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The theory of belief functions provides one way to use mathematical probability in
subjective judgment.  It is a generalization of the Bayesian theory of subjective probability.
When we use the Bayesian theory to quantify judgments about a question, we must assign
probabilities to the possible answers to that question.  The theory of belief functions is more
flexible; it allows us to derive degrees of belief for a question from probabilities for a related
question.  These degrees of belief may or may not have the mathematical properties of
probabilities; how much they differ from probabilities will depend on how closely the two
questions are related.

Examples of what we would now call belief-function reasoning can be found in the late
seventeenth and early eighteenth centuries, well before Bayesian ideas were developed.  In 1689,
George Hooper gave rules for combining testimony that can be recognized as special cases of
Dempster's rule for combining belief functions (Shafer 1986a).  Similar rules were formulated by
Jakob Bernoulli in his Ars Conjectandi, published posthumously in 1713, and by Johann-
Heinrich Lambert in his Neues Organon, published in 1764 (Shafer 1978).

Examples of belief-function reasoning can also be found in more recent work, by authors
who were unaware of the seventeenth and eighteenth century work.  For example, Per Olof
Ekelöf, a Swedish legal scholar, reinvented Hooper's rules in the early 1960s (Shafer 1986a,
Gärdenfors et al. 1983).

In its present generality, however, the theory of belief functions is due to Arthur P. Dempster
and myself.  Dempster set out the basic ideas of the theory in a series of articles in the 1960s.  I
developed the theory further and established its terminology and notation in 1976, in A
Mathematical Theory of Evidence.  Because of the role of Dempster and myself, the theory is
sometimes called the “Dempster-Shafer theory.”

My 1976 monograph is still the most comprehensive source of information on belief
functions.  Unfortunately, this monograph says little about interpretation, implementation, or
computation.  It is concerned primarily with mathematical foundations.

During the past fifteen years, a great deal has been learned about the interpretation,
implementation, and computation of belief functions, and fresh progress has been made on the
mathematical foundations as well.  This work is scattered in journals in a wide variety of fields,
including statistics, psychology, philosophy, engineering, accounting, and artificial intelligence.
No one has drawn the new work together in a comprehensive way.

This article is primarily a summary of my own current views.  It pulls together some of the
strands in the scattered literature, but it falls short of the comprehensive review that is needed.
Though the bibliography is lengthy, it is not comprehensive.  My failure to mention particular
contributions should not be taken as an indication of disinterest or disagreement.

I begin with some opinions about the place of belief functions in the larger tool-drawer of
probabilistic methods and about the place of this whole tool-drawer in artificial intelligence
(Sections 1 and 2).  These opinions are personal.  I expect that few readers will agree with them
fully.  They may serve, nonetheless, to dispel some misunderstandings about the scope of the
theory of belief functions.
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After this general introduction, I introduce the basic ideas of belief functions, in a way that
should be accessible to readers with no previous familiarity with the topic (Section 3), and I
review the many competing mathematical formulations of the theory (Section 4).

I then turn to issues of interpretation and semantics.  I explain that belief-function degrees of
belief should not be interpreted as lower bounds on unknown probabilities (Section 5).  Instead,
they should be given a process-oriented semantics; they are the result of deliberately drawing a
certain analogy (Section 6).

I then turn to issues closer to implementation.  I discuss how the concept of independence is
used in belief-function reasoning (Section 7) and how belief functions can and cannot be used in
reasoning about frequency distributions (Section 8).  I discuss how the computational complexity
of belief functions can be dealt with (Section 9).  And I discuss the extent to which belief-
function reasoning can be automated (Section 10).

Finally, I discuss briefly a number of other topics in belief-function theory—generalizations,
decision methods, consensus, infinite frames, weights of evidence, and other mathematical
advances (Section 11).

1.  The Place of Belief Functions in Probability

In my earliest work on belief functions (Shafer 1973, 1976a,b) I took a youthfully ambitious
view of their possible role.  I saw belief functions as a very general tool for subjective judgment.
Almost every item of evidence could be represented, I suggested, by a belief function.

By the early 1980s, however, I was expressing a more sober view (see especially Shafer
1981).  Then, as now, I saw belief functions as one among many tools for making subjective
judgements using probability.  Other such tools include Bayesian probability, Fisherian tests of
significance, and Neyman-Pearson confidence intervals.

It was once customary to equate Bayesian methods with subjective probability and to identify
Fisherian and Neyman-Pearson methods with a frequentist conception of probability.  These
were the terms of the debate that raged between Bayesians and frequentists in the 1960s.  In
recent years, however, the debate has cooled, and both sides have acknowledged that subjectivity
is involved in all applications of probability to real problems.

In recent work (Shafer 1990), I have tried to give a foundation to this emerging consensus by
advancing the thesis that the mathematical theory of probability is really the theory of an ideal
picture in which belief, fair price, and knowledge of the long run are bound together.
Probabilities in this ideal picture are long-run frequencies, but they are also degrees of belief,
because they are known and nothing else that is relevant is known.  This ideal picture seldom
occurs in nature, but there are many ways of making it relevant to real problems.  In some cases,
the ideal picture serves as a standard of comparison—Fisherian tests of significance are often
used to compare correlations in real problems to accidental correlations in the ideal picture.  In
other cases, we simulate the ideal picture (we obtain random numbers from tables or numerical
algorithms) and then deliberately entangle this simulation in a real problem (we use the random
numbers to randomize experiments or draw random samples).  In other cases, we draw an
analogy between the state of knowledge in the ideal picture and our evidence in a real problem.

Subjectivity is involved in all these applications of probability, not only because it is
involved in the ideal picture, but also because the comparison, entanglement, or analogy that
relates the ideal picture to the real problem requires subjective judgment.

Bayesian methods rely on one particular type of analogy that can be drawn to the ideal
picture.  In this analogy, we compare our evidence about the answer to a question of interest to
knowledge of frequencies in the ideal picture.  This analogy is strongest when extensive
frequency data is available for our problem (in this case, it is customary to talk about “empirical
Bayes”).  When our evidence does not consist of frequencies, the analogy may or may not be
convincing.
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Belief functions arise when the Bayesian type of analogy is drawn between the ideal picture
and one question, and then the resulting probabilities are examined for their relevance to a
related question, which is of greater interest to us but for which we do not have a convincing
direct Bayesian analogy.  Here, as in the Bayesian case, there is no guarantee that the argument
by analogy will be convincing.  But if there are a number of questions that are related to the
question of interest, then we may have a chance to find a successful analogy between the ideal
picture and our evidence for at least one of these questions (Shafer and Tversky 1985).

Which of these many different ways of using probability is most important in practice?
Fisherian and Neyman-Pearson applications are by far the most common and most important.
Bayesian applications have been steadily increasing in recent decades.  There are still few belief-
function applications.  I expect both the dominance of Fisherian and Neyman-Pearson
applications and the steady increase in Bayesian applications to continue.  I am also optimistic
that belief-function applications will continue to increase as the ideas of the theory become more
widely understood.

2.  The Role of Probability in Artificial Intelligence

What role has probability played in AI, and what role should it play?  Does probability
provide a general theory for handling uncertainty in AI?  In this section, I review the history of
probability in AI, and I argue that we should be modest and realistic about the future prospects
for probability in AI.

Historically, probability has not played a strong role in the theory of AI.  Beginning with the
inception of AI as a field in the 1950s, the theory of AI has been dominated by logic.  On the
other hand, there has always been a role for probability in AI applications.  Standard probabilistic
and statistical methods have long been used in AI work in pattern recognition and learning
(Nilsson 1965, Duda and Hart 1973), and recently probabilistic ideas and techniques have been
used in expert systems (Spiegelhalter 1986).

The drive to make logic a foundation for AI has faltered in recent years.  At the beginning of
the 1980s, logicians in AI were still optimistic about extending logic to deal with commonsense
or uncertain reasoning, and the term “non-monotonic logic” was coined as a general name for
such extensions.  As the 1980s have drawn to a close, however, the promise of non-monotonic
logic has faded, and some of its most prominent original proponents have questioned the
fundamental idea of using logic for practical reasoning (see especially McDermott 1987).

Does the faltering role of logic mean that it should be replaced by probability as a general
foundation for AI?  A number of probabilists, including Cheeseman (1988) and Pearl (1988)
believe that it should.  These probabilists point out that uncertainty is involved in the vast
majority of AI problems, and they repeat general arguments by Savage (1954), Cox (1961) and
others to the effect that probability is always appropriate for dealing with uncertainty.  In my
opinion, this line of thinking is misguided.  Common sense tells us that there are many situations
involving uncertainty in which the theory of probability is not useful.  The arguments advanced
by Savage and Cox should be seen as clarifications of subjective probability, not as
demonstrations that it is always appropriate (Shafer 1986b, 1988).  The cause of probability in AI
will be better served, in the long run, by a realistic and modest assessment of its limitations and
potential.

The mere fact that there is uncertainty in a problem does not mean that the theory of
probability is useful in the problem.  As I pointed out in the preceding section, the theory of
probability is really about a special ideal picture, not about all situations involving uncertainty.
Bringing the theory of probability to bear on a particular problem means relating it in some way
to the ideal picture.  This requires imagination, and success is not guaranteed.  Even if there is a
way to bring the ideal picture to bear on a problem, doing so may not be worth the trouble.  In
many AI applications, it is more sensible to generate one plausible guess or plan than to weigh
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probabilities.  In others, it is more efficient to give more reliable sources of information priority
in a hierarchical system of control than to weigh the probabilities of each report from these
sources (Brooks 1986, Cohen 1987).

Since the ideal picture of probability involves frequencies, probability is most easily applied
when relevant frequencies are available.  Artificial intelligence is no exception to the rule that
frequentist applications far outnumber subjective applications.  The applications to pattern
recognition and learning are predominantly frequentist, as are the most successful current
applications of probability to expert systems.  Pearl (1988) has emphasized the potential of
subjective judgment in causal models, arguing that causal models are persuasive even when
frequencies are replaced by subjective guesses.  But this persuasiveness is not always matched by
reliability.  Numerous studies have shown that simple actuarial rules of thumb, when they are
available, are more reliable than subjective clinical judgment (Dawes, Faust, and Meehl 1989).

Finding ways of using probability—or alternatives to probability—when directly relevant
frequencies are not available should be seen as a difficult task.  It is not a task that can be
disposed of by general normative arguments such as those of Savage.  It is not a task that can be
disposed of by finding the right alternative calculus, such as the theory of belief functions or
Zadeh's theory of possibility measures (Zadeh 1978).  It is a task that must be dealt with in the
context of each application.

3.  The Basic Ideas of Belief Functions

The theory of belief functions is based on two ideas: the idea of obtaining degrees of belief
for one question from subjective probabilities for a related question, and Dempster's rule for
combining such degrees of belief when they are based on independent items of evidence.

The simplest way to illustrate these ideas is to go back to the topic addressed by George
Hooper in 1689, the reliability of testimony.  The belief-function approach to testimony is to
derive degrees of belief for statements made by witnesses from subjective probabilities for the
reliability of these witnesses.

Suppose that Betty tells me a tree limb fell on my car.  My subjective probability that Betty
is reliable is 0.9; my subjective probability that she is unreliable is 0.1.  Since they are
probabilities, these numbers add to one.  But Betty's statement, which must true if she is reliable,
is not necessarily false if she is unreliable.  So I say that her testimony alone justifies a 0.9 degree
of belief that a limb fell on my car, but only a zero degree of belief (not a 0.1 degree of belief)
that no limb fell on my car.  This zero does not mean that I am sure that no limb fell on my car,
as a zero probability would; it merely means that Betty's testimony gives me no reason to believe
that no limb fell on my car.  The 0.9 and the zero together constitute a belief function.

Dempster's rule is based on the standard idea of probabilistic independence, applied to the
questions for which we have subjective probabilities.  I can use the rule to combine evidence
from two witnesses if I consider the first witness's reliability subjectively independent (before I
take account of what the witnesses say) of the second's reliability.  (This means that finding out
whether one witness is reliable would not change my subjective probability for whether the other
is reliable.)  The rule uses this subjective independence to determine joint probabilities for the
various possibilities as to which of the two are reliable.

After using independence to compute joint probabilities for who is reliable, I must check
whether some possibilities are ruled out by what the witnesses say.  (If Betty says a tree limb fell
on my car, and Sally says nothing fell on my car, then they cannot both be reliable.)  If so, I
normalize the probabilities of the remaining possibilities so they add to one.  This is an example
of probabilistic conditioning, and it may destroy the initial independence.  (After I notice that
Betty and Sally have contradicted each other, their reliabilities are no longer subjectively
independent for me.  Now finding out that one is reliable would tell me that the other is not.)
After the normalization, I determine what each possibility for the reliabilities implies about the
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truth of what the witnesses said, and I use the normalized probabilities to get new degrees of
belief.

The net effect of Dempster's rule is that concordant items of evidence reinforce each other,
conflicting items of evidence erode each other, and a chain of reasoning is weaker than its
weakest link.  To illustrate this, consider two independent witnesses, say Betty and Sally.
Suppose the reliabilities of Betty and Sally are p1 and p2, respectively; Betty's testimony gives us
a degree of belief p1 in what she says, and degree of belief zero in its denial, while Sally's
testimony gives us a degree of belief p2 in what she says, and degree of belief zero in its denial.
Then we can derive the following formulas:

If Betty and Sally say exactly the same thing, our degree of belief in what
they say will be 1-(1-p1)(1-p2).

If they make different but consistent assertions, our degree of belief in both
assertions being true will be p1p2.

If they make contradictory assertions, our degree of belief in Betty's

assertion will be 
p1(1-p2)
1-p1p2

 , and our degree of belief in Sally's assertion will be

p2(1-p1)
1-p1p2

 .

These formulas are derived in Chapter 4 of Shafer (1976a).  They represent only the simplest
examples of Dempster's rule.  When we combine more complex belief functions, Dempster's rule
becomes too complex to be represented informatively through simple formulas.

4.  The Mathematical Formalism of Belief Functions

The basic ideas of belief functions can be formalized mathematically in a variety of ways.  In
my 1976 monograph, I defined belief functions axiomatically, and I defined Dempster's rule by a
formula.   Other approaches include multivalued mappings, compatibility relations, random
subsets, and inner measures.  This section is concerned with these alternative approaches and
with the relations among them.

The choice among these alternatives should be seen as a matter of convenience in
mathematical exposition and investigation.  Since the alternatives are mathematically equivalent,
it makes no fundamental difference which we take as the starting point in such mathematical
work.

In applications, the starting point does make a great deal of difference.  But for applications,
we need more than a mathematical definition or a set of axioms as a starting point.  We need a
metaphor that can serve as a guide in relating a practical problem to the theory and as a guide in
assessing numbers to represent the strength of evidence in the practical problem.  I will consider
the problem of providing such metaphors in Section 6.  The alternatives I discuss in this section
are not such metaphors; they are merely mathematical formulations.

In the simple example of Betty's testimony, we started with two questions:
Q1:  Is Betty reliable?
Q2:  Did a tree limb fall on my car?

We had probabilities for Q1, and we derived degrees of belief for Q2.  This process required no
formal notation, because both Q1 and Q2 had only two possible answers:  yes and no.  In more
complex examples, we will have questions Q1 and Q2 with many possible answers.  To talk about
such examples in general, we need a notation for each question's set of possible answers, a
notation for the probabilities for Q1 and the degrees of belief for Q2, and a way of representing
the constraints that an answer to Q1 may put on the answer to Q2.

We assume that each question comes with an exhaustive list of mutually exclusive answers.
We know that exactly one of these answers is correct, but we do not know which one.  We call
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such a set of answers a frame.  Let S be the frame for Q1, the question for which we have
probabilities, and let T be the frame for Q2, the question of interest.

Let us write P(s) for the probability of the element s of S.  Given these probabilities, and
given a subset A of T, we want to derive a degree of belief Bel(A)—our degree of belief that A
contains the correct answer to Q2.

An answer s to Q1 may rule out a whole set of answers to Q2.  If A is a set of answers to Q2,
and s rules out all the answers in A's complement, T-A, then s tells us that the answer to Q2 is
somewhere in A.  Thus the probability P(s) should contribute to our belief in A.  Our total degree
of belief in A, Bel(A), should be the total probability for all s that rule out all answers in T-A.
How shall we put this into symbols?

Here is where paths diverge.  Multivalued mappings, compatibility relations, random subsets,
and inner measures all provide different ways of specifying mathematically the answers to Q2

ruled out by an answer to Q1 and hence different ways of explaining the relation between the
probabilities on S and the degrees of belief on T.

Multivalued Mappings.  Let us first consider multivalued mappings, which were used by
Dempster in his early articles—e.g., Dempster (1967a).

Let us write Γ(s) for the subset of T consisting of the answers to Q2 that are not ruled out by
s.  In this notation, s tells us that the answer to Q2 is somewhere in A whenever

Γ(s) ⊆  A.
The degree of belief Bel(A) will be the total probability for all s that satisfy this condition.  In
symbols:

Bel(A) = P{s | Γ(s) ⊆  A}. (1)
The mapping Γ is a multivalued mapping from S to T.  Formally, a belief function is any function
Bel given by (1) for some multivalued mapping Γ and some probability measure P.

Now consider two belief functions Bel1 and Bel2 on T, which we judge to be based on
independent items of evidence.  Each belief function will be based on its own probability space
and its own multivalued mapping from that probability space to T.  We may write S1 and S2 for
the two probability spaces, P1 and P2 for the two probability measures, and Γ1 and Γ2 for the two
multivalued mappings.  Dempster's rule is a rule for combining Bel1 and Bel2 in order to obtain a
belief function Bel on T that represents the pooling of two items of evidence.  How do we
describe Dempster's rule in terms of S1, S2, P1, P2, Γ1, and Γ2?

We can answer this question by using S1, S2, P1, P2, Γ1, and Γ2 to construct a probability space
S, a probability measure P, and a multivalued mapping Γ from S to T.  The belief function Bel
given by combining Bel1 and Bel2 by Dempster's rule will be the belief function given by (1)
using S, P, and Γ.

Independence of the two items of evidence means that we can make initial joint probability
judgments about the two questions answered by S1 and S2 by forming the product measure P1×P2

on S1×S2.  It also means that what an element s1 of S1 tells us about Q2 does not affect what an
element s2 of S2 tells us about Q2; s1 and s2 together tell us only that the answer to Q2 is in the
intersection Γ1(s1)∩Γ 2(s2).  If this intersection is empty for some (s1,s2), then s1 and s2 are telling us
contradictory things about Q2, and one of them must be wrong.  So we must condition the
product measure P1×P2 on the set of (s1,s2) for which Γ1(s1)∩Γ 2(s2) is not empty.  We let S be the
subset of S1xS2 consisting of (s1,s2) for which Γ1(s1)∩Γ 2(s2) is not empty, and we let P be the
probability measure on S obtained by conditioning P1xP2 on S.  Finally, we let Γ be the
multivalued mapping from S to T given by

Γ(s1,s2)= Γ1(s1)∩Γ 2(s2).
This completes the construction of S, P, and G, and hence the statement of Dempster's rule.

To summarize verbally:  Dempster's rule says to form the product probability space,
condition it by eliminating pairs that map to disjoint subsets of T, and then obtain a belief
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function by mapping each remaining pair to the intersection of the subsets to which the two
elements of the pair are mapped.

Compatibility Relations.  The multivalued mapping Γ from S to T tells us, for each element s
of S, which elements of T are possible answers to Q2 if s is the correct answer to Q1.  It tells us,
in other words, which s are compatible with which t.  This information can also be represented
by specifying the set C of all ordered pairs (s,t) such that s is compatible with t.  This is a
“relation”—a subset of the Cartesian product S×T.  The relation C is related to the multivalued
mapping Γ by

C = {(s,t)| t ∈ Γ (s)}
and

Γ(s) = {t| (s,t) ∈ C}.
In terms of C, (1) becomes

Bel(A) = P{s| {t| (s,t)  ∈ C} ⊆  A},
or

Bel(A) = P{s| if (s,t)  ∈ C, then tεA}. (2)
Shafer (1987b) calls C a compatibility relation, and he develops the mathematics of belief
functions from (2).  This is also the approach taken by Lowrance (1988) and by Shafer and
Srivastava (1990).

In truth, the choice between multivalued mappings and compatibility relations is scarcely
more than a choice of terms.  Many treatments of mathematical set theory (e.g., Kelley 1955)
define mappings as relations.  Moreover, Dempster used the word “compatible” repeatedly in
explaining the meaning of his multivalued mappings.

Random subsets.  We have assigned a subset of T, Γ(s), to each s, and we have assigned a
probability P(s) to each s.  If we think of the probability as being attached to the subset instead of
to s, then we have, in effect, defined a random subset of T.

The subset Γ(s) might be the same for different s.  So in order to find the total probability
that the random subset will be equal to B, we must add the probabilities of all the s for which
Γ(s) is equal to B.  The degree of belief Bel(A) is the total probability that the random subset is
contained in A.

In this setting, Dempster's rule is a rule for combining two random subsets to obtain a third—
or, more precisely, a rule for combining two probability distributions for random subsets to
obtain a third.  We assume that the random subsets are probabilistically independent, we intersect
them, and then we condition the probability distribution for the intersection on its being non-
empty.

This approach to the mathematics of belief functions was emphasized by Nguyen (1978),
Goodman and Nguyen (1985), and Shafer, Shenoy, and Mellouli (1987).  It is convenient for
advanced mathematical exposition, because the idea of a random subset is well established
among mathematical probabilists (Matheron 1975).

The Axiomatic Approach.  Another approach is to characterize belief functions directly in
terms of their mathematical properties.  We simply list a set of axioms that a belief function Bel
must satisfy.  And we use a formula to define Dempster's rule for combining two belief functions
Bel1 and Bel2.  This was the approach of Shafer (1973, 1976a,b, 1979).  It is related to earlier
mathematical work by Choquet (1953).

In my 1976 monograph, I also gave a more transparent characterization for the case where T
is finite.  We assign a non-negative number m(B) to each subset B of T.  Intuitively, m(B) is the
probability that the random subset is equal to B.  We require that m(∅ )=0, where ∅  is the empty
set, and that the m(B) add to one.  The function m is called the basic probability assignment.  We
define the function Bel by

Bel(A) = Σ {m(B) | B⊆ A}. (3)
As it turns out, the m(B) can then be recovered from the Bel(A) by the formula
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m(B) = Σ {(-1)|A|Bel(A) | A⊆ B}. (4)
The functions m and Bel are said to be Möbius transforms of each other (Rota 1964).  Dempster's
rule for combining two belief functions Bel1 and Bel2 can be defined by a relatively simple rule in
terms of the corresponding basic probability assignments m1 and m2; we define m(B) by

m(B) = 

.

212211

212211

})()({

})()({

∅≠∩∑
=∩∑

BBBmBm

BBBBmBm
. (5)

The belief function Bel resulting from the combination can then be obtained from m using (3).
Many other authors, including Gordon and Shortliffe (1984, 1985), have used basic

probability assignments to explain the theory of belief functions.
Inner Probability.  The idea of deriving minimal degrees of belief for some sets from

probabilities for other sets has long been familiar in abstract probability theory in the context of
“inner measures” (Halmos 1950) or “inner probabilities” (Neveu 1965).  With attention to a few
technicalities, we can relate belief functions to the idea of inner measure or inner probability.

It is easiest to explain this using the compatibility relation C that relates the frames S and T.
The set C is itself a frame—it consists of the possible answers to the joint question formed by
compounding the question answered by S and the question answered by T.  A Bayesian approach
to our problem would construct a probability measure on C.  The belief-function approach stops
short of completing this construction.  We stop when we have constructed a probability measure
P on S.  We then extend P to an inner probability on C.

Let us review the definition of inner probability in the finite case.  Recall that an algebra of
subsets of a set X is a collection of subsets that includes X and the empty set ∅  and also includes
A∩B, A∪ B, X – A, and X – B whenever it includes A and B.  Given a probability measure Q
defined only on an algebra ℑ  of subsets of a finite set X, the inner probability of Q is the function
Q

*
 defined by

Q
*
(A) = max {Q(B) | B ∈  ℑ  and B⊆ A} (6)

for every subset A of X.  Intuitively, Q
*
(A) is the degree to which the probabilities for the

elements of ℑ  force us to believe A.
Let ℑ  denote the collection of all subsets of C of the form C∩(R×T), where R is a subset of

S.  This is an algebra of subsets of C.  Since the subset C∩(R×T) of C has the same meaning (qua
assertion about the answer to Q1) as the subset R of S, it is natural to define a probability measure
Q on ℑ  by setting Q(C∩(R×T)) = P(R).  With this definition, (6) becomes

Q
*
(A) = max {P(R) | R⊆ S and C∩(R×T) ⊆  A} (7)

for every subset A of C.
What belief should we give to a subset U of T?  It is natural to answer by looking at the value

of (7) for the subset of C that corresponds to U, namely C∩(S×U).  This is
Q

*
( C∩(S×U)) = max {P(R) | R⊆ S and C∩(R×T)⊆ C∩(S×U)}

= max {P(R) | R⊆ S and if s ∈ R and (s,t)  ∈ C, then t ∈ U}
= P{s| if (s,t)  ∈ C, then t ∈ U},

which is the same as formula (2) for Bel(U).
Thus a belief function is simply the inner measure of a probability measure—or, more

precisely, the restriction to a subalgebra of an inner measure obtained from a probability measure
on a possibly different subalgebra.

This connection between inner measures and belief functions must have been known for
some time to many students of belief functions.  To the best of my knowledge, however, it has
appeared in the literature only in the past few years.  The only references I know are Ruspini
(1987) and Fagin and Halpern (1989a).
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5.  Belief-Function Degrees of Belief are not Lower Bounds

In this section, I will review the point, well established in the literature on belief functions,
that belief-function degrees of belief should not be interpreted as bounds on unknown true
probabilities.  Such an interpretation seems plausible when we consider only a single belief
function, but it breaks down when we consider belief functions that represent different and
possibly conflicting items of evidence.  Most importantly, a probability-bound interpretation is
incompatible with Dempster's rule for combining belief functions.  If we make up numbers by
thinking of them as lower bounds on true probabilities, and we then combine these numbers by
Dempster's rule, we are likely to obtain erroneous and misleading results.

In order to see how the degrees of belief given by a belief function might be thought of as
lower bounds on probabilities, consider again my 0.9 belief that a limb fell on my car, and my
zero belief that no limb fell on my car.  These degrees of belief were derived from my 0.9 and 0.1
subjective probabilities for Betty being reliable or unreliable.  Suppose these subjective
probabilities were based on my knowledge of the frequency with which witnesses like Betty are
reliable.  Then I might think that the 10% of witnesses like Betty who are not reliable make true
statements a definite (though unknown) proportion of the time and false statements the rest of the
time.  Were this the case, I could think in terms of a large population of statements made by
witnesses like Betty.  In this population, 90% of the statements would be true statements by
reliable witnesses, x% would be true statements by unreliable witnesses, and (10-x)% would be
false statements by unreliable witnesses, where x is an unknown number between 0 and 10.  The
total chance of getting a true statement from this population would be (90+x)%, and the total
chance of getting a false statement would be (10-x)%.  My degrees of belief of 0.9 and zero are
lower bounds on these chances; since x is anything between 0 and 10, 0.9 is the lower bound for
(90+x)%, and zero is the lower bound for (10-x)%.

As this example suggests, a single belief function is always a consistent system of probability
bounds.  For any belief function Bel over any finite frame T, there will exist a class of
probability distributions ℘  such that

Bel(A) = min
P∈ ℘  P(A) (8)

for every subset A of T.  (There are many ways of seeing that this is true.  One way is to recall
that Bel(A) is the sum of m(B) for all B contained in A.  Consider the different probability
distributions obtained by distributing the mass m(B), for each B, among the elements of B.  If B
is contained in A, then all the mass has to fall in A, but if B is not contained in A, then it is
possible to distribute it all outside of A.  Hence minimum probability that one of these
distributions can give A is Bel(A).)

However, the degrees of belief given by belief functions should not be interpreted as lower
bounds on some unknown true probability.  Belief functions are not, in general, concerned with a
well-defined reference population, and with learning about the frequencies in this population.
And differences between belief functions do not, in general, reflect disagreements about
unknown true probabilities.  When Betty says a limb fell on my car, and Sally says nothing fell
on my car, they are disagreeing about whether something fell on my car, not about the true
probability of something having fallen on my car.

Were we to insist on a probability-bound interpretation of belief functions, then we would
only be interested in groups of belief functions whose degrees of belief, when interpreted as
probability bounds, can be satisfied simultaneously.  But when belief functions are given their
proper interpretation it is of no particular significance whether there exist probabilities that
simultaneously satisfy the bounds defined by a whole group of belief functions.  Consider two
cases that might arise when we use belief functions to represent contradictory evidence from
Betty and Sally:

Case 1.  Before hearing their testimony, we think highly of the reliability of
both Betty and Sally.  We represent Betty's evidence by a belief function that
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gives a 95% degree of belief to a limb having fallen on my car, and we represent
Sally's evidence by a belief function that gives a 95% degree of belief to nothing
having fallen on my car.  In this case, the two belief functions are contradictory
as probability bounds; if the true probability of a limb having fallen on my car is
greater than 95%, then the true probability of nothing having fallen on my car
cannot also be greater than 95%.

Case 2.  Before hearing their testimony, we think that both Betty and Sally
are fairly unreliable.  So in both belief functions, we assign a 35% degree of
belief rather than a 95% degree of belief.  In this case, the two belief functions
define consistent probability bounds; the true probability of a limb having fallen
on my car and of nothing having fallen on my car can both be greater than 35%.

From the belief-function point of view, there is no conceptual difference between these two
cases.  In both cases, we can combine the two belief functions by Dempster's rule.  In both cases,
there is conflict in the evidence being combined, and normalization is required.

It can be shown that if no normalization is required in the combination of a group of belief
functions by Dempster's rule, then there do exist consistent probabilities that simultaneously
bound all the belief functions being combined as well as the belief function that results from the
combination.  This may also happen when normalization is required, as in case 1 above, but we
cannot count on this.  In general, a probability-bound interpretation of belief functions is
inconsistent with normalization (Zadeh 1986).

Probability bounds do provide another way to use the ideal picture of probability in
subjective judgment.  I have called this the lower-probability approach in order to distinguish it
from the belief-function approach (Shafer 1981).  The lower-probability approach has been
elaborated by Smith (1961), Good (1962), Suppes (1974), Levi (1980), Kofler et al. (1984),
Nilsson (1986), Snow (1986) and others.  It does not, in general, use Dempster's rule.

When we use the lower-probability approach in a practical problem, we are drawing an
analogy between actual evidence and knowledge of bounds on unknown true probabilities for the
question of interest.  Like the belief-function approach, the lower-probability approach is
sometimes but not always appropriate and useful.  To claim it is always appropriate is to fall into
the trap of assuming that unknown true probabilities always exist.  In general, they exist only if a
population and sampling scheme are well defined.  An unknown true probability for the truth of
Betty's statement, for example, exists only if a the population of true and false statements of
witnesses like Betty is well-defined.

In some cases, a lower-probability analysis will come very close to a Bayesian analysis.
Indeed, if the bounds we consider are fairly tight—fairly close to defining a single probability
distribution—then they may correspond to bounds we would consider to see how slight changes
in our subjective probability distribution would affect the outcome of a Bayesian analysis.  Some
authors call this “sensitivity analysis” (Fishburn 1965, Isaacs 1963); others call it “robust
Bayesian analysis” (Kadane 1984).

One contrast between the belief-function and lower-probability approaches is in how they
combine a given belief function Bel on a frame T with evidence that establishes that the answer
is in a subset A of T.  The belief-function approach is to combine Bel by Dempster's rule with a
new belief function that gives degree of belief one to A and degree of belief zero to every proper
subset of A.  This generalizes Bayesian conditioning; I have called it Dempster's rule of
conditioning.  The lower-probability approach is to consider all the probability distributions
bounded from below by the belief function, condition them all on A, and then take lower bounds
over the resulting conditional probabilities.  The lower-probability approach produces weaker
degrees of belief than the belief-function approach (Shafer 1981, Kyburg 1987).

Though applying (8) to an arbitrary class of probability distributions p does not always
produce a belief function, it does produce a belief function surprisingly often (Wasserman 1990).
Moreover, the lower-probability approach to conditioning a belief function produces another
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belief-function (Fagin and Halpern 1989b).  These results show that belief functions are of
greater interest to the lower-probability approach than one might have expected, but they do
reconcile the two approaches from the point of view of application and interpretation.

The point that belief functions are not lower bounds on probability measures is well accepted
in the literature on belief functions.  It is true that Dempster used the idea of bounds on unknown
probabilities as a didactic tool in several of his articles on belief functions (which he then called
“upper and lower probabilities”) in the 1960s.  The idea of probability bounds was never basic to
Dempster's work, however; his work differed in this respect from the earlier work of Smith
(1961) and Good (1962).  In my 1976 monograph, where I introduced both the name “belief
function” and the notation now associated with belief functions, I explicitly disavowed the
interpretation of belief-function degrees of belief as lower bounds over classes of probabilities
(p. ix).  In later articles, I have amplified, emphasized, and repeated this disavowal (Shafer 1981,
1987b, Shafer and Srivastava 1990).  Dempster and other proponents of belief functions have
seconded the disavowal (Dempster 1982, Ruspini 1987, Smets 1988).

6.  The Semantics of Belief Functions

As I noted in Section 4, the use of belief functions in practical problems requires metaphors
that can guide us in relating practical problems to the theory and in assessing the strength of
evidence numerically.  This is the practical meaning of calls for a “semantics” for belief
functions.  In this section, I review the metaphors that I have suggested in the past, as well as
some of the suggestions others have made.

In my mind, the simplest and most effective metaphor for belief functions is the metaphor of
the witness who may or may not be reliable.  In many cases, the example of such a witness can
serve as a standard of comparison for the strength of evidence.  We can assess given evidence by
saying that it is comparable in strength to the evidence of a witness who has a certain chance of
being reliable.

A witness testifying to a specific proposition leads to a relatively simple belief function—
one that gives a specified degree of belief to that proposition and its consequences, and zero
degree of belief to all other propositions.  Arbitrarily complex belief functions can be built up by
combining such simple belief functions (Shafer 1976a, p. 200), but in some cases we may want
to produce complex belief functions more directly, in order to represent evidence that conveys a
complex or mixed message but cannot be broken down into independent components.  This
requires more complex metaphors.

In some cases, we can obtain the more complex metaphor we require simply by extending the
metaphor of the witness who may not be reliable.  Shafer and Tversky (1985), for example, give
a metaphor for consonant belief functions (belief functions such that m(A)=0 except for a nested
family of subsets A) by imagining a witness whose statements may be meaningful to different
degrees of exactitude, with different probabilities.

In Shafer (1981), I suggested a more abstract but very general metaphor—the metaphor of a
randomly coded message.  In this metaphor, we have probabilities for several codes that might be
used to encode a message.  We do not yet know what the message says, but we know it is true.
We have this message in hand in its coded form, and we will try to decode it using each code, but
the probabilities are judgments we make before this decoding.  When we do decode using the
different codes, we sometimes get nonsense, and we sometimes get a comprehensible statement.
It seems sensible, in this situation, to condition our probabilities for the codes by eliminating the
ones with which we get nonsense.  The conditioned probability for each remaining code can then
be associated with the statement we get by decoding using that code.  These statements may be
related in various ways; some may be inconsistent with each other, and some may be stronger
than others.  Thus we obtain the complexity of an arbitrary belief function.
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In this metaphor, the independence of two belief functions means that two different people
independently choose codes with which to send two possibly different (though both true)
messages.  Our uncertainties about the codes in the two cases remain independent unless possible
codes imply contradictory messages.  If s1 is a possible code for the first person, and s2 is a
possible code for the second person, and the first message as decoded by s1 contradicts the
second message as decoded by s2, then it cannot be true that these were the two codes used.  We
eliminate such pairs of codes and normalize the probabilities of the remaining possible pairs.
The probability of each pair is then associated with the conjunction of the two implied messages.
This is Dempster's rule.

Both the metaphor of the witness and the more general metaphor of the randomly-coded
message can be presented in a way that forestalls the interpretation of belief-function degrees of
belief in terms of bounds on probabilities.  There is no probability model for the choice of the
true message sent.  The probabilities are only for the choice of codes.  We might visualize these
probabilities in terms of a repetition of the choice of codes, but since the true message can vary
arbitrarily over this population of repetitions, the idea of this population does not lead to the idea
of a true unknown probability for the true message or for the true answer to the question of
interest.

An insistence on imposing an overall Bayesian model on both the truth of the message and
the choice of a code will lead, of course, to the conclusion that Dempster's rule is wrong.  This
has been shown in detail by Williams (1982) and Good (1982); see also Shafer (1986a).  Related
attempts to relate Dempster's rule to overall Bayesian models include Freeling and Sahlin (1982)
and Baron (1987).

Laskey (1989) has given some examples that further illustrate the difference between belief-
function thinking and a Bayesian approach to the randomly-coded message metaphor.  In
Laskey's examples, strikingly different randomly coded messages produce the same belief
function.  These randomly coded messages would produce quite different Bayesian probabilities
if combined with Bayesian priors about the true message.

What other possibilities are there for a semantics for belief functions?  Krantz (1982) has
explored the possibility of justifying the rules for belief functions, including Dempster's rule,
using measurement-type axioms.  This offers at least a partial non-probabilistic semantics for
belief functions, since the axioms are concerned with comparisons of evidence and hence provide
guidance in the assessment of evidential strength.  I have been unable to convince myself,
however, that this approach provides an understanding of the combination of evidence.  In
particular, it is difficult to justify Dempster's rule fully without a probabilistic basis for the
concept of independence.

Pearl (1988) has developed a metaphor involving random switches to provide a semantics for
belief functions.  Again, however, I have not been able to convince myself that this metaphor
provides a full basis for Dempster's rule.  It does not seem to provide a basis for normalization.

In this section, I have used the word “semantics” in a process-oriented way.  Semantics for a
mathematical theory of evidence is guidance in using the theory to make quantitative judgments
of the strength of evidence.  The meaning of the resulting judgments is not independent of this
process of judgment.

Classical logic and the classical frequentist and Bayesian theories of probability all have a
stronger conception of semantics.  In all three cases, we can say what statements of the theory
mean without reference to how they are obtained.  In logic, the meaning of statements can be
explained in terms of possible models or worlds.  In frequentist probability, the meaning of
statements can be explained in terms of actual frequencies.  In Bayesian probability, the meaning
of statements can be explained in terms of a person's willingness to bet.  I do not believe,
however, that such process-independent semantics is a reasonable goal for AI.  I agree with
Winograd (1980) that AI must use statements that have no meaning “in any semantic system that
fails to deal explicitly with the reasoning process.”  One fundamental aspect of the subjectivity of



13

judgments under uncertainty is the fact that these judgments depend on the process by which
they are made as well as on the objective nature of the evidence.

7.  Sorting Evidence into Independent Items

Dempster's rule should be used to combine belief functions that represent independent items
of evidence.  But when are items of evidence independent?  How can we tell?  These are
probably the questions asked most frequently about belief functions.

The independence required by Dempster's rule is simply probabilistic independence, applied
to the questions for which we have probabilities, rather than directly to the question of interest.
In the metaphor of the randomly coded messages, this means that the codes are selected
independently.  In the more specialized metaphor of independent witnesses, it means that the
witnesses (or at least their current properties as witnesses) are selected independently from well-
defined populations.

Whether two items of evidence are independent in a real problem is a subjective judgment, in
the belief-function as in the Bayesian approach.  There is no objective test.

In practice, our task is to sort out the uncertainties in our evidence.  When items of evidence
are not subjectively independent, we can generally identify what uncertainties they have in
common, thus arriving at a larger collection of items of evidence that are subjectively
independent.  Typically, this maneuver has a cost—it forces us to refine, or make more detailed,
the frame over which our belief functions are defined.

We can illustrate this by adapting an example from Pearl (1988).  Suppose my neighbor Mr.
Watson calls me at my office to say he has heard my burglar alarm.  In order to assess this
testimony in belief-function terms, I assess probabilities for the frame

S1 = {Watson is reliable, Watson is not reliable}.
Here Watson being reliable means he is honest and he can tell whether he is hearing my burglar
alarm.  I can use these probabilities to get degrees of belief for the frame

T = {My alarm sounded, My alarm did not sound}.
Putting a probability of 90%, say, on Watson being reliable, I get a 90% degree of belief that my
burglar alarm sounded, and a 0% degree of belief that my burglar alarm did not sound.

I now call another neighbor, Mrs. Gibbons, who verifies that my alarm sounded.  I can assess
her testimony in the same way, by assessing probabilities for the frame

S2 = {Gibbons is reliable, Gibbons is not reliable}.
Suppose I also put a probability of 95% on Gibbons being reliable, so that I again obtain a 95%
degree of belief that my burglar alarm sounded, and a 0% degree of belief that it did not sound.

Were I to combine these two belief functions by Dempster's rule, I would obtain an overall
degree of belief of 99.5% that my burglar alarm sounded.  This is inappropriate, however, for the
two items of evidence involve a common uncertainty—whether there might have been some
other noise similar to my burglar alarm.

In order to deal with this problem, I must pull my skepticism about the possibility of a similar
noise out of my assessment of Watson's and Gibbons' reliability, and identify my grounds for this
skepticism as a separate item of evidence.  So I now have three items of evidence—my evidence
for Watson's honesty (I say honesty now instead of reliability, since I am not including here the
judgment that there are no other potential noises in the neighborhood that Watson might confuse
with my burglar alarm), my evidence for Gibbons' honesty, and my evidence that there are no
potential noises in the neighborhood that sound like my burglar alarm.

These three items of evidence are now independent, but their combination involves more
than the frame T.  In its place, we need the frame U = {u1,u2,u3}, where

u1 = My alarm sounded,
u2 = There was a similar noise,
u3 = There was no noise.
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(Let us exclude, for simplicity of exposition, the possibility that there were two noises, my alarm
and also a similar noise.)  My first two items of evidence (my evidence for Watson's and
Gibbons' honesty) both provide a high degree of belief in {u1,u2}, while the third item (my
evidence against the existence of other noise sources) provides a high degree of belief in {u1,u3}.
Combining the three by Dempster's rule produces a high degree of belief in {u1}.

A Bayesian approach to this problem would be somewhat different, but it too would involve
refining the frame T to U or something similar.  In the Bayesian case, we would ask whether the
events “Watson says he heard a burglar alarm” and “Gibbons says she heard a burglar alarm” are
subjectively independent.  They are not unconditionally independent, but they are independent
conditional on a specification of what noise actually occurred.  I can exploit this conditional
independence in assessing my subjective probabilities, but in order to do so, I must bring the
possibility of other noises into the frame.

In the belief-function approach, one talks not about conditional independence of
propositions, but rather about the overlapping and interaction of evidence.  For further
explanation and more examples, see Shafer (1976a, Chapter 8), Shafer (1981), Shafer (1984),
Shafer (1987b) and Srivastava, Shenoy, and Shafer (1989).

8.  Statistical Inference and Frequency Reasoning

Statistical inference is inference about frequencies from sample data.  There are belief-
function methods for statistical inference, as well as Bayesian and classical frequentist methods.
In this section, I discuss the relevance of statistical inference, and of frequency reasoning more
generally, to the general problem of subjective judgment.  We can sometimes draw analogies
between non-sample evidence and imaginary data and hence use Bayesian or belief-function
methods of statistical inference in non-statistical problems.  In order to do this successfully,
however, we must distinguish clearly between frequencies and degrees of belief.

The problem of statistical inference has two distinctive features—two features that
distinguish it from the general problem of subjective judgment.  First, the population that defines
the frequencies is well defined.  Second, we have substantial sample data from that population.
There are many reasons for wanting to know about frequencies in a particular population.
Sometimes we want to know about a population for its own sake.  Sometimes knowledge about
frequencies in a population may serve as evidence about causal mechanisms that manifest
themselves in the population.  Sometimes knowledge about frequencies in a population can help
us make subjective judgments about a question that can be regarded as having its answer drawn
randomly from the population.  In the last two cases, statistical inference is only part of the
undertaking, but it is an important part.

The enduring philosophical conundrum of statistical inference is the fact that the sample data
does not seem to provide a complete basis for making inferences about frequencies or about
parameters in statistical models (models for frequencies).  We must usually supplement this data
with subjective judgment or with arbitrary choices.  In the Bayesian case, we must supplement it
with subjective probabilities based on evidence other than the sample data.  In both the classical
frequentist and belief-function cases, there are usually several methods of statistical inference for
a given problem, and we must make an arbitrary choice among them.

Classical frequentism is largely concerned with methods of estimating frequencies (or
parameters that determine frequencies) from sample data and with estimating the average error in
the estimates.  There are almost always competing estimators in a given problem, and the choice
among these methods is not always clear-cut (Efron 1978).  Bayesian methods give more
complete and definite answers; they produce probability distributions for the frequencies or
parameters.  These probability distributions depend, however, on prior subjective opinions as
well as on the sample data (Savage 1961, Lindley 1972).
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Dempster, in his original work on belief functions (Dempster 1966, 1967a,b, 1968a,b, 1969,
1972), was motivated by the desire to obtain probability judgments based only on sample data,
without dependence on prior subjective opinion.  His work, together with later work on belief-
function statistical inference (Krantz and Miyamoto 1983, Shafer 1976a,b, 1982a,b, Tritchler and
Lockwood 1990, Walley 1987, Wasserman 1989, Weisberg 1969, and West 1971) has shown
that this is possible.  But this work has produced a variety of belief-function methods, not a
single prescribed method.  In Shafer (1982b), I argued that we should choose among these
methods by considering the nature of the evidence for the statistical model.  But the evidence for
the statistical model is often too nebulous for this approach to be helpful.

Most problems of subjective judgment are not problems of statistical inference, because
there is neither sample data nor a well-defined population.  In Section 1, I pointed out that the
Bayesian approach, in general, draws an analogy between our actual evidence and knowledge of
frequencies in a population.  But usually this is only an analogy.  The population in question is
purely imaginary.  Moreover, the analogy is with knowledge of frequencies—not with
knowledge of sample data.

In some cases, however, we can approach a problem of subjective judgment by drawing an
analogy between certain items of evidence and imaginary sample data from a real or imaginary
population.  This will allow us to use Bayesian or belief-function statistical methods even though
we do not have real sample data.  Suppose, for example, that we are interested in a bird named
Tweety.  We want to know whether Tweety flies and whether Tweety is a penguin.  We decide to
make judgments about this by defining a population of birds in some way and thinking of Tweety
as randomly selected from this population.  We have some opinions, based on fragmentary
information, hunches, partial memories, etc., about the proportion of birds in this population that
fly and the proportion that are penguins.  If we can assess the strength of this evidence by saying
that it is equivalent to certain sample data, then we can express this strength in terms of
likelihoods, and then we can combine these likelihoods with other evidence in either a Bayesian
or a belief-function framework (Krantz 1990).  The result would be probabilities about the
frequencies in the population, and derivatively, probabilities about Tweety.

It is important, if we follow this strategy of using statistical methods for non-statistical
evidence, to distinguish clearly between frequencies and degrees of belief.  The frequencies,
even if they are imaginary because the population is imaginary, should not be thought of as
degrees of belief, because they are not taken as known.  We are evaluating evidence for what
these frequencies are.

I emphasize the distinction between frequencies and degrees of belief because it tends to
disappear when we use the basic Bayesian analogy, without statistical methods.  The basic
Bayesian analogy is between our actual evidence and an ideal picture in which frequencies are
known and hence equal to our degrees of belief.  It is natural, when making this analogy, to say
that the numbers we produce are both degrees of belief and guesses at frequencies in an
imaginary population.  This basic Bayesian analogy will be needed even if we are using Bayesian
statistical methods, for it is needed in order to assess the prior subjective probabilities.  Thus in a
Bayesian statistical analysis for a non-statistical problem, we will have some “frequencies” that
are degrees of belief, and other “frequencies” that are unknown.

In the case of belief functions, a careless equating of frequency with degree of belief is
especially dangerous.  If our strategy of subjective judgment involves applying belief-function
methods of statistical inference to an imaginary population, we must be clear whether a given
number is a guess at a frequency or a degree of belief.  Combining degrees of belief by
Dempster's rule may be appropriate.  Combining different guesses about frequencies by
Dempster's rule certainly is not.

Consider, for example, our guesses about the proportion of birds in Tweety's population that
fly and the proportion that are penguins.  These guesses should not be represented as belief
functions over a set of statements about Tweety and then combined by Dempster's rule.
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We can explain this in terms of our discussion of dependence in the preceding section.  Both
guesses bear on Tweety only through their accuracy as guesses about the population.  This means
that they have in common the uncertainty involved in choosing Tweety at random from the
population.  Depending on how we obtained the guesses, they may also have other uncertainties
in common.  Like every problem of dependence, we can deal with this problem within the belief-
function approach by sorting out the uncertainties and properly refining our frame.  In this case,
we must bring the possible values for the population frequencies into the frame.  We can then
formalize the connection between these frequencies and Tweety as one of our items of evidence.
We must also identify our sources of evidence about the frequencies, sort out their uncertainties,
and use them to assess belief functions about what these frequencies are.

Judea Pearl, in his article in this volume, gives some examples of misleading results that can
arise from representing conditional probabilities as belief functions and then combining these
conditional probabilities by Dempster's rule.  The error involved in these examples is the same as
the error in the Tweety example; we are using Dempster's rule to combine fragments of
information about frequencies in a given population.  A legitimate belief-function treatment must
deal explicitly with the unknown overall frequency distribution and with the evidence about it.

I do not believe, however, that applying belief-function statistical methods to non-statistical
problems is the most promising direction for the use of belief functions.  It is easy to talk about
“the population of birds like Tweety.”  It is easy to talk about a population of repetitions for any
particular observations whose evidential strength we want to assess.  It is also easy to talk about
causal models and conditional probabilities and populations of repetitions associated with them.
But it is very hard to go beyond this talk and define these populations, even conceptually (Shafer
1982a).  They usually do not provide a good starting point either for Bayesian or belief-function
analyses.

I also do not think that purely statistical problems are the most important domain of
application for belief functions.  When adequate frequency information is available, there are
usually many statistical methods from which to choose, and belief-function methods, though
reasonable, may be more complicated and unfamiliar than standard methods.  Belief-function
representations of statistical evidence can be useful, however, when it is necessary to combine
statistical and non-statistical evidence (Dempster 1990).

Belief functions are most useful precisely when it is not sensible to try to embed the joint
occurrence of all our evidence in an imaginary population of repetitions.  Belief functions are
appropriate when different populations of repetitions, real or imagined, justify probability
judgments for different items of evidence, and these populations bear on the question of interest
and interact with each other in ways unique to each application.  We saw this in the example of
Section 3.  The reliability of Sally and the reliability of Betty were both described in terms of
imagined repetitions, repetitions in which Betty and Sally say many things about many things.
But these reliabilities were linked to my car through what Betty and Sally said this particular
time.  Dempster's rule for combining their testimony was based on this unique aspect of the
testimony, and it cannot be related to a population of repetitions.

9.  Computation

The use of belief functions can involve challenging computational problems.  In this section,
I explain why belief functions are computationally complex, and I briefly review some ways of
dealing with this complexity.  These include Barnett's algorithm for the special case of belief
functions focused on singletons, Thoma's fast Möbius transform, and tree propagation.

Why are belief functions computationally complex?  A belief function Bel on a finite frame T
with n elements is potentially far more complex than a probability measure P on the same frame.
To specify a probability measure P, we need only n numbers—the probabilities P(t) for each t in
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T.  To specify a belief function Bel, we may need as many as 2n-2 numbers—the degrees of
belief Bel(A) for every proper non-empty subset of T.

In practice, belief functions based on individual items of evidence do not approach this
potential degree of complexity.  Even if T is very large, we will try to sort our evidence into
relatively simple items, each of which says something simple about T.  We may have a problem,
however, when we try to combine these belief functions by Dempster's rule.

The potential problems in implementing Dempster's rule can be seen using any of the
mathematical formulations of Section 4.  If we work with the basic probability assignment m, for
example, then the straightforward approach is to implement formulas (3), (4) and (5).  Each of
these formulas is exponentially complex in itself, and each of them must be applied
exponentially often—once for each subset of T.

One simple way to see the complexity that results from Dempster's rule is to count the
potential focal elements of the belief functions involved.  A focal element for a belief function
with basic probability assignment m is a subset A such that m(A)�0.  We might begin with belief
functions with only a few focal elements.  But we can see from (5) that the result of combining a
belief function with r focal elements and a belief function with s focal elements will be a belief

function with as many as r.s focal elements.  Thus we may obtain a very complex belief function
by combining a moderate number of belief functions that individually are not complex at all.

The belief functions we want to combine are usually initially defined on many different
frames.  This is because the different items of evidence we consider all bear on slightly different
questions.  In order to combine the belief functions, however, we must consider all these
questions together; we must work in a frame whose elements answer all the questions at once.
This frame may be enormous, even though the initial frames are all small.  It is in this enormous
frame, in theory, that Dempster's rule must be carried out.  This is why the computational
complexity of belief functions is a real problem.

Kong (1986a, 1988) introduced the idea of discussing belief-function combination in terms
of variables.  Conceptually, we can think of the elements of a frame T as the possible values of a
variable X.  In a problem of subjective judgment, we may be primarily interested in a variable X1,
with a relatively small frame T1.  But as we saw in Section 7, the different items of evidence that
we are interested in, and their interaction, may force us to consider further variables.  In general,
we may be forced to consider a whole list of variables, say X2,X3,...Xn, with frames T2,T3,...Tn,
respectively.  Perhaps each item of evidence we consider is relevant to a few of these variables
and hence each belief function we assess involves only the frame for a few variables.  The first
item of evidence might be relevant to the variables X1, X4 and X5, for example, and hence be
representable by a belief function on the Cartesian product T1xT4xT5.  But if we want to combine
all the evidence, we find ourselves working in the frame T1xT2xT3x...xTn, which may be
enormous if n is large.

Barnett's Algorithm.  Barnett (1981) gave algorithms for Dempster's rule for the special case
in which each belief function supports either a single element of T or the complement of a single
element.  (More precisely, the focal elements for each belief function are either singletons or
complements of singletons.)  These algorithms are much better than the general algorithms; they
are linear rather than exponential in the frame size.

In order to understand the potential and the limits of Barnett's algorithm, we must take into
account the multivariate nature of belief-function computation.  Individual items of evidence may
in some cases produce belief functions that satisfy Barnett's conditions on a given frame.  But as
we study our problem, we will bring in new variables with new frames.  A belief function that
has singletons and their complements as focal elements in the frame T1xT4xT5 will not have
singletons and their complements as focal elements in the more refined frame T1xT2xT3x...xTn.
In this more refined frame, the focal elements will be elements of a given partition and their
complements.  Thinking of the belief function in this larger frame does not invalidate Barnett's
algorithm; it can be thought of as working on the partition.  But a different item of evidence,
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assessed as a belief function satisfying Barnett's conditions on T3xT4xT6, say, will involve a
different partition in T1xT2xT3x...xTn, and Barnett's algorithm will not enable us to combine the
two belief functions.

In practice, therefore, Barnett's algorithm must be supplemented by techniques for combining
belief functions on related frames.  Shafer and Logan (1987) successfully used Barnett's
algorithm in this way in the case of hierarchical evidence.

Fast Möbius Transforms.  With care, we can reduce the complexity of Dempster's rule even
in the general case, because much of the computation in applying (3) (4) and (5) for each subset
is repetitive.  Thoma (1989) has shown how this repetition can be eliminated; the result is a fast
Möbius transform, analogous to the fast Fourier transform.

It remains to be seen how useful the fast Möbius transform will be in practice.  It is clear,
however, that it is not enough to make arbitrary belief-function computations feasible.  Even
reducing the computational complexity from exponential to linear is not enough if the frame is
enormous.

Propagation in Trees.  More recent work on computation has focused on exploiting the
pattern of evidence to reduce computation on very large frames to computation on many smaller
frames.  This can be done whenever individual items of evidence bear directly only on clusters of
variables, and these clusters can be arranged in a join tree (Shafer, Shenoy and Mellouli 1987,
Dempster and Kong 1988, Shafer and Shenoy 1988).

A tree in which the nodes are clusters of variables is called a join tree if whenever a variable
is contained in two nodes of the tree, it is also contained in all the nodes on the path between
these two nodes.  Figure 1 shows an example of such a tree.

X        1 X        10

X ,X ,X       31 2 X ,X ,X     103 9

X ,X ,X       42 3

X ,X       4 8

X ,X        6 7

X ,X ,X       62 5

Figure 1.  A join tree with ten variables.
Suppose we have independent items of evidence bearing on each cluster of variables in this

tree.  Each of these we represent by a belief function on the corresponding frame.  The evidence
bearing on X2,X3, and X4, for example is represented by a belief function on T2xT3xT4.  We want
to combine all these belief functions on T1xT2xT3x...xT10.  It turns out that we can do this (at least
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we can get the values of the resultant belief function for statements about individual variables
and the given clusters of variables) by applying Dempster's rule repeatedly within the smaller
frames corresponding to the clusters in the tree.  The information from one cluster relevant to
another cluster can be passed along the path between the two, by means of messages between
neighboring nodes that take the form of belief functions for the variables that the neighboring
nodes have in common.

Work on belief functions in trees was initiated by the work of Gordon and Shortliffe (1984,
1985).  They were concerned with the problem of combining evidence by Dempster's rule when
different items of evidence are relevant to different levels of specificity in a hierarchy of
diseases.  Gordon and Shortliffe's suggestion of approximating Dempster's rule in this case was
strengthened by Shafer and Logan (1987) to an efficient method of computing the exact results of
the rule.  Shenoy and Shafer (1986), Kong (1986a), and Shafer, Shenoy, and Mellouli (1987)
explained how this treatment of hierarchical evidence can be understood as a special case of
propagation in trees.

Bayesian and Belief-Function Propagation.  Interest in belief-function propagation was
inspired not only by Gordon and Shortliffe's work but also by the work on Bayesian propagation
by Pearl (1986), which was based on models of conditional independence.  How is the algorithm
for belief-function propagation in trees related to algorithms for Bayesian propagation in trees
developed by Pearl and by Lauritzen and Spiegelhalter (1988)?

It is possible to regard the Bayesian algorithms as special cases of the belief-function
algorithm (Shenoy and Shafer 1986, Shafer, Shenoy, and Mellouli 1987, Zarley et al. 1988).  In
order to do this, however, each probability transition matrix, which provides the probabilities for
one node as conditional probabilities given another node, must be represented by a belief
function.  This can be done, but the way in which it is done is neither efficient nor conceptually
satisfying.  The probability transition matrices represent different fragments of information about
a single frequency distribution, and, as I explained in Section 8, such fragments should not, in
general, be represented by belief functions and combined by Dempster's rule.

Rather than treating the Bayesian algorithm as a special case of the belief-function algorithm,
therefore, we should think of them as two special cases of a more general algorithm.  The scope
of this more general algorithm has been demonstrated by Shenoy and Shafer (1990).  It applies in
any case where we have operations of marginalization and combination that satisfy a few simple
axioms (Shenoy 1989a,b).  As it turns out, this viewpoint clarifies Bayesian as well as belief-
function propagation (Shafer and Shenoy 1988, 1990).

In both the belief-function and Bayesian cases, join trees are more than computational tools.
They are also conceptual tools, tools that we use in sorting out our evidence.  In the Bayesian
case, they provide a graphical representation of the conditional independence structure that is
needed to make probability judgments manageable.  In the belief function case, they provide a
representation of the sorting into independent uncertainties discussed in Section 7 (Dempster
1990).

Networks.  When we sort our evidence into independent items, the clusters of variables that
result may be such that they cannot be arranged in a join tree.  This would be case in Figure 1,
for example, if the variable X3 were added to the cluster X6,X7.  How to handle the computational
problem in this case is a difficult problem in general.

The most satisfactory solution to the problem, if possible, is to find a join tree with slightly
larger clusters such that each of the clusters with which we began can fit into a cluster in the tree.
In the case of Figure 1 with X3 added to the cluster X6,X7, for example, we can obtain such a tree
by also adding X3 to X2,X5,X6.

Bayesian propagation also sometimes requires that we embed clusters of variables in a join
tree.  Lauritzen and Spiegelhalter (1988) give one way of doing this; Kong (1986a,b) gives
another way, which usually results in a more manageable tree.  How to embed collections of
clusters in trees in the most efficient way is the subject of a growing literature (Rose 1970,
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Bertele and Brioschi 1972, Tarjan and Yannakakis 1984, Arnborg et al. 1987, Mellouli 1987,
Zhang 1990).

10.  Implementing Belief Functions in Artificial Intelligence

Belief functions have been implemented in a wide variety of expert systems, and I am not
prepared to evaluate or even list these implementations.  The implementations I find most
convincing, however, are those designed for interactive use.  These include Gister (Lowrance,
Garvey, and Strat 1986), Russell Almond's program (Almond 1988), DELIEF (Zarley et al.
1988), AUDITOR'S ASSISTANT (Shafer, Shenoy, and Srivastava 1988), and MacEvidence
(Hsia and Shenoy 1989).  These systems help human users build and evaluate belief networks.
They require the user to make the judgments of independence that justify the network and to
provide the numerical judgments of support based on each item of evidence.

Interactive systems seem appropriate to belief functions, since the theory practically requires
that the relation between evidence and questions of interest should be unique to each application.
Many probabilistic systems—such as the HUGIN system for medical diagnosis (Anderson et al.
1989)—apply the same conditional independence structure and, for the most part, the same
numerical judgments to each new case.  This means relating the entire structure of the evidence
in each case to the same population of repetitions.  As I have already argued, belief functions are
appropriate to situations where this direct frequentist application of probability is not possible—
situations where different populations of repetitions, real or imagined, justify probability
judgments for different items of evidence, and these populations bear on the question of interest
and interact with each other in ways unique to each application.  Such uniqueness means that the
belief network and the numerical judgments must be constructed anew for each case.

The next step, of course, is to automate this constructive process.  This is difficult, but some
progress has been made (Lowrance 1988, Andress and Kak 1988, Biswas and Anand 1989,
Laskey et al. 1989).

Ultimately, it would be desirable to automate not only the construction of belief networks but
also numerical assessment.  I am not aware of current work in this direction, but current ideas in
distributed memory (Kanerva 1989) encourage the idea that there is enough independence in
such memories to permit the use of Dempster's rule.

11.  Other Topics

In this final section, I briefly discuss several topics:  generalizations of belief-function
theory, decision methods based on belief functions, methods for reaching consensus using belief
functions, work on belief-function weights of evidence, and other mathematical work, especially
on infinite frames.

Generalizations.  One way of generalizing belief-function theory is to retain the class of
belief functions and to generalize Dempster's rule for combining belief functions.  I have
discussed some generalizations that allow for dependent evidence (1987a,b), but I am not aware
of practical applications of these generalizations.  In my view, the theory of belief functions
should be used as a way of examining evidence (Dempster 1988), and in the examples I have
thought about, this seems to lead to sorting out the independencies in the evidence, as in the
example of Section 7.

Another approach is to retain the class of belief functions but to generalize the idea of a
compatibility relation to allow for partial or probabilistic compatibility (Kohlas 1987, Yen 1989).
In some cases, this idea can be seen not as a generalization at all, but rather as an introduction of
frames intermediate between the S and T of Section 4.  In other cases, the probabilistic basis of
belief functions is lost, and the rationale for the generalization is not clear (Dubois and Prade
1986).
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Finally, we can generalize the class of belief functions to more general set functions.  Going
in one direction, this takes us to the lower-probability theory discussed in Section 5 and even to
versions of lower-probability theory that generalize probability bounds (Walley and Fine 1982,
Wasserman and Kadane 1990).  Going in another direction, away from probability but towards a
variety of rules of combination, we enter the vast literature on fuzzy sets (Dubois and Prade
1986, 1988).

Decision Methods.  Tom Strat, in his article in this volume, sets out a natural approach to
decision theory within the belief function framework.  The basic idea, that of upper and lower
expectations, can also be found in Choquet (1953) and Dempster (1966).  Examples and practical
elaborations are given by Wesley (1984, 1986) and Wesley, Lowrance, and Garvey (1983).

Variations on this basic idea are possible, but I am not aware of extensive explorations of
them.  Two brief explorations can be found in Shafer (1986b; response to discussion) and
Dempster and Kong (1987).

Another approach to relating belief functions to decision theory is to apply the usual von
Neumann-Morgenstern theory to the linear space of belief functions.  Jaffray (1989) has
developed this approach.

Consensus for Belief Functions.  Rationales for average or consensus belief functions for
group decision have been developed by Wagner (1990) and Williams (1990).  In Shafer (1986c),
however, I argued against global consensus methods and in favor of direct reassessment by the
group of the different items of evidence that contribute to a belief function.

Infinite Frames.  Because my 1976 book dealt only with the case where the frame T is finite,
some readers were left with the impression that the theory of belief functions had been developed
only for this case.  In fact, however, Dempster's articles had dealt from the outset with the
continuous case.  This is natural in the context of parametric statistical inference, since even the
set of possible values for a single unknown probability is a continuous interval.

Dempster's early work included a treatment of the mathematics of belief functions generated
by random closed intervals (Dempster 1968a).  This topic was also treated by Strat (1984).

In general, the mathematical study of belief functions on continuous spaces will employ
various regularity conditions, analogous to countable additivity or to familiar topological
conditions in probability theory.  These include topological conditions (Zhang and Wang 1987)
or mere sequential continuity, analogous to countable additivity (Ross 1986).  My own
contributions to belief functions (Shafer 1976b, 1979) on continuous frames emphasized the
condition of condensability, which was satisfied by the belief functions studied by Dempster.  A
condensable belief function is one for which the plausibility of every set A can be approximated
by finite subsets of A; this expresses very strongly the intuition that in the case of subjective
judgment, continuous mathematics should not be considered more than a convenient
approximation to something fundamentally finite.

Weights of Evidence.  My original purpose in writing my 1976 monograph was to explain an
unsolved mathematical problem, which I called the weight of conflict conjecture.  This
conjecture derived from the idea of associating a weight of evidence to a belief function that
supports a single subset of a frame to a certain degree.  Such a belief function is called a simple
support function.  If A is the subset it supports, then the weight of evidence in favor of A is -
log(1-Bel(A)).  Weights of evidence add when simple support functions are combined by
Dempster's rule.  As I showed, all belief functions on finite frames can be obtained by combining
simple support functions, reducing to coarser frames, and taking limits.  Thus a belief function
can always be understood in terms of a collection of weights of evidence.  There is a possibility
of competing representations by weights of evidence, however, because a given belief function
can be obtained by coarsening in more than one way.  The weight-of-conflict conjecture, if true,
pointed to a way in which the competing representations would be in agreement.  This conjecture
remains unsettled, but the conjectured agreement was established by a different argument by
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Zhang (1986).  The possibility of using weights of evidence in belief-function applications
remains largely unexploited.

Other Mathematical Advances.  Berres (1987) showed that products of belief functions are
always belief functions.  This has possible applications in the context of discounting belief
functions (Shafer 1982a).  Berres (1988) gave a comprehensive review of the relation between
belief functions and Sugeno's λ-additive measures (Sugeno 1974).  Another interesting advance is
the extension to belief functions of ideas of information and entropy that have been associated
with probability distributions (Smets 1983, Yager 1983).
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