GLENN SHAFLER

A SUBJECTIVE INTERPRETATION
OF CONDITIONAL PROBABILITY*

This paper shows how the rule of conditioning for subjective probabilities
can itself be given a purely subjective interpretation. This interpretation is
based on the assumption that a person has subjective probabilities for how
his information and probabilities may change over time. This means we are
concerned not with how the person should or will change his beliefs, but
-rather with what he believes about how these beliefs will change. We assume
that the person expects to have additive expectations that are consistent
over time, and that each state of nature he considers possible specifies how
his knowledge will progress and his expectations will change over time. And
we deduce that he expects to have additive subjective probabilities that will
change over time in conformity with the rule of conditioning.

The first step of the argument is developed in Section 1 below. There |
show that if each state of nature specfies what the person will know at time
t, then these specifications form an “information partition™. In other words,
they specify a disjoint partition of the set of states of nature and specify
that the person’s knowledge at time ¢ will amount to knowledge of which
element of the partition contains the true state of nature. We are accus-
tomed to assuming the existence of information partitions. We implicitly do
so, for example, when we assume that a person’s information will come
from the observation of a random quantity. We are less accustomed to the
idea that the existence of information partitions can be deduced from
simpler assumptions. So far as [ know, no argument similar to the one given
in Section | has been published previously.

The argument for the rule of conditioning is given in Section 3. This
argument can be seen as a version of the argument that Thomas Bayes gave
for the third proposition in his famous essay on probability. In Shafer
(1982) I gave a different version of Bayes’s argument. There | used rooted
trees to specify the possible ways a person’s knowledge may progress. And [
followed Bayes in limiting attention to a simple kind of “expectation™: a
contract that awards a fixed prize contingent on the happening of a given
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event. The present paper uses an explicit time scale in place of rooted trees
and uses the modern language of expectation for random quantities. When
we use this modern language to express Bayes’s assumption that the value of
a contract is unchanged if the prize it awards is replaced by a prize that has
the same value if and when the event on which the contract depends
happens (Postulate IV in Section 4.1 of Shafer (1982)), we see that this
assumption is equivalent to a form of the rule of iterated expectation (see
Axioms Il and I1I' in Section 3 below). The implications of an essentially
identical form of the rule of ilerated expectation have been explored by
Goldstein (1981).

I conclude the paper by showing how the framework developed here
provides a natural setting for the theorems of Aumann (1976) and
Geanakoplos and Polemarchakis (1982), which assert that two people who
begin with a common probability distribution but then receive different
information will regain their agreement on the probability of any particular
event if they repeatedly tell each other their current probabilities for that
event.

The argument of the present paper does not address directly the question
of whether a person should change his beliefs in conformity with the rule of
conditioning when he acquires new information. But it does enable us to say
that if he knows in advance that he will acquire the information or its
denial, then he will be violating his own expectations if he fails to change his
beliefs in this way. For him to have a policy of doing otherwise would be
“incoherent™ in an obvious sense. This point has been made in the vocabu-
lary of betting by Teller (1973). The present paper strengthens the point by
showing how naturally conditioning emerges once foresight about the poss-
ibilities for new information is brought into the subjective probability
model.

When we see how naturally conditioning emerges from the assumption of
foresight about new information, it is natural to ask whether conditioning is
justified without this assumption. A number of examples have been
advanced to suggest that it is not. These include puzzles where the choice of
a conditional probability depends on the protocol for the acquisition of
information (see Bar-Hillel and Falk (1982) and Faber (1976)) and stat-
istical problems where assumptions must be made concerning why given
data is present or missing (Dawid and Dickey (1977)).
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1. THE EXISTENCE OF INFORMATION PARTITIONS

Let  be the set of states of nature that Gracchus, at time O, considers
possible. The elements of 2 are descriptions of the world, in some degree of
detail, and Gracchus believes that exactly one of these descriptions is true.
Let us call subsets of £ events.

Let us say that an event 4 is Gracchus's knowledge at time ¢ (relative to
Q) if the following two conditions are satisfied at time ¢: (i) Gracchus is
certain that the true state of nature is in 4, and (ii) there is no proper
subset B of 4 such that Gracchus is certain that the true state of nature is in
B. The words “certain” and “‘knowledge’ are used here in a purely subjec-
tive sense. When we say that Gracchus knows something. we mean only that
he fully believes it; when we say that he is certain, we mean he is subjec-
tively certain. He may be wrong. Let us, however. impose some order on
Gracchus’s “knowledge™ by assuming that it is consistent and closed under
logical implication: if Gracchus knows certain things at time ¢, then he
immediately deduces any logical consequences and hence also knows these
logical consequences at time 7.

A set Fof subsets of Q is called a partition of 2 if the elements of € are
non-empty and disjoint and have §2 as their union. A partition & of Q is
said to be Gracchus’s information partition for time ¢t, where ¢ 2 0, if each
element w of Q specifies that Gracchus’s knowledge at time ¢ will be the
element of & that contains w. In general, an information partition for
Gracchus at time ¢ need not exist, for the elements of © may fail to say
anything about Gracchus's knowledge at time ¢. But, as the following propo-
sition tells us, if each element of Q2 does specify what Gracchus’s knowledge
at time ¢ will be, then our assumptions imply that these specifications deter-
mine an information partition.

PROPOSITION 1. Suppose, for a particular t 2 0, that each element w of
Q specifies a subset Gy(w) of §2 containing w and specifies that G ,(w) will
be Gracchus's knowledge at time . Then the G,(w) form a partition of Q.

Proof. That the G,(w) are non-empty and have §2 as their union follows
from the fact that w € G (w). So in order to show that they form a par-
tition we need only show that they are disjoint -- i.e., if G(w,) N Gy(w;)
#0, then Gy(w,) = Gy(w,).

Denote by G, the mapping that maps w to G,(w). (Throughout this
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paper bold-face type will indicate implicit dependence on w.) This mapping,
since it is determined by €2, is known to Gracchus from time 0 on. So if his
knowledge at time ¢ turns out to be 4, then he can immediately deduce and
hence will know at time ¢ that the true state of nature must be some w such
that G{w) = 4 — i.e., must be in the set {w|Gw) = A4} = G;'(4). In
order for this not to contradict the statement that his knowledge is only 4,
we must have 4 C G;'(4). So G {w) C G; (G (w)) for all w € Q. This
means that if o' € G,(w), then Gw') = G w).

Now consider a pair w; and w; such that G(w,) N G (w,)# 0. Choose
an element w’ of Gy(w,) N G(w,). Since w' € G(w,). Gy(w') = Gy(w,).
And since W' € Gy(w,), Glw') = Gy(w1). S0 Gy(wy) = G(w,). O

Throughout the remainder of this paper, let us assume that Gracchus has
an information partition for every t 2 0. Denote this partition by ¥, and
denote by Gy(w) the element of &, that w says will be Gracchus’s knowl-
edge at time ¢. Following Shafer (1982), let us call an event 4 exact if
A € &, for some 1. Not all events are exact; if £ is large most are not
exact.

The argument for Proposition | establishes, of course, only the sub-
jective existence of an information partition for Gracchus at time ¢; the
conclusion of the argumeni is that Gracchus believes his knowledge at time
t will be an element of the partition, and this belief may be false. It is not
clear, however, what would be meant by the objective existence of an infor-
mation partition. From an objective viewpoint, whether Gracchus is right
in believing his knowledge at time ¢ will be an element of the partition
formed by the G,(w) comes down to whether his knowledge at time ¢ is
G {wo). where wy is the true state of nature: it is difficult to say whether
Gracchus is right or wrong to believe, in the case of an w that is not the true
state of nature, that his knowledge will be G )(w) if w is the true state of
nature, and so it is difficult to say whether he is right or wrong to believe
that the possibilities for what his knowledge will be form a partition.

2. PARTITIONS AND RANDOM QUANTITILS

Here T establish a vocabulary and notation for discussing partitions and
random quantities.
Suppose .9/ and & are partitions of £, and for each w € Q, let 4 (w)
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denote the unique element of & that contains w. If 4,(w) C 4,(w) for all
w, let us say that o7 is a refinement of %, and %5 is a coarsening of ¥].
(We write 4 C B when A is a subset of B, proper or improper. Thus this
definition allows us to call %] a refinement of .9 when & = &3.) The
meet of & and 3, denoted ] A .3, is their finest common coarsening,
the partition whose element containing w is

{w'| There exists a sequence 4, A,, . . . . A, of elements of
& U o suchthat wE A, ' €Ay, and A; N A4;,, #0 for
i=1,...,k—1}

Their join, denoted o] v 5, is their coarsest common refinement, the
partition whose element containing w is A;(w) N A, (w).

If0<t <t then ¥, isarefinement of &, . (We assume that Gracchus
does not expect to forget anything). If &, = &, then we say that Gracchus
expects no new information from time ¢ through time ¢. If & = Vy<; &
—i.e., Gw) = Ny« Gy(w) — then we say that Gracchus expects no new
information at time ¢.

Let us call a bounded real-valued function of § a random quantity. In
accordance with the convention that bold-face type indicates an implicit
dependence on §2, let us use bold-face for random quantities but not for
their values; the value of the random quantity X at w will be denoted X(w).
Given a subset 4 of §2, denote by 1,4 the random qtfantity whose values
are

@) 1 if wEA
1 4{w) =
4 0 if weA.

We may abbreviate 1 to 1, and we may similarly write 0 for 14.

The partition of S determined by the random quantity X is the partition
consisting of all non-empty subsets of 2 of the form {w| X(w) =5} =
X™'({s}), where s is a real number. If this partitiorris coarser than a given
partition . let us call X measurable with respect to .7, Notice that 1, is
measurable with respect to ’if and only if 4 is a union of elements of .o
If X is measurable with respect to &, — i.e., if for every G € &, X is con-
stant on G, then we say that Gracchus expects (at time 0) to know the value
of X at time r.
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3. EXPECTATION AND PROBABILITY

I now formulate, within the framework of the preceding section, the ideas
of expectation and probability. The approach is to adopt axioms governing
Gracchus's expectations and to deduce the properties of his probabilities
from these axioms.

Let us continue to assume that Gracchus has an information partition &,
for every ¢t > 0. And assume that &, = {Q} and that there exists a time
T > 0 such that @ consists of singletons. At time 0, Gracchus cannot
identify a proper subset of  that contains the true state of nature, but by
time T he expects to know exactly which element of € it is.

Let us assume that each element w of £ specifies, for each random quan-
tity X and each ¢ € [0, T, a real number £, ,,(X), called Gracchus’s expec-
tarion for X at time r. Let us denote by E,(X) the random quantity whose
value at w is £y, ,(X). And let us assume that Gracchus expects (at time 0)
to know the value of E,(X) at time ¢. This means that if G € &, and
w,w €G, thenE, ,,(X) = E (X

If G € &,. let us write £, g(X) for the common value of £} ,(X) for
w € G. And let us write Eo(X) for Eo g (X).

The assumption that Gracchus expects to know the value of E,(X) at
time ¢ is based on the intuitive idea that this value is an aspect of his opinion
at time t; it is the value he assigns at time ¢ to a contract that will pay him X
at time 7' — i.e.. a contract requiring that he be paid X at time Tif X >0
but requiring that he pay — X at time T if X < 0. This intuitive interpret-
ation also leads us to assume that Gracchus's expectations obey the follow-
ing axioms for all t € [0, T'] and all random quantities X and Y.

L Ero(X+Y) = Ep oX)+ E oY) forall w€Q.

1. inf  X(W)<E X< sup X(w') forall wEQ.
WEGHW) W'EG (W)

1. If E, o (X)= Eq o(Y) forall 0 €2, and if 0< 1’ < 1,

then Ey (X)) = Ep (Y)forall w €.

Axioms I and I1 are the usual axioms for expectation; see, for example,
p. 74 of de Finetti (1974). The following proposition lists some of the
consequences of these two axioms.
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PROPOSITION 2. Suppose t € [0, T]. G € ;,a is a real number, and X
and Y are random quantities. Then

() EfX +Y) = E(X)+ E(Y):
(ii) E(0) = 0:

(iii) E(1) = 1;

(iv) Ell) = la;

) E(16X) = 16E;,c(X):

(vi) E;(@aX) = aE(X).

Proof. Statement (i) is merely another way of writing Axiom [. State-
ments (ii), (iii), and (iv) follow immediately from Axiom II. To prove (v),
notice first that by Axiom I,

Ep X)) = Epo(16X) + By, ,(16X),

where G = Q — G. By Axiom I E; ,(15X) =0if w €G and
Ey (16X)=0if w€G. So

E;  X) = E;cg(X) fw€G
E 1:X) = ’ ) =1 X).
t,w( ¢X) 0 ifweG G(w)Et.G( )

For a proof of (vi), see p. 75 of de Finetti (1974). O

Axiom 1l says, in effect, that Gracchus’s expectations at a given time are
consistent with his knowledge about his later expectations; if he knows that
he will value X and Y equally at a future time, then he will value them
equally now. This axiom is not as familiar as Axioms I and II; in fact, I have
not been able to find anything similar to it in the literature. There is a sense,
however. in which this axiom goes back to Thomas Bayes. for something
very similar to it is implicit in Bayes's argument for the third proposition in
his famous essay on probability. (Compare the axiom to Postulate IV in 4.1
of Shafer (1982).)

Given Axiom II, Axiom III is equivalent to the following statement.

l”, Ifo< tl < t, then Et'(X) = Et'(Et(X)).

This statement is more familiar than I11; we recognize it as a version of the
rule of iterated exp.cctation. If we set ¢' = 0, then III' reduces to the simpler
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expression E4(X) = Eo(E4(X)), which can be compared with Goldstein’s
(1981) formula P(X') =P(Pp(X)). (Goldstein uses P for “'prevision” instead
of £ for “expectation” and his D, for “data”, represents a point in time
marked not by a clock but rather by the completion of a data-gathering
effort.)

Let us now define probability: the quantity £, ,(1,) is called Gracchus’s
probability at time t. When we are thinking about probability, let us write
Py o(A) for £y ,(14), P(4) for E(1,). Py g(A) for Ey g(14). and Po(4)
for Eo(14).

PROPOSITION 3. Suppose 0<1'<t<T,GE ¥,,and 4 and B are events.
Then

@) ifANB = @, thenP(4 UB) = P(A)+ Py(B);
(ii) P(®) = 0;

(iii) Py(2) = 1;

(iv) P(G) = lg:

v) P(GNA) = 1P c(4);

() Py(4) = Ep(PiA));

(vii) Py(GNA) = Pr(G)Py c(A);

(viii) if GE Gy then Py (4) = P, g(A).

Proof. Statements (i)-(v) follow immediately from the corresponding
statements in Proposition 2. Statement (vi) follows from 11I', To prove (vii),
use (v) and (vi), together with (vi) of Proposition 2:

E¢(P(GNA)) = Ep(1gP;,6(A))
Ep(1)P; g(A) = Py(G)P, g(A).

To prove (viii), notice that (iv) and (v), applied to ¢’, yield P,/(G) = 15 and
P#(G NA) = 15Py g(A). Substituting these expression for Py(G) and
Py#(G N A)in (vii), we obtain 1gPy (4) = 1P, g(A). Since G # @, it
follows that Py g(A) = P, g(A).

Statement (viii) of Proposition 3 tells us that if Gracchus knows he
will recieve no new information from time ' through time ¢, then P,(4) =
Py(A). It also tells us that if G is an exact event, then the probability

P(GNA)
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P, c(A) will be the same for any ¢ such that G € &,. It is legitimate, there-
fore, to call P, g(4) the “conditional probability of 4 given G”, omitting
reference to the time .

Statement (vii) of Proposition 3 is a version of the third proposition in
Thomas Bayes’s famous essay on probability; see Shafer (1982). If we set
t' = 0. the statement becomes

Po(GNA) = Po(G)Py g(A),
and if Py(G) > 0, this can be written

Po(G N 4)

Prg(4) = PuiC)

(*
in agreement with the usual “‘definition” of conditional probability.

Notice. however, that (+) justifies the usual formula P(4]B) =
P(A N B)/A(B) only in the case where B is an “‘exact event™". In order to
justify this formula. we have built into our probability model assump-
tions about what the possibilities for new information are, This approach
gives meaning and justification to “conditioning on B™ only when B has
been designated as one of these possibilities, and not every subset B of
can be so designated. O

4. DISCRETE PARTITIONS

Let us call a partition & discrete if Py(A)> 0 for all 4 € wand
Z{Py(A)|A Ex} = 1. A discrete partition can have only countably many
elements. Moreover, probabilities are “countably addivite’ and *‘continu-
ous” when we are dealing with discrete partitions; if .9 is discrete and B is
an event. then Po(B) = Z{Po(4 NB|A EX } and Po(BN (N; 4))) =
lim; o Po(B N A;) whenever 4, D 4, D. . .isa decreasing sequence of
events each of which is measurable with respect to . A coarsening of a dis-
crete partition is also discrete.

PROPOSITION 4. Suppose &, is discrete. Then

Po(G, N A4)

forall4 C Q;
Po(Gy)

() P,(4) =

(ii) if Gracchus expects no new information at time 7, then
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Pi(A) = limgy, Pe(4) forall 4 C Q.

Proof. Since &, is discrete, the random quantity Py(G,) is always posi-
tive. Hence (i) follows from (#). If0<+t' <t then &y, being a coarsening
of &, is also discrete. If Gracchus expects no new information at time ¢,
then G4(w) = Ny <4 Gy (w). It follows from the discreteness of &,
moreover. that G,(w), which decreases as t’ increases, changes only a
countable number of times as ¢’ approaches ¢ from below. Hence the inter-
section Ny, G(w) can be thought of as the intersection of a countable
sequence of Gy (w), with ¢' approaching ¢ from below. So

Po(Gw) N A4) _ limg 4y Po(Gy(w) N A)
Po(G(w)) limg 4 Po(Gy(w))
= limgte Py, w(A).

Py (A) =

The statements in Proposition 4 are not, of course, assertions about what
Gracchus’s probability for 4 will be at time ¢. They are merely assertions
about what Gracchus thinks, at time 0, about his probability for 4 at time ¢.
Our theory is founded on assumptions about the states of nature Gracchus
considers possible at time 0. and hence is limited to conclusions about what
he thinks at time 0. On the other hand, there is a sense in which it is not
possible for Gracchus to adopt a probability for 4 at time ¢ that does not
obey statement (i) of Proposition 4. For the correctness of this statement is
specified by each state of nature in . In order to violate the statement
Gracchus must reformulate his set Q of possible states of nature, and in
doing so he will destroy the identity of the event A. O

5. RENEWAL OF AGREEMENT THROUGH EXCHANGE
OF NEW OPINIONS

Here 1 use the framework developed in the preceding sections to study a
problem first raised by Aumann (1976).

Suppose Gracchus and Maevius agree, at time 0, on a space 2 of possible
states of nature. Suppose information partitions exist for both Gracchus and
Maevius at all times ¢ 2 0, and denote these partitions by &; and .#;. Sup-
pose also that each element w of § specifices expectations for both
Gracchus and Maevius that satisfy the assumptions of Section 2, and that at
time O Gracchus and Maevius have the same expectations and hence the
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same probabilities. Since their information partitions differ, they do not
necessarily expect to have the same expections and probabilities at later
times. We will use the lower case letters g and m as superscripts to dis-
tinguish Gracchus’s expectations and probabilities at time ¢ from Maevius's.

PROPOSITION 5 (Aumann, 1976). Suppose the partition &, v _# is dis-
crete. And suppose Gracchus and Maevius expect (at time 0) to know each
other’s probabilities for 4 at time ¢, Then P¥(4) = P*(A).

Proof. To say that Gracchus expects to know P["(4) at time ¢ is to say
that P;"(4) is measurable with respect to &,. Since it is also measurable
with respect to .4, this implies it is measurable with respect to €, A 4.
Our assumption that Maevius expects to know Pf(4) at time ¢ similarly
implies that Pf(A4) is measurable with respect to &, A .#,.

Fix an element w of 2 and let R denote the element of &, A .#; that
contains w. Since Pf(A) is measurable with respect to &; A .#}, Pf g(4) =
PE ,(A) for all elements G of &, that are contained in R. It follows. by (vii)
of Proposition 3, that

Po(GNA) = Po(G)Pf (1)

for all G in &, that are contained in R. Summing this expression over all
these G, and using the fact that %, is discrete, we obtain

Po(RNA) = Po(R)PE (A).
Reasoning similarly concerning P;"(4), we obtain
Po(RNA) = Po(R)P{,(A).

Since Po(R) > 0, we may conclude from these two expressions that
P{w(A)=Pt'?w(A)- 0

Aumann’s formulation of the preceding proposition involves the notion
of “common knowledge.” According to Aumann’s definition, an event 4 is
common knowledge at w (at time ¢) if 4 D G,(w) N My(w). Thus the value
of a random quantity X is common knowledge at w (at time ¢) if X is con-
stant on Gy(w) N My(w). Aumann shows that if the values of Pf and P/
are common knowledge at w (at time 1), then Pf(w) =P (w). Itisa
corollary that if the values of P§ and P are common knowledge at all
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w (at time 1), then Pf = P{". and this is our Proposition 5. For to say that
Pf and P are common knowledge at all w (at time ¢) is to say that they
are measurable with respect to @, A .#; — i.e. (cf. the first paragraph of the
above proof), that Gracchus and Maevius both expect to know both P#
and P{" at time ¢. The only shortcoming of Aumann’s approach is the
difficulty in understanding the intuitive justification for his definition of
“common knowledge.” (See Milgrom (1981).) Our approach, since it takes
the evolution of further knowledge to be excplicitly specified in the prob-
ability model, allows us to use a much more transparent vocabulary.

Aumann’s result was supplemented by Geanakoplos and Polemarchakis
(1982), who showed how twa peaple’s probabilities for an event could
become common knowledge as a result of their repeatedly telling each other
their probabilities for that event. In order to formulate Geanakoplos and
Polemarchakis’s result in our framework, assume that §2 specifies a subset A
of § and specifies that between time 1 and time 2 Gracchus and Maevius
repeatedly tell each other their current probabilities for 4. Suppose, for
concreteness, that 2 specifies that information is to be communicated at
each of an infinite sequence of times ¢, <r, <. ..such that 1 <¢, and
lim;_ . t; = 2. At each time ¢; either Gracchus or Maevius is to tell the
other his current probability for A, or both are to do so simultaneously.
(When we say Gracchus tells Maevius his “current” probability for 4. we
mean, of course, that he tells him the value of Pf(4), where r;_, <1 <1;.)
The schedule of speakers is rigidly specified by . and both Gracchus and
Maevius appear on it an infinite number of times. It is also specified that
Gracchus and Maevius will receive no other information from time !
through time 2. This means, in particular, that both Gracchus and Maevius
expect to receive no new information at time 2,

Let us assume that &, v .#, is discrete.

PROPOSITION 6 (Geanakoplos and Polemarchakis, 1982). Under the
preceding assumptions, P5(4) = P7*(4).

Proof. Given w € §2, let C(w) denote the set of all w’ that agree with w
as to what numbers will be announced by Gracchus and Maevius through
time 2. The sets C(w) form a partition of 2, which we will denote by %,
(This partition can be thought of as the information partition at time 2 for a
third person, say Caja, who begins at time 0 with the same set of states of
nature as Gracchus and Maevius, but whose information through time 2 is
limited to the announcements they make.)
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Notice that € is a coarsening of &, v .#]. (Someone who had both
Gracchus’s and Maevius's knowledge at time 1 could predict their whole
sequence of announcements.) And &, = €, v&and .4, = . #, v &,
(Gracchus. Maevius, and Caja all hear the same anouncements.)

Set / = {i|Gracchus is scheduled to speak at time t;,}. Since / is infinite,
there are values of ¢; arbitrarily close to 2 for i € /. By statement (ii) of
Proposition 4, Pfi(A) approaches P£(A4) as these ¢; are chosen closer to 2.
But each of the Pf(4) is measurable with respect to &. (Caja hears the value
of Pf(A4) at time f;,, and so knows it at time 2.) So their limit, P§(4), is
measurable with respect to €. (So Caja knows P£(A4) at time 2.) Since ¥isa
coarsening of #, = _#, v & P5(4)is also measurable with respect to .#5.
So we conclude that Maevius knows P£(4) at time 2 — or, more precisely,
that he expects at time 0 to know it.

By the same argument applied to Maevius's announcements, Gracchus
expects to know PJ'(4) at time 2. So it follows from Proposition 5 that
P4(4) = P{*(A). a

NOTE
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