one thing. Saying that prob-
ability theory gains empirical meaning only by ruling out
the happening of such events is another. Cournot may have
been the first to make this second assertion:

. . .The physically impossible event is
therefore the one that has infinitely
small probability, and only this remark
gives substance—objective and phenom-
enal value—to the theory of mathematical
probability (Cournot 1843, p. 78).

Paul Ĺevy, a French mathematician who began writing
on probability in the 1920s, stands out for the clarity of
his articulation of the thesis that Cournot’s principle is the
only way of connecting a probabilistic theory with the world
outside mathematics (Lévy 1925). Lévy’s views were widely
shared in France. In the 1940s,Émile Borel called Cournot’s
principle first “the only law of chance” (la loi unique du
hasard) (Borel 1943, Borel 1950). Neither Ĺevy nor Borel
used the name “Cournot’s principle,” which was coined by
Maurice Fŕechet in 1949. Fŕechet’s inspiration was Oskar
Anderson, who had talked about the Cournotsche Lemma
(Cournot’s lemma) and the Cournotsche Brücke (Cournot’s
bridge) (Anderson 1935, Anderson 1949). Anderson was
following his teacher Chuprov in the use of “lemma.” Fréchet
felt that “lemma,” like “theorem,” should be reserved for
purely mathematical results and so suggested “principe de
Cournot.” Fŕechet’s coinage was used in the 1950s in French,
German, and English (de Finetti 1951, von Hirsch 1954,
Richter 1954, Richter 1956).

3 VILLE’S THEOREM

Vovk and I (Shafer and Vovk 2001) use Cournot’s principle
in a game-theoretic form: a strategy for placing bets without
risking bankruptcy will not multiply the bettor’s capital by
a large or infinite factor. In the case where the bettor can
buy or sell any random variable for its expected value, this
is equivalent to the classical form of the principle; Jean
Ville demonstrated the equivalence in 1939 (Ville 1939).

Consider a sequenceY1,Y2, . . . of binary random vari-
ables with a joint probability distribution P. Suppose, for
simplicity, that P assigns every finite sequencey1, . . . ,yn

of 0s and 1s positive probability, so that its conditional
probabilities forYn given values of the preceding variables
are always unambiguously defined. Following Jean Ville
(Ville 1939), consider a gambler who begins with $1 and is
allowed to bet as he pleases on each round, provided that
he does not risk bankruptcy. We can formalize this with
the following protocol, where betting onYn is represented

as buying some numbersn (possibly zero or negative) of
tickets that cost $P{Yn = 1|Y1 = y1, . . . ,Yn−1 = yn−1} and
pay $Yn.

BINARY PROBABILITY PROTOCOL

Players: Reality, Skeptic
Protocol:

K0 := 1.
FOR n = 1,2, . . .:

Skeptic announcessn ∈ R.
Reality announcesyn ∈ {0,1}.
Kn := Kn−1

+sn(yn−P{Yn = 1|Y1 = y1, . . . ,Yn−1 = yn−1}).
Restriction on Skeptic: Skeptic must choose thesn so
that his capital is always nonnegative (Kn ≥ 0 for all n) no
matter how Reality moves.

This is a perfect-information sequential protocol; moves
are made in the order listed, and each player sees the other
player’s moves as they are made. The sequenceK0,K1, . . .
is Skeptic’s capital process.

Ville showed that Skeptic’s getting rich in this protocol
is equivalent to an event of small probability happening, in
the following sense:

1. When Skeptic follows a measurable strategy (a rule
that givessn as a function ofy1, . . . ,yn−1),

P{sup
n

Kn ≥
1
ε
} ≤ ε (1)

for everyε > 0. (This is because the capital process
K0,K1, . . . is a non-negative martingale; Equa-
tion (1) is sometimes calledDoob’s inequality.)

2. If A is a measurable subset of{0,1}∞ with P(A)≤
ε, then Skeptic has a measurable strategy that
guarantees

liminf
n→∞

Kn ≥
1
ε

whenever(y1,y2, . . .) ∈ A.

We can summarize these results by saying that Skeptic’s
being able to multiply his capital by a factor of 1/ε or more
is equivalent to the happening of an event with probability
ε or less.

Ville’s work was motivated by von Mises’s notion of
a collective (von Mises 1919, von Mises 1928, von Mises
1931). Von Mises had argued that a sequencey1,y2, . . . of
0s and 1s should be considered random if no subsequence
with a different frequency of 1s can be picked out by a
gambler to whom theys are presented sequentially; this
condition, von Mises felt, would keep the gambler from
getting rich by deciding when to bet. Ville showed that von
Mises’s condition is insufficient, inasmuch as it does not
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rule out the gambler’s getting rich by varying the direction
and amount to bet.

4 THE GAME-THEORETIC FRAMEWORK

Although the preceding explanation of Ville’s ideas was
limited to the binary case, Ville made it clear that these
ideas apply whenever conditional probabilities from a joint
probability distribution for a sequence of random variables
are used to make successive probability predictions. The
framework of (Shafer and Vovk 2001) generalizes the ideas
further. The generalization has three aspects:

• Instead of beginning with a probability measure
and using its conditional probabilities or expected
values as prices on each round, we allow another
player, Forecaster, to set the prices as play proceeds.
This makes the framework “prequential” (Dawid
1984); there is no need to specify what the price
on the nth round would be had Reality moved
differently on earlier rounds.

• When convenient, we make explicit additional in-
formation, sayxn, that Reality provides to Fore-
caster and Skeptic before they make theirnth moves.

• We allow the story to be multi-dimensional, with
Reality making several moves and Forecaster pric-
ing them all.

A convenient level of generality for the present discus-
sion is provided by the following protocol, whereRk is
k-dimensional Euclidean space,Y is a subset ofRk, andX
is an arbitrary set.

L INEAR FORECASTING PROTOCOL

Players: Reality, Forecaster, Skeptic
Protocol:

K0 := 1.
FOR n = 1,2, . . . ,N:

Reality announcesxn ∈ X.
Forecaster announcesfn ∈ Rk.
Skeptic announcessn ∈ Rk.
Reality announcesyn ∈ Y.
Kn := Kn−1 +sn · (yn− fn).

Restriction on Skeptic: Skeptic must choose thesn so
that his capital is always nonnegative (Kn ≥ 0 for all n) no
matter how the other players move.

Here sn · (yn− fn) is the dot product of thek-dimensional
vectorssn and yn− fn. Notice also that play stops on the
Nth round rather than continuing indefinitely. This is a
convenient assumption in this section, where we emphasize
the finitary picture; we will return to the infinitary picture
later.

The linear forecasting protocol covers many prediction
problems considered in statistics (wherex and y are often

called independentand dependentvariables, respectively)
and machine learning (wherex is called theobject and y
the label) (Vovk, Gammerman, and Shafer 2005, Hastie,
Tibshirani, and Friedman 2001, Vapnik 1996). Market
games can be included by takingfn to be a vector of
opening prices andyn the corresponding vector of closing
prices for thenth trading period.

A strategy for Skeptic in the linear forecasting pro-
tocol is a rule that gives each of his movessn as a
function of the preceding moves by Reality and Fore-
caster,(x1, f1,y1), . . . ,(xn−1, fn−1,yn−1),xn, fn. A strategy
for Forecaster is a rule that gives each of his movesfn as
a function of the preceding moves by Reality and Skeptic,
(x1,s1,y1), . . . ,(xn−1,sn−1,yn−1),xn. One way of prescribing
a strategy for Forecaster is to choose a probability distribu-
tion for(x1,y1),(x2,y2), . . . and setfn equal to the conditional
expected value ofyn given (x1,y1), . . . ,(xn−1,yn−1),xn. We
will look at other interesting strategies for Forecaster in§8.

How can one express confidence in Forecaster? The
natural way is to assert Cournot’s principle: say that a legal
strategy for Skeptic (one that avoidsKn < 0 no matter how
the other players move) will not multiply Skeptic’s initial
capital by a large factor.

Once we adopt Cournot’s principle in this form, it
is natural to scale the implications of our confidence in
Forecaster the same way we do in classical probability.
This means treating an event that happens only when a
specified legal strategy multiplies the capital by 1/ε as no
more likely than an event with probabilityε.

As in classical probability, we can combine Cournot’s
principle with a form of Bernoulli’s theorem to obtain a
statement about relative frequency in a long sequence of
events. In a sufficiently long sequence of events with upper
probability 0.1 or less, for example, it is morally certain that
no more than about 10% of the events will happen (Shafer
and Vovk 2002, §5.3). This is a martingale-type result;
rather than insist that the events be independent in some
sense, we assume that the upper probability for each event
is calculated at the point in the game where the previous
event is settled.

5 EXTENDING THE CLASSICAL LIMIT
THEOREMS

One of the main contributions of Shafer & Vovk (Shafer
and Vovk 2001) was to show that game theory can replace
measure theory as a foundation for classical probability.

We showed in particular that classical limit theorems,
especially the strong law of large numbers and the law of
the iterated logarithm, can be proven constructively within
a purely game-theoretic framework. From Ville’s work,
we know that for any event with probability zero, there is
a strategy for Skeptic that avoids bankruptcy for sure and
makes him infinitely rich if the event fails. But constructing
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the strategy is another matter. In the case of the events of
probability zero associated with the classical theorems, we
did construct the requisite strategies; they are computable
and continuous.

We provided similar constructions for classical results
that do not require an infinite number of rounds of play
to be meaningful: the weak law of large numbers, finitary
versions of the law of the iterated logarithm, and the central
limit theorem.

6 IMPLICATIONS FOR MARKET PRICES

Organized exchanges, in which a buyer or seller can always
find a ready price for a particular commodity or security,
are forecasting games. So we can ask whether Cournot’s
principle holds in such exchanges, and we can consider the
implications of its holding. It is often said that in an efficient
market, an investor cannot make a lot of money without
taking undue risk. Cournot’s principle makes this precise
by saying that he will not make a lot of money without
risking bankruptcy; he starts with a certain initial capital,
and on each round of trading he risks at most a portion of
his current capital. This principle alone can explain certain
stylized facts about prices that are often explained using
stochasticity.

6.1 The
√

dt effect

Consider first the stylized fact that changes in market prices
over an interval of time of lengthdt scale as

√
dt. In a

securities market where shares are traded 252 days a year,
for example, the typical change in price of a share from
one year to the next is

√
252, or about 16, times as large

as the typical change from one day to the next. There is a
standard way of explaining this. We begin by assuming that
price changes are stochastic, and we argue that successive
changes must be uncorrelated; otherwise someone who knew
the correlation (or learned it by observation) could devise a
trading strategy with positive expected value. Uncorrelated-
ness of 252 successive daily price changes implies that their
sum, the annual price change, has variance 252 times as
large and hence standard deviation, or typical value,

√
252

times as large. This is a simple argument, but stochastic
ideas intervene in two places, first when price changes are
assumed to be stochastic, and then when market efficiency
is interpreted as the absence of a trading strategy with pos-
itive expected value. As I now explain, we can replace this
stochastic argument with a purely game-theoretic argument,
in which Cournot’s principle expresses the assumption of
market efficiency.

For simplicity, consider the following protocol, which
describes a market in shares of a corporation. Investor plays
the role of Skeptic; he tries to make money, and Cournot’s
principle says he cannot get very rich following the rules,

which do not permit him to risk bankruptcy. Market plays
the roles of Forecaster (by giving opening prices) and Reality
(by giving closing prices). For simplicity, we suppose that
today’s opening price is yesterday’s closing price, so that
Market gives only one price each day, at the end of the
day. When Investor holdssn shares during dayn, he makes
sn(yn−yn−1), whereyn is the price at the end of dayn.

THE MARKET PROTOCOL

Players: Investor, Market
Protocol:

K0 := 1.
Market announcesy0 ∈ R.
FOR n = 1,2, . . . ,N:

Investor announcessn ∈ R.
Market announcesyn ∈ R.
Kn := Kn−1 +sn(yn−yn−1).

Restriction on Investor: Investor must choose thesn so
that his capital is always nonnegative (Kn ≥ 0 for all n) no
matter how Market moves.

For simplicity, we ignore the fact that the priceyn of a share
cannot be negative.

Since there is no stochastic assumption here, we cannot
appeal to the idea of the variance of a probability distribution
for price changes to explain what

√
dt scaling means. But

we can use √
1
N

N

∑
n=1

(yn−yn−1)2 (2)

as the typical daily change, and we can compare it to the
magnitude of the change we see over the whole game, say

max
0<n≤N

|yn−y0| (3)

The quantity (3) should have the same order of magnitude
as
√

N times the quantity (2). Equivalently, we should have

N

∑
n=1

(yn−yn−1)2 ∼ max
0<n≤N

(yn−y0)2, (4)

where∼ is understood to mean that the two quantities are
of the same order of magnitude.

Does Cournot’s principle give us any reason to think
that (4) should hold? Indeed it does. As it turns out, Investor
has a legal strategy (one avoiding bankruptcy) that makes a
lot of money if (4) is violated. Market (who here represents
all the other investors and speculators) wants to set prices
so that Investor will not make a lot money, and we shall see,
in §8 that he can more or less do so. So we may expect (4)
to hold.

The strategy that makes money if (4) is violated is an
average of two strategies, one a momentum strategy (holding
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more shares after the price goes up), the other a contrarian
strategy (holding more shares after the price goes down).

1. The momentum strategy is based on the assumption
that Investor can count on∑(yn−yn−1)2 ≤ E and
max(yn− y0)2 ≥ D, where D and E are known
constants. On this assumption, the strategy is legal
and turns $1 into $D/E or more for sure.

2. The contrarian strategy is based on the assumption
that Investor can count on∑(yn−yn−1)2 ≥ E and
max(yn− y0)2 ≤ D, where D and E are known
constants. On this assumption, the strategy is legal
and turns $1 into $E/D or more for sure.

If the assumptions about∑(yn−yn−1)2 and max(yn−y0)2

fail, then the strategy fails to make money, but Investor can
still avoid bankruptcy. For details, see (Vovk and Shafer
2003).

6.2 The game-theoretic CAPM

The Capital Asset Pricing Model (CAPM), popular in finance
theory for almost forty years, assumes that a firm whose
shares are traded in a securities market has a stable level
of risk relative to the market as a whole. The risk for a
securitys is defined in terms of a probability model for the
returns of all the securities in the market; it is the theoretical
regression coefficient

βs =
Cov(Rs,Rm)

Var(Rm)
, (5)

whereRs is a random variable whose realizations ares’s
returns, andRm is a random variable whose realizations
are a market index’s returns.(Here “return” means simple
return; R= (pn+1− pn)/pn, where pn is the the price of
the share (or the level of the market index) at timen. All
expected values, variances, and covariances are with respect
to probabilities conditional on information known at time
n.) The CAPM says that

E(Rs) = r +βs(E(Rm)− r), (6)

wherer is rate of interest on government debt, assumed to
be constant (Copeland and Weston 1988, p. 197). Because
E(Rm)− r is usually positive, this equation suggests that
securities with higherβ have higher average returns. The
equation has found only weak empirical confirmation, but it
continues to be popular because it suggests plausible ways
of analyzing decision problems faced by financial managers.

As it turns out, a purely game-theoretic argument based
on Cournot’s principle leads to an analogous equation involv-
ing only observed returns, with no reference to a probability

distribution. The game-theoretic equation is

rs∼ r ′+bs(rm− r ′), (7)

where

rs :=
1
N

N

∑
n=1

sn, rm :=
1
N

N

∑
n=1

mn,

and

bs := ∑N
n=1snmn

∑N
n=1m2

n
, r ′ := rm−

1
N

N

∑
n=1

m2
n,

sn and mn being the actual returns ofs and the market
index, respectively, over periodn. This is analogous to (6),
inasmuch asr ′ measures the performance of the market as
a whole, and the other quantities are empirical analogues
of the theoretical quantities in (6).

The interpretation of (7) is similar to the interpretation
of the game-theoretic version of

√
dt scaling, equation (4);

a speculator can make money to the extent it is violated.
Given the approximations in the derivation of (7), as well
as the existence of transaction costs and other market im-
perfections, we can expect the relation to hold only loosely,
but we can ask whether it is any looser in practice than the
empirical relations implied by CAPM. If not, then the very
approximate confirmation of CAPM that has been discerned
in data might be attributed to (7), leaving nothing that can
be interpreted as empirical justification for the stochastic
assumptions in CAPM. For details, see (Vovk and Shafer
2002).

7 THE IDEA OF A QUASI-UNIVERSAL TEST

If two events have very small probability, their union also
has reasonably small probability. The analogous idea in
game-theoretic probability is that of averaging strategies:
if one strategy for Skeptic makes him very rich without
risking bankruptcy if one event happens, and another makes
him very rich without risking bankruptcy if a second event
happens, then the average of the two strategies will make
him reasonably rich without risking bankruptcy if either of
the events happens. This leads us to the notion of a quasi-
universal strategy: we list the most important extreme events
that we want to rule out, and by averaging the strategies
that rule each out, we obtain a strategy that rules them all
out.

Leaving aside how this idea has been developed in
the past within measure-theoretic probability, let us con-
sider how it can be developed measure-theoretically in this
protocol of binary forecasting:
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BINARY PROBABILITY PROTOCOL WITH FORECASTER

AND OBJECTS

Players: Reality, Forecaster, Skeptic
Protocol:

K0 := 1.
FOR n = 1,2, . . .:

Reality announcesxn ∈ X.
Forecaster announcespn ∈ [0,1].
Skeptic announcessn ∈ R.
Reality announcesyn ∈ {0,1}.
Kn := Kn−1 +sn(yn− pn).

Restriction on Skeptic: Skeptic must choose thesn so
that his capital is always nonnegative (Kn ≥ 0 for all n) no
matter how the other players move.

In this protocol, where Forecaster gives a probabilitypn

on each round, taking into account the previous outcomes
y1, . . . ,yn−1 and auxiliary informationx1, . . . ,xn, we are
mainly interested in two aspects of the agreement between
the probabilitiespn and the outcomesyn:

Calibration. Whenever there are a large number of
rounds on whichpn is close to some fixed proba-
bility p∗, we want the frequency with whichyn = 1
on those rounds to be approximately equal top∗.

Resolution. We want this approximate equality between
frequency andp∗ to remain true when we consider
only rounds wherepn is close top∗ and alsoxn

is close to some fixed valuex∗ in the object space
X.

As it turns out (Vovk, Takemura, and Shafer 2005), we can
often average strategies that reject Forecaster’s performance
over a grid of values of(x∗, p∗) that are sufficiently dense
to capture all deviations of practical interest. This average
strategy, which is testing for calibration and resolution, will
not necessarily test for more subtle deviations byy1,y2, . . .
from the forecastsp1, p2, . . ., such as those associated with
the law of the iterated logarithm or Ville’s refutation of von
Mises’s theory, but these more subtle deviations may hold
little interest. So the average strategy can be regarded, for
practical purposes, as a universal test. To avoid confusion,
I call it a quasi-universal strategy.

8 DEFENSIVE FORECASTING

In cases where we have a quasi-universal strategy, a new
opportunity opens up for Forecaster. Forecaster will do well
enough if he can avoid rejection by that strategy. Formally,
he needs a winning strategy in a version of the game where
Skeptic is required to follow the quasi-universal strategy
but Reality is free to move as she pleases. Does Forecaster
have such a winning strategy? The surprising answer is
yes.

This is easiest to see in the case where the quasi-universal
strategy gives a move for thenth round that is continuous in
the forecastpn. As it happens, this is not an unreasonable
requirement. We can construct quasi-universal strategies for
calibration and resolution that are continuous in this respect,
and there is even a philosophical argument for ruling out any
discontinuous strategy for Skeptic: discontinuous functions
are not really computable (Brouwer 1918, Martin-Löf 1970).

As it turns out, it is easy to show that for any forecast-
continuous strategy for Skeptic there exists a strategy for
Forecaster that does not allow Skeptic’s capital to grow, re-
gardless of what Reality does. Let me repeat the simple proof
given in (Vovk, Nouretdinov, Takemura, and Shafer 2005,
Vovk, Takemura, and Shafer 2005). It begins by simplifying
so that Forecaster’s job seems to be even a little harder.
Instead of requiring that the entire forecast-continuous strat-
egy for Skeptic be announced at the beginning of the game,
we ask only that Skeptic announce his strategy for each
round before Forecaster’s move on that round. And we drop
the restriction that Skeptic avoid risk of bankruptcy. This
produces the following protocol:

BINARY FORECASTING AGAINST CONTINUOUS TESTS

Players: Reality, Forecaster, Skeptic
Protocol:

K0 := 1.
FOR n = 1,2, . . .:

Reality announcesxn ∈ X.
Skeptic announces continuousSn : [0,1]→ R.
Forecaster announcespn ∈ [0,1].
Reality announcesyn ∈ {0,1}.
Kn := Kn−1 +Sn(pn)(yn− pn).

HereSn is Skeptic’s strategy for thenth round; it gives
his move as a function of Forecaster’s not-yet-announced
move pn.

Theorem 1 Forecaster has a strategy that ensures
K0 ≥K1 ≥K2 ≥ ·· ·.

Proof BecauseSn is continuous, Forecaster can use the
following strategy:

• if the functionSn(p) takes the value 0, choosepn

so thatSn(pn) = 0;
• if Sn is always positive, takepn := 1;
• if Sn is always negative, takepn := 0.

This guarantees thatSn(pn)(yn− pn) ≤ 0, so thatKn ≤
Kn−1.

Some readers may question the philosophical rationale
for requiring thatSn be continuous. As it turns out, dropping
this requirement does not cost us much; Forecaster can still
win if we allow him to randomize (Vovk and Shafer 2005).
This means that instead of telling Reality his probabilitypn,
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Forecaster may give Reality only a probability distribution
Pn for pn, with the valuepn to be drawn fromPn out of
sight of Reality or perhaps after Reality has selectedyn.

A strategy for Forecaster is what one usually calls a
probability model; given the previous outcomesy1, . . . ,yn−1

and auxiliary informationx1, . . . ,xn, it gives a probability
pn for yn = 1. Such probabilities can be used in any
repetitive decision problem (Vovk 2005). So Theorem1’s
guarantee that they are valid, in the sense that they pass any
reasonable test of calibration and resolution, has immense
practical significance.

8.1 PHILOSOPHICAL IMPLICATIONS

Until the middle of the twentieth century, specialists in
mathematical probability generally assumed that any prob-
ability can be known, either a priori or by observation.
Those who understood probability as a measure of belief
did not question the presumption that one can know one’s
beliefs. Those who understood probability as relative fre-
quency assumed that one can observe frequencies. Those
who interpreted probability using Cournot’s principle did so
on the assumption that they would know the probabilities
they wanted to test; you would not check whether an event
of small probability happened unless you had conjectured
it had small probability.

The observations necessary for estimating a numerical
probability may be hard to come by. But at worst, Cournot
suggested, they could be made by a superior intelligence
who represents the limits of what humans can observe
(Martin 1996, pp. 146–150). Here Cournot was drawing an
analogy with the classical understanding of determinism.
Classical determinism required more than the future being
determined in some theological sense; it required that the
future be predictable by means of laws that can be used
by a human, or at least by a superior intelligence whose
powers of calculation and observation are human-like.

The presumption that probabilities be knowable leads
to the apprehension that some events may not have proba-
bilities. Perhaps there are three categories of events:

1. Those we can predict with certainty.
2. Those we can predict only probabilistically.
3. Those that we can predict neither with certainty

nor probabilistically.

Most probabilists did think that there are events in the third
category. Kolmogorov said so explicitly, and he did not speak
of them as events whose probabilities cannot be known; he
spoke of them as events that do not have probabilities
(Kolmogorov 1983, p. 1). John Maynard Keynes and R. A.
Fisher, each in his own way, also insisted that not every
event has a numerical probability (Keynes 1921, Keynes
1937, Fisher 1956).

Doob’s success in formalizing the concept of a probabil-
ity measure for an arbitrary stochastic process destabilized
this consensus. As I have already emphasized, there are
many cases where we cannot repeat an entire stochastic
process—cases where there is only one realization, one
time series. In these cases, the probability measure assigns
probabilities to many events that are not repeated. Having
no direct frequency interpretation, these probabilities cannot
be verified in any direct way. Because Doob did not appeal
to Cournots principle or provide any other guidance about
their meaning, his followers looked in other directions for
understanding. Many looked towards mechanisms, such as
well-balanced dice, that produce or at least simulate ran-
domness. As they saw it, phenomena must be produced
in some way. Deterministic phenomena are produced by
deterministic mechanisms, indeterministic phenomena by
chance mechanisms. The probabilities, even if unverifiable
and perhaps unknowable, are meaningful because they have
this generative task.

The growing importance of this way of seeing the world
is evidenced by a pivotal article published by Jerzy Neyman
in 1960 (Neyman 1960). According to Neyman, science
was moving into a period of dynamic indeterminism,

. . . characterized by the search for evo-
lutionary chance mechanisms capable of
explaining the various frequencies ob-
served in the development of phenomena
studied. The chance mechanism of car-
cinogenesis and the chance mechanism be-
hind the varying properties of the comets
in the Solar System exemplify the subjects
of dynamic indeterministic studies. One
might hazard the assertion that every seri-
ous contemporary study is a study of the
chance mechanism behind some phenom-
ena. The statistical and probabilistic tool
in such studies is the theory of stochastic
processes. . .

As this quotation confirms, Neyman was a frequentist. But
his rhetoric suggests that the initial meaning of probabilities
lies in their relation to how phenomena are generated rather
than in their relation to frequencies. He wants to explain
frequencies, but he does not ask that every probability
have a frequency interpretation. Perhaps it is enough that
successive probability predictions be well calibrated and
have good resolution in the sense explained in§7.

What is most striking about Neyman’s vision is that
stochastic processes appear as the only alternative to deter-
ministic models. The third category of phenomena, those
we can predict neither with certainty nor probabilistically,
has disappeared. This way of thinking has become ever
more dominant since 1960. In many branches of science,
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we now hear casual references to “true,” “physical,” or
“objective” probabilities, without any hesitation about their
existence. An indeterministic process is assumed to be a
stochastic process, regardless of whether we do or even can
know the probabilities. The naı̈vet́e derided by von Kries
120 years ago is once again orthodoxy.

Our game-theoretic results provide a framework for
regaining the philosophical sophistication of von Kries,
Keynes, Fisher, and Kolmogorov, without abandoning the
successes achieved by the theory of stochastic processes.
Whenever we test a stochastic process empirically, we are
applying Cournot’s principle to known (hypothetical) prob-
abilities. When we have less than a stochastic process, a
model giving only limited prices or probabilities, we can
still test it via Cournot’s principle, without regarding it as
part of some unknowable yet somehow still meaningful full
stochastic process.

The possibility of defensive forecasting reveals that in
a certain limited sense, our third category is indeed empty.
Any quantity or event that can be placed in a series (in a time
series, not necessarily a series of independent repetitions)
can be predicted probabilistically, at least with respect to
that series. This suggests that talk about chance mechanisms
is also empty. Defensive forecasting works for any time
series, regardless of how it is generated. The idea of a
chance mechanism adds nothing.
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