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Abstract

Concepts of causal relevance and irrelevance are readily formulated in the context of

Bayes nets, but these formulations have significant shortcomings.  Most importantly, they

do not allow for the great variety that can be observed in the temporal configuration of

causally related entities.  For example, they deal awkwardly with progressive causation,

where continued action of a cause continues to enhance an effect.  This article discusses

how such subtleties can be handled when we look beyond Bayes nets to a more

fundamental structure:  nature’s probability tree.
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1.  Introduction

Relevance is relative.  Any real experience is essentially infinite in detail, and almost

every detail is relevant, in some way, to almost every narrative that can be drawn from

the experience.  When I tell you a story of a harrowing taxi ride and fail to mention the

color of the hat worn by the driver, have I omitted something relevant?  If I have told the

story coherently, then I will contend that I did not need to mention the color—it is

irrelevant at the level of detail at which I worked.  Yet there may be some larger, more

detailed story, perhaps one that traces the taxi driver’s behavior to his mood as he left his

home, in which the color of his hat is relevant.  The color may be relevant at one level of

detail but not at another.

This article explores relevance in the context of probabilistic representations—Bayes

nets and probability trees—and it concludes that relevance is just as relative here as it is

in narrative.  A Bayes net or a probability tree can always be made more detailed, and

variables irrelevant at one level of description may be relevant to a more refined

description.

The Bayes nets and probability trees we will discuss are meant to be causal:  they

purport to describe events as they actually unfold in nature.  Thus we will be exploring

causal relevance.  In the course of the discussion, we will also touch on other important

issues in the probabilistic representation of causality.

In both statistics and expert systems, discussions of causal relevance usually concern

variables, and it is often assumed that these variables are subsequent:  they are ordered,

and their values are determined in nature in this order.  We begin by discussing causal

sufficiency and causal relevance in this setting, and we show how Bayes nets can be

interpreted in this setting.  We conclude, however, that the Bayes nets used in practice

often require more subtle interpretations.  This leads us to probability trees, because a
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clear understanding of alternative causal interpretations of Bayes nets requires us to think

of them as partial descriptions of more explicitly dynamic structures.

We discuss the relationship between Bayes nets and probability trees at some length.

The view taken here is that probability trees provide a semantics for Bayes nets.

Probability trees are more expressive in general, and Bayes nets can be interpreted in

different ways in terms of probability trees.  This is sometimes disputed by the most

fervent proponents of Bayes nets, who are tempted to argue that Bayes nets are

themselves fully as expressive as probability trees.  So the issue is addressed with some

care.

Since relevance is relative to degree of detail, we look at refinement carefully for both

Bayes nets and probability trees.

Many of the ideas in this article are treated in more depth in a forthcoming book by

the author, The Art of Causal Conjecture (1996).  This book does not, however, deal with

the concept of relevance.

2.  Causal Sufficiency and Relevance for Subsequent Variables

Suppose X and Y are variables.  We say that Y is subsequent to X, or simply that X and

Y are subsequent, if X is always settled in nature before Y, no matter what course events

take.  (Let us interpret “before” loosely, so that it means “before or at the same time as.”)

If Y is subsequent to X, then we also say that X precedes Y.

This idea generalizes to sequences of variables:  X1,X2,...,Xn are subsequent if they

are always settled in nature in the order in which they are numbered: if i<j, then Xi is

settled before Xj.

In the context of subsequent variables, there is a very natural concept of causal

sufficiency:

Definition 1a  A variable X is causally sufficient for a subsequent variable

Y if the probabilities for Y at the time when X is settled depend only on the
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value of X.  (In other words, the probability distribution for Y when X is

settled can be specified fully once the value of X is specified, without

regard to how earlier events or variables may have been settled.)

Definition 1b  More generally, a family of variables A is causally

sufficient for a subsequent variable Y if the probabilities for Y at the time

when A is settled depend only the configuration to which it is settled.  (A

family of variables is settled when all its variables are settled; if the

variables are subsequent, this is when the last of its variables is settled.  A

configuration is a specification of values for all the variables in the family.

The empty family has a single configuration.  The empty family precedes

every variable, because it is settled before time begins; it is causally

sufficient for a variable only if that variable is a constant.  See Section 3 of

Appendix D of The Art of Causal Conjecture.)

Definition 1c  Yet more generally, a family of variables A is causally

sufficient for a subsequent family of variables C if the probabilities for C

when A is settled depend only the configuration to which it is settled.

It should be kept in mind that causal sufficiency, as defined here, always assumes

subsequence.  (In The Art of Causal Conjecture, the concept is called “stochastic

subsequence.”  See Section 4 of Chapter 9.)

We leave it to the reader to verify the following proposition:

Proposition 1  If A is causally sufficient for B and AB is causally

sufficient for C, then A is causally sufficient for BC.

Using causal sufficiency, we can define one concept of causal relevance:

Definition 2a  A variable X is causally relevant to a subsequent variable Y

if there is a family of variables A, which also precede Y, such that AX is

causally sufficient for Y but A alone is not.  (We write AX for the family

obtained by adding X to A.)
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This concept, as it turns out, is rather weak.  Practically any preceding variable is causally

relevant in this sense.

The preceding definition of causal relevance can be compared with the idea of an inus

condition, an idea developed abstractly by Mackie (1974) and adapted to probability by

Marini and Singer (1988).  An inus condition is an insufficient but necessary part of an

unnecessary but sufficient condition.  Mackie and Marini and Singer propose calling an

inus condition a “cause.”

It appears, from the literature on probabilistic causality (see Bollen 1989, Humphreys

1989), that many authors have a strong desire to call variables causes.  This practice

should, however, be avoided.  Variables merely measure, usually in a relatively

superficial and aggregate way, how things turn out.  They may point to causes, but they

are not causes themselves.  Intuitively, X is causally relevant to Y if it can help point to

some of Y’s causes.  Other variables may do the same job equally well or better.

The concept of causal relevance gains more content if we make explicit reference to

the family that becomes causally sufficient when the variable is added:

Definition 2b  A variable X is causally relevant to a subsequent variable Y

relative to a family A of variables preceding Y if AX is causally sufficient

for Y but A alone is not.

A variable may, of course, be causally relevant relative to one family but not relative to

another.

The concept of causal sufficiency is itself relative to the time at which variables are

settled.  We can make this explicit by generalizing Definition 1b in this way:

Definition 1d  Suppose A and C are families of variables preceding Y, and

suppose A⊆C.  Then A is causally sufficient for Y relative to the resolution

of C if the probabilities for Y at the point where C is settled depend only

the configuration of A.
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When we say simply that A is causally sufficient for Y, we are saying that A is causally

sufficient for Y relative to the resolution of A.

On the other side of the coin from this last concept of causal sufficiency is a concept

of causal irrelevance:

Definition 2c  Suppose B and C are families of variables preceding Y, and

suppose B⊆C.  Then B is causally irrelevant for Y relative to the

resolution of C if C-B is causally sufficient for Y relative to the resolution

of C.

When using this concept, we must remember that the irrelevance of B is relative to C and

hence, in a sense, to the other variables, C-B.  It is quite possible for a family C to consist

of two subfamilies, A and B, both of which are causally sufficient for Y relative to the

resolution of C.  In this case, both A and B can be called irrelevant.  But this means only

that one is superfluous if the other is used, not that they are together superfluous.

Another example of the relative nature of sufficiency and irrelevance is provided by

the concept of a mediating variable.  If X,Y,Z are subsequent variables, then we may well

find that X is causally sufficient for Z relative to the resolution of X but causally irrelevant

relative to the resolution of XY.  In this case, we call Y a mediating variable; the causes

marked by Y mediate the influence on Z of the causes marked by X.

3.  Subsequently Causal Bayes Nets

A Bayes net is a directed acyclic graph whose nodes are variables, together with a

representation, perhaps in tabular form, of conditional probabilities for each variable.  An

abstract example is given in Figure 1.



7

X 1

x11 x12

.5 .5
X1

X2

X3

X4

X 4

x41 x42 x43

x21,x31 .3 .3 .4
X 2,X3 x21,x32 .3 .5 .2

x22,x31 .4 .1 .5
x22,x32 .4 .3 .3

X 2

x21 x22

X 1 x11 .3 .7
x12 .4 .6

X 3

x31 x32

X 1 x11 .5 .5

x12 .1 .9

Figure 1  An abstract Bayes net.  Each table gives conditional

probabilities for the variable at the top of the table, given the values of the

variables (if any) listed at the left of the table.  Variables X1, X2, and X3

each have two possible values, while X4 has three.

When there is an arrow from a variable X to a variable Y in a Bayes net, we say that X

is a parent of Y.  We may assume that the variables are numbered as in Figure 1:  the

parents of a variable always have lower numbers.  We write X1,X2,...,Xn for the variables,

and we write pari for the parents of Xi.  The table for Xi in the Bayes net gives

conditional probabilities for Xi given pari.  In Figure 1, par1 = ∅, par2 = par3 = X1, and

par4 = X2X3.

Let us call a Bayes net subsequently causal if the following conditions are met:

Condition 1  X1,X2,...,Xn is a subsequent sequence.

Condition 2  pari is causally sufficient for Xi relative to the resolution of

X1X2...Xi-1.

This seems to correspond to what is usually meant when people speak abstractly of causal

Bayes nets.
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Not every family of variables can be arranged in a subsequently causal Bayes net.

The variables must be subsequent, and once we have put them in the order in which they

are settled, say X1X2...Xn, it must be true that X1X2...Xi-1 is causally sufficient for Xi for

each i (Definition 1b).  If these fundamental conditions are satisfied, then we obtain a

Bayes net by drawing an arrow from Xi to Xj whenever i<j.  If a subset C of X1X2...Xi-1 is

causally irrelevant to Xi relative to the resolution of X1X2...Xi-1 (Definition 2c), we will

still have a Bayes net when we omit the arrows from the variables in C to Xi.

We have just made precise the often repeated assertion that missing arrows in Bayes

nets indicate that the variables from which the arrows might have pointed are irrelevant to

the variables to which they might have pointed.  In doing so, we have shown that this

irrelevance is highly relative.  The irrelevance of Xi to Xj is relative to the variables

among X1,X2,...,Xj-1 from which we do draw arrows to Xj.

Although subsequent causality has an abstract clarity that facilitates discussion, it is

elusive in practice.  The Bayes nets that knowledge engineers construct for concrete

problems usually are not subsequently causal.  Instead of being determined sequentially,

their variables tend to be related temporally in more complicated ways.  Often they

change together in time.  Figures 2 and 3, drawn from the beginning pages of the

proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,

illustrate the point.

Page Size 
Used

Disk Paging
Read Rate 

Disk Paging
Input Rate Input Page

Rate 

Net Paging 

Figure 2  A fragment of a Bayes net for diagnosing bottlenecks in

computer systems (Breese and Blake 1995).  Most of the variables in this
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net change together in time.  The last variable, Input Page Rate, is a

deterministic function of its parents.

Age

Symptoms 

Occupation

Disease

Climate

Figure 3  A simple medical problem (Buntine 1995).  Many of these

variables also change together.

4.  Refining and Simplifying Causally Subsequent Bayes Nets

A Bayes net can be subsequently causal without being a complete account of the

causal structure involved in the determination of a family of variables.  By adding further

variables, we can often enlarge a subsequently causal Bayes net to a more detailed one.

Conversely, we can sometimes omit variables and still have a subsequently causal Bayes

net.  In the first case, we are refining the subsequently causal Bayes net.  In the second

case, we are simplifying it.

When we are not concerned with causal interpretation, there are no real constraints on

the omission of variables from a Bayes net.  Since any family of variables can be

arranged in a Bayes net, we can always form a Bayes net from the variables that

remain—possibly at the price of adding some further arrows among them (Pearl 1988).

In the example at the bottom of Figure 4, for example, we need to add an arrow from X1

to X4 when we omit X2 and X3.

The desire to preserve subsequent causality does impose constraints on the omission

of variables.  Sometimes variables can be omitted without losing subsequent causality;

sometimes they cannot be.  Figure 4 shows two examples where subsequent causality is

preserved, and Figure 5 shows two examples where it may be lost.
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X1

X2

X3

X4 X1 X4

X1

X2

X3

X4

X1

a simplification
that preserves

subsequent causality

X2

X3

a simplification
that preserves

subsequent causality

Figure 4  In the first example, the relations of causal sufficiency asserted

by the simplification are already asserted in the original net.  In the second

example, the fact that X1 is causally sufficient for X4 follows, by

Proposition 1, from the assertions in the original net.

X1

X2

X3

a simplification that 
may fail to preserve 
subsequent causality

X1

X3

X2

X3

X4

X1

X3

X4

X1

a simplification that 
may fail to preserve 
subsequent causality

Figure 5  The nets on the right qualify as Bayes nets simply because they

impose no conditional independence conditions on the joint distribution of

the variables.  But they are not necessarily subsequently causal.  The fact

that X1X2 is causally sufficient for X3 does not ensure that X1 alone is.
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The fact that X2 alone is causally sufficient for X4 relative to the resolution

of X3 does not ensure that X1X3 is.

5.  Probability Trees as a Semantics for Bayes Nets

The idea of subsequently causality is coherent and interesting but too narrow.  As

Figures 2 and 3 demonstrate, it does not encompass the whole range of causal meaning

we can express using Bayes nets.  In order to gain a broader understanding, we need to

look beyond Bayes nets to a more fundamental level.  We need to look at the semantics

of probability in general and the semantics of Bayes nets in general.

In The Art of Causal Conjecture (especially Chapter 4), I argue that the semantics of

probability goes beyond the austere framework of measure theory (Kolmogorov’s

axioms) that has been taken as fundamental in abstract treatments of the subject during

most of this century.  Probability is not static; it is inherently dynamic.  Instead of

interpreting probability statements in terms of a single static sample space with a

probability measure, we should interpret them in terms of a probability tree.  This

proposal merely revives a very old idea, for probability trees were implicit and sometimes

even explicit in the work of the inventors of probability theory.

Any observer can have a probability tree: a tree showing the possibilities for how the

observer’s knowledge may unfold, with branching probabilities indicating, at each step,

odds the observer would give for what will happen next.  But when we are concerned

with causality, we are most interested in nature’s probability tree—the probability tree

that expresses nature’s possibilities and probabilities.

Figure 6 shows a simple example of a probability tree.  Here the question is whether a

twelve-year old boy will remember to practice his saxophone on a summer afternoon, and

the probability tree shows how this may be influenced by his other activities.  We

suppose that this probability tree is causal—e.g., that it is part of nature’s probability tree.

At the moment when Alex appears on Dennis’s door step, even nature does not know
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whether the two boys will stay at Dennis’s house, go to Sigmund’s house, or go to Alex’s

house.  The best nature can do is bet at odds given by the probabilities shown in the tree.

Alex comes  
over 

Alex does not 
come over 

Stay at  
Dennis’s Go to  

Sigmund’s 

Go to 
Alex’s Read Watch  

television 

Yes Yes No No 

Play  
soccer 

Stay  
indoors 

Will Dennis  
remember 
to practice? 

Yes

.5 .5 

.4 .6

.4.61 1 .4 .6.8.2

.2 
.4

.4

No 

1 

Yes No 

.1.9 No 

Figure 6  Nature’s probability tree for whether Dennis will practice his

saxophone on a summer afternoon.

A probability tree is a simple but rich structure.  It combines features fundamental to

the semantics of both logical and probabilistic representations in artificial intelligence.  It

has situations; these are the nodes in the tree.  And it has a sample space, as required by

standard twentieth-century probability theory; this is the set of all paths down the tree.

Thus it has events (subsets of the sample space) and variables (functions on the sample

space) in the usual probabilistic sense.  The probability tree in Figure 6 has 19 situations

and 9 paths.  It has 29 (512) events and innumerable variables.  Figure 6 itself shows the

event that Dennis remembers to practice:  this is the subset of the sample space consisting

of the four paths ending in “Yes.”  Figure 7 shows the variable “Dennis’s location at the

end of the afternoon.”
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Alex does not 
come over

Stay at 
Dennis’s Go to 

Sigmund’s

Go to
Alex’s

Alex’s

Dennis’s 
location at 
the end of the 
afternoon Dennis’s

Sigmund’s

Dennis’s

Figure 7  A variable in nature’s probability tree for Dennis’s afternoon.

The first thing we realize when we think about probability trees and Bayes nets is that

a Bayes net can always be expanded into a probability tree:  Figure 8 uses the Bayes net

of Figure 1 to illustrate this point.

.5 .5

.4 .6

.1 .9

.3 .3

x41
x42

x43

.4 .3 .5

x41
x42

x43

.2

x31 x32

.1 .9

.4 .1

x41
x42

x43

.5 .4 .3

x41
x42

x43

.3

x31 x32

x21 x22

.3 .7

.5 .5

.3 .3

x41
x42

x43

.4 .3 .5

x41
x42

x43

.2

x31 x32

.5 .5

.4 .1

x41
x42

x43

.5 .4 .3

x41
x42

x43

.3

x31 x32

x21 x22

x11 x12

Figure 8  A probability tree for the Bayes net in Figure 1.  The first

branching, at the top of the tree, shows the determination of X1, which has

two possible values.  The two branchings one step down show the
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determination of X2, which again has two possible values, depending on

how X1 came out.  The four branchings on the next level show the

determination of X3; the probabilities again depend on X1.  Finally, the

eight branchings at the bottom show the determination of X4, with

probabilities depending on X2 and X3.

We may call a probability tree obtained from a Bayes net in the manner shown in

Figure 8 the subsequent expansion of the Bayes net.  The assertion that the Bayes net is

subsequently causal is the same, essentially, as the assertion that its subsequent expansion

is nature’s probability tree.  We are saying, in both cases, that the variables X1X2...Xn are

subsequent and that the probabilities for Xi at any point where Xi-1 has just been

determined are those given by the table in the Bayes net.  The probability tree simply

makes the idea of “any point where Xi-1 has just been determined” clear, by showing the

different possible points as different nodes.

It is a bit awkward, however, to call a subsequent expansion, or any other particular

probability tree, nature’s probability tree.  We take it for granted the variables in our

Bayes net are only a few of the things that nature observes, and hence we would prefer to

think of “nature’s probability tree” as a much larger object, in which these variables are

minor details.  In order to accommodate this thought, we need to step back from the

Bayes net and think abstractly about subsequence, sufficiency, and irrelevance in a

probability tree.

A few moments’ thought reveals that the definitions laid out in Section 2 have clear

and precise meanings in the context of a probability tree.  When we spoke there, without

a definite mathematical framework, about X being “settled in nature before” Y, the reader

may have felt a bit at sea.  But in a probability tree, it is quite clear whether a given

variable is settled:  it is settled in a given situation if it has the same value on all the paths

through that situation.  The situations that resolve a variable (the situations where it is just

settled) form a cut across the tree, as in Figure 9; this is the variable’s resolving cut.  A
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variable’s resolving cut has exactly one situation in common with every path down the

tree.  A variable Y is subsequent to a variable X if the situation that resolves Y never

precedes the situation that resolves X, no matter what path we take down the tree.

Alex’s

Dennis’s 
location at 
the end of the 
afternoon Dennis’s

Sigmund’s

Dennis’s

Figure 9  The resolving cut for Dennis’s location:  the situations where

the location is resolved.

Causal sufficiency and irrelevance also have quite precise meanings in a probability

tree.  The branching probabilities in the tree determine probabilities and joint

probabilities for all variables in all situations.  Hence we can rephrase the definitions as

follows:

Definition 1a  X is causally sufficient for Y if the probabilities for Y in a

situation that resolves X depend only on the value of X in that situation.

(In other words, the probability distribution for Y is the same in any two

situations that resolve X to the same value.)
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Definition 1b  More generally, A is causally sufficient for Y if the

probabilities for Y in a situation that resolves A depend only on the

configuration of A in that situation.

Definition 1c  Yet more generally, A is causally sufficient for C if the

probabilities for C in a situation that resolves A depend only on the

configuration of A in that situation.

Definition 2a  X is causally relevant to Y if there is a family A such that

AX is causally sufficient for Y but A alone is not.

Definition 2b  X is causally relevant to Y relative to a family A if AX is

causally sufficient for Y but A alone is not.

Definition 1d  Suppose A⊆C.  Then A is causally sufficient for Y relative

to the resolution of C if the probabilities for Y in a situation that resolves C

depend only the configuration of A.

Definition 2c  Suppose B⊆C.  Then B is causally irrelevant for Y relative

to the resolution of C if C-B is causally sufficient for Y relative to the

resolution of C.

Notice that we have dropped from these definitions any requirement that the variable Y or

family C be subsequent.  This condition is not necessary in order for the definitions to be

precise and meaningful; it was included in Section 2 in an attempt to make the concepts

comprehensible without the explicit and precise framework provided by probability trees.

The fact that causal sufficiency is meaningful without any assumption of subsequence

provides us immediately with a more general causal interpretation of Bayes nets.  We

noted in Section 3 that if a directed acyclic graph with variables as nodes satisfies two

conditions,

Condition 1  X1,X2,...,Xn is a subsequent sequence, and

Condition 2  pari is causally sufficient for Xi relative to the resolution of

X1X2...Xi-1,
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then it is a Bayes net, and we called such a Bayes net subsequently causal.  It turns out

(The Art of Causal Conjecture, Chapter 15, Section 3) that we still have a Bayes net if we

weaken Condition 1 to

Condition 1'  The probabilities for Xi do not change on any step in the

probability tree where the probabilities for X1X2...Xi-1 also change, unless

the probabilities for pari  change on that step.

(This can alternatively be expressed by saying that Xi is independent, in the probability-

tree sense, of X1X2...Xi-1 modulo pari.)  In this case, the Bayes net still has a causal

interpretation; we may call it a causal Markov net.

Figure 10 shows a simple Bayes net, X1→X2, that is causal Markov without being

subsequently causal.  In this example, X2 precedes X1.  (A person chooses farm school or

graduate school before settling on what kind of farmer or professor to be.)  And yet X1 is

causally sufficient for X2.  (In any situation that resolves X1, the value to which X1 is

resolved determines the probabilities for X2; in fact it tells us what X1 is for sure.  When

X1 is resolved to Hogs; X2 is Farmer with probability one, etc.)

Farm 
school

Graduate 
school

Hog
farmer

Dairy
farmer

Chemistry
professor

History
professor

.7 .3

.4 .6 .5 .5

X1

X2

Hogs

Farmer

Cows

Farmer

Molecules

Professor

Archives

Professor

Figure 10  A probability tree in which the Bayes net X1→X2 is causal

Markov but not subsequently causal.  In the story told by this tree, a

person first decides whether to go to farm school or graduate school.  If

she goes to farm school, she eventually becomes a hog or dairy farmer.  If
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she goes to graduate school, she eventually becomes a chemistry or history

professor.  The variable X1 names the principal objects with which she is

professionally concerned, while X2 is her general occupational category.

Figure 10 is a simple example of a deterministic Bayes net, one in which each

variable with parents is fully determined by those parents.  Such Bayes nets qualify as

causal Markov whenever the variables without parents are independent in the probability-

tree sense, but they may not be subsequently causal.  Often, as in this example, variables

are actually settled in nature before their children in the net.  This illustrates the wisdom

of saying “X is causally relevant to Y” instead of “X is a cause of Y” when there is an

arrow from X to Y.  A variable that is settled later can be causally relevant to Y, in the

sense that it points to causes of Y, but we do not want to say that later things are the

causes of earlier things.

Causal Markov nets are far more general than subsequently causal Bayes nets, but

they themselves represent only one of many causal interpretations of Bayes nets in terms

of probability trees.  Another very important interpretation arises when we shift our

attention from situations where the parents of a variable X are resolved to the steps in the

tree where the expected values for the parents change, and we require that the expected

values for X change proportionally on these steps.  Bayes nets that satisfy this condition

are called causal path diagrams (see Section 4 of Chapter 15 of The Art of Causal

Conjecture).  They often arise when we are concerned with progressive causation, as in

Figures 2 and 3.

The idea of using probability trees as a semantics for causal representations can be

extended beyond Bayes nets and other probabilistic representations to logical

representations that have been used in discussions of causality.  Indeed, since situations

are integral to probability trees, these trees provide a semantics for the situation calculus

and the temporal logics that elaborate it (Shoham 1988, Terenziani and Torasso 1995).  In

discussions that are concerned with human action and planning, however, it is necessary



19

to generalize from probability trees to decision trees, in which some branchings are not

labeled with probabilities (see Raiffa 1968 and Chapter 12 of The Art of Causal

Conjecture,).  This involves generalizing also from Bayes nets to influence diagrams, in

which some variables are decision variables (Oliver and Smith 1990).

6.  The Expressive Power of Bayes Nets

Historically, probability and decision trees preceded Bayes nets and influence

diagrams, and many of the early users of Bayes nets and influence diagrams seem to have

taken for granted that these diagrams should be interpreted in terms of probability or

decision trees.  In recent years, however, Bayes nets have been so popular and well

understood that some research workers bridle at the idea that they should be interpreted in

terms of any other representation.  Indeed, these workers respond to the project of

interpreting Bayes nets in terms of probability trees with the assertion that Bayes nets

have just as much expressive power as probability trees.

The assertion that Bayes nets are equal to probability trees in expressive power is

somewhat beside the point of this article, because we are thinking of probability trees as

an underlying semantics or ontology, not as a representation that should compete with

Bayes nets in practical work.  But the assertion is also untrue, and it is important to

understand the limitations of Bayes nets and to explore alternative causal representations

that may be computationally more practical in some problems.  Probability trees can

provide a framework for this exploration, because the alternative causal representations,

like Bayes nets, can be interpreted as partial descriptions of nature’s probability tree (see

Chapter 16 of The Art of Causal Conjecture).

It is obvious that not every probability tree can be obtained from a Bayes net in the

way we obtained Figure 8 from Figure 1.  Any probability tree obtained in this way must

have (1) the same number of steps on every path, and (2) the same number of branches

from every node at a given level.  In order to obtain less symmetric probability trees from
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Bayes nets, we evidently need to supply additional information, information that will

direct the pruning away of certain unwanted branches.  In order to generate Figure 6, for

example, we can begin with the Bayes net in Figure 11 (the reader may supply the

probabilities), but we will also need rather specific directions for pruning.  As a first step,

we can prune away branches with probability zero, but this produces only the probability

tree shown in Figure 12, and we need further to be told which steps with probability one

to remove.

Alex comes?
   Yes
    No

Location
    Dennis’s
    Sigmund’s
    Alex’s

Activity
    Play Soccer
    Read
    Watch TV
    Stay Indoors
    Do something

Practice?
    Yes
    No

Figure 11  A Bayes net for Dennis’s remembering to practice.  The reader

can supply the tables of probabilities.  The variable “Activity” is

somewhat artificial, inasmuch as “Stay indoors” and “Do something” may

include some of the other activities; we call watching TV “Watch TV,

“Stay indoors,” or “Do something,” depending on the circumstances, as

indicated in Figure 12.
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Yes No

Dennis’s Sigmund’s Alex’s 

Play  
soccer 

Stay  
indoors 

.5 .5 

1 

.4 .6

.8 .2 

.2 .4 .4 

1 .1 .9 

Alex comes? 

Dennis’s

1 

Location 

Activity 

Practice? 

Read Watch 
TV 

.4 .6 

.4 .6 1

Yes Yes NoNoYes No Yes NoNo

Do 
something 

Do 
something 

1 1 

Figure 12  The probability tree initially generated by Figure 11.  By

selectively collapsing steps with probability one, we obtain from it the

probability tree in Figure 6.

As Figures 11 and 12 reveal, we may need to define rather unnatural variables in

order to represent a simple probability tree in the form of a Bayes net.  The basic problem

is that a Bayes net has a symmetry that a probability tree need not have.  All the variables

in a Bayes net must come into play no matter how things turn out, whereas some

contingencies in a probability tree may enter the story down some branches.  Figure 13

shows a striking example of this:  only if surgery is performed does the question arise

whether the patient will survive it.
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Patient 
survives 
surgery.

Do not 
perform 
surgery.

Perform 
surgery.

.9
Patient lives 
more than 
5 years.

Patient lives 
less than 5 
years.

.1 .75 .25
Patient dies 
during 
surgery.

Patient lives 
more than 
5 years.

Patient lives 
less than 5 
years.

.5 .5

Figure 13  A probability tree that cannot be obtained naturally from a

subsequent expansion of a Bayes net.

In summary, we may say that probability trees are strictly greater in expressive power

than Bayes nets by themselves.  Bayes nets are compact representations, and they are

sufficiently useful that makes sense to expand their range of applicability by

supplementing them with various kinds of collateral information.  But we can best keep

track of the meaning of this collateral information if we think of it as additional

information about a probability tree.  And we should not overlook the possibilities of

radically different ways of partially describing nature’s probability tree.

8.  Refining and Simplifying Probability Trees

Since we think of nature as indefinitely complex, we will not be comfortable thinking

of a probability tree as an accurate representation of nature unless we understand how it

can be refined without being falsified.  Fortunately, there is a straightforward concept of

refining for probability trees, and it is consistent with the concept of refining for

subsequently causal Bayes nets, which we explored in Section 4.

Figures 14 and 15 illustrate refining for probability trees.  As these figures indicate, a

refining matches each situation in the simplification (the less refined tree) with one or
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more situations in the refinement (the more refined tree).  The refinement may also have

situations not represented in the simplification.  The probabilities must be consistent, in

the sense that probabilities asserted for a situation in the simplification must remain true

for all the corresponding situations in the refinement.  If the trees are causal (if they are

both simplifications of nature’s tree), then these are nature’s probabilities, and they will

remain nature’s probabilities no matter how much more detail is brought into the picture.

Take Mom 
shopping.

1/3

Take Mom 
shopping.

7/20

Temperature is 
below freezing.

Take Mom 
shopping.

Go to 
library.

Temperature is 
above freezing.

Go to 
library.

Jog.

Go to 
library.

Jog.
1/3 1/3

5/6 1/6

2/5 1/4 1/4 3/4

probability-tree
refining

I

I*

a1* b2*b1* c2*c1*

a b c

Figure 14  The temperature affects the possibility of Nell’s jogging and

the probabilities for whether she will take her mother shopping or go to

the library.

Take Mom 
shopping.

1/3
Take Mom 
shopping.

1/3

Borrow
Jaws. Borrow

Roots.

Go to 
library.

Jog.
Go to branch
library.

Jog.

Borrow
Jazz.

Borrow 
Jaws. Borrow

Roots.

Borrow
Jazz.

Borrow
Jaws. Borrow

Roots.

Borrow
Jazz.

Go to main
library.1/3 1/3

1/3
1/3

1/3

1/3
1/4

1/12

1/3
1/3

1/3 1/3
1/3

1/3

probability-tree
refining

a b a* b*S

c d e

S1* S2*

I*I

c1* d1* e1* c2* d2* e2*

Figure 15  Nell’s choice of library affects neither the possibilities nor the

probabilities for what book she will borrow.

The concept of refining for probability trees is discussed at length in Chapter 13 of

The Art of Causal Conjecture.
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9.  Conclusion

This article has discussed the representation of causality and causal relevance in

Bayes nets and probability trees.  Probability trees are the more fundamental

representation; they can be thought as a semantics for Bayes nets and for other partial

representations of the dynamics of nature.

Causal relevance is represented explicitly in a Bayes nets:  missing arrows indicate

that certain variables are irrelevant to nature’s prediction of certain other variables.  This

irrelevance is relative, however, to the variables that are explicitly taken into account in

the prediction of that variable in the Bayes net.

Variables do not play a fundamental role in a probability tree, and hence the

probability tree does not explicitly represent relevance and irrelevance for variables.  The

assertion that a probability tree is causal contains, however, a very strong assertion about

causal relevance.  It says that relative to the events already represented down to a certain

situation in a probability tree, all other details about what has happened in nature prior to

that situation are irrelevant to nature’s prediction of the later events represented in the

probability tree.  Within the theory of probability trees, this fact finds expression in the

invariance of probabilities under refinement.  It also finds expression in the judgments of

irrelevance that are encoded in Bayes nets.
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